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A. CHOICE OF THE GAUGE.

Here we present a detailed justification of the gauge
which is presented in MainTextEq. (6). Ideally we
should have chosen a gauge that would lead to Q‖ = 0.
Seemingly, this might have been achieved with the
choice χ̇(t) = φ̇(t) (1 − cos θ(t)) on both branches of
the Keldysh contour. This choice, however, violates
our desired boundary conditions as the integrals over
χ̇ accumulated between t = −∞ and t = +∞ on the
upper and on the lower Keldysh branches are different.
Such a difference would show up as non-trivial boundary
conditions on χq at either t = −∞ or t = +∞. In other

words, had we selected χ̇(t) = φ̇(t) (1 − cos θ(t)) we
should have violated the requirement χq(t = ±∞) = 0.
We note, though, that to linear order in the quantum
components the condition χ̇(t) = φ̇(t) (1−cos θ(t)) yields
χ̇q = φ̇q(1 − cos θc) + θq sin θc φ̇c, leading to χq(t) =
t∫
dt′
[
φ̇q(t

′)(1− cos θc(t
′)) + θq(t

′) sin θc(t
′) φ̇c(t

′)
]

=

φq(t)(1 − cos θc(t)) +
t∫
dt′ sin θc(t

′)
[
θq(t

′) φ̇c(t
′) −

θ̇c(t
′)φq(t

′)
]
. The first term vanishes at t = ±∞ but

not the last term. We thus include only the first term in
χq, leading to MainTextEq. (6), and consequently to a

non-vanishing contribution to Q̃‖ (MainTextEq. (7)).

B. SEMI-CLASSICAL EQUATIONS OF MOTION.

Here we present the derivation of the semiclassical
equations of motion, MainTextEq. (10). Using the rep-
resentation R = A0σ0 + iAxσx + iAyσy + iAzσz, with
A0 ≡ cos

[
θ
2

]
cos
[
χ
2

]
, Ax ≡ sin

[
θ
2

]
sin
[
φ− χ

2

]
, Ay ≡

− sin
[
θ
2

]
cos
[
φ− χ

2

]
, Az ≡ − cos

[
θ
2

]
sin
[
χ
2

]
we rewrite

the AES action (MainTextEq. (9)) as SAES = SRAES +

SKAES , where

iSRAES = −2ig

∫
dt1dt2 α

′′

R(t1 − t2)
∑
j

Aqj(t1)Acj(t2) ,

(1)

and

iSKAES = −g
2

∫
dt1dt2 αK(t1 − t2)

∑
j

Aqj(t1)Aqj(t2) .

(2)

Here α
′′

R(t) ≡ ImαR(t) and j = 0, x, y, z. The Keldysh
part of the action (2) leads to random Langevin forces.
This can be shown [1] using the Hubbard-Stratonovich
transformation

eiS
K
AES =

∫  ∏
j=0,x,y,z

Dξj

×
exp

∫ dt

i ∑
j=0,x,y,z

ξjA
q
j

+ iSξ

 , (3)

where the action Sξ is given by

iSξ = − 1

2g

∑
j

∫
dt1dt2 [αK ]

−1
(t1−t2) ξj(t1)ξj(t2) . (4)

In other words, 〈ξj(t1)ξk(t2)〉 = δjk g αK(t1 − t2) and
〈ξj〉 = 0. We obtain the Langevin equations MainTex-
tEq. (10) from δiStotal/δφq(t) = δiStotal/δθq(t) = 0,
where iStotal ≡ iSB+ iSWZNW + iSRAES+

∫
dt
∑
j iξjA

q
j .

Here iSB = −iSγ B
∫
dt sin θc θq is the action related to

the magnetic field (in z-direction). Prior to performing
the variation of the action, the field χ is replaced accord-
ing to the gauge fixing choice (MainTextEq. (6)). Finally,
we use α

′′

R(t) = (∂t + C)δ(t) (the constant C is impor-
tant for causality but drops in our calculation) and obtain
MainTextEqs. (10).
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C. JUSTIFICATION OF THE SEMI-CLASSICAL
EXPANSION

Here we justify why a semiclassical expansion of the ac-
tion, leading to MainTextEq. (10), is applicable. It is in-
structive to rewrite the Berry phase action as iSWZNW =
i
∮
K
dt p φ̇, where p ≡ S(1−cos θ). After the Keldysh ro-

tation this gives

iSWZNW = i

∫
dt
[
pcφ̇q + pqφ̇c

]
= i

∫
dt
[
−φqṗc + pqφ̇c

]
, (5)

where we used the fact that the quantum component φq
must vanish at t = ±∞. In contrast to MainTextEq. (8)
we do not yet assume the quantum components to be
small, thus, e.g., pq = pu−pd = −S(cos θu−cos θd). The
rest of the action can in principle be also expressed using
these variables.

The Berry phase part of the action (5) determines
the canonical structure of our theory. Namely, we can
define two pairs of canonically conjugate variables, i.e.,
(−pc, φq) and (φc, pq). Here −pc and φc play the role
of canonical coordinates, whereas φq and pq are their
respective conjugate momenta. We are interested in dif-
fusion, i.e., noise, of the coordinates φc and pc. The well
established way to estimate the latter is to obtain the
generating function by introducing counting source fields
(see, e.g., Ref [2]). The counting fields shift the conjugate
momenta. For example, to calculate the generating func-
tion for cumulants of −pc the Keldysh partition function
should be calculated with a shifted conjugate momentum
φq → φq + λ. The full action, including the dissipative
terms, is periodic in φq. Thus the generating function is
periodic in λ. This corresponds to the quantization of
the conjugate coordinate −pc which is nothing but the
classical component of Sz − S, where Sz is the z projec-
tion of the spin. Thus, in all processes described by our
AES action Sz changes by ∆Sz = ±1, as expected for a
spin variable.

In this paper we assume S � 1. Thus, quantized
jumps of Sz give rise to very small (∼ 1/S) changes of
the angle θ. This allows us to consider the long time limit
of continuous diffusion of θ. This limit is well described
by a semi-classical approximation, in which the action is
expanded up to the second order in the quantum compo-
nents θq and φq. By performing this expansion we lose
all cumulants higher than the second one. In the sec-
ond cumulant (noise) the high frequency quantum noise
is mixed (down-converted). This is due to the fact that
the expanded Keldysh component of the action (2) still
contains the classical components θc and φc. Thus, the
resulting Langevin equation is ”multiplicative”, i.e., the
noise terms (MainTextEq. (11)) contain the coordinates
θc and φc. Similar mechanism led to the shot noise in
the original AES case [3] (see also [4]).

The full action is not a periodic function of pq (it is, of
course, periodic as a function of θu/d). Thus, no quanti-
zation corresponds to the second pair of conjugated vari-
ables (φc, pq).

D. FEASIBILITY OF THE BANG-BANG
EXPERIMENT

Below we argue that the proposed bang-bang exper-
iment is, in fact, within the realm of the present day
technology. We note that several works dealing with
manipulations of qubits did encounter the problem of
the resolution of the spin state. In particular the bang-
bang technique has been successfully applied (see e.g., [5]
(bang-bang in Fulerene qubits); [6] (bang-bang in Joseph-
son qubits)). The spread of the initial spin state may be
quantum-limited and could be less than 2% of a radian
(cf. [7] on qubit tomography and supplemental material
thereof). The state may broaden (on the Bloch sphere)
through diffusion in the course of its evolution; even if
this broadening is tiny, it may be resolved following re-
peated evolutions.

Let us discuss this in some detail, in the context of
our large spin evolution. During the free evolution be-
tween two consecutive bang-bang π-pulses, the geometric
diffusion constant is of order D ∼ gB/S2, whereas the
relaxation rate (the inverse relaxation time) is of order
= τ−1 ∼ gB/S. The time interval ∆t between consecu-
tive π-pulses of the bang-bang protocol is chosen so that
the angle θ does not change much due to the deterministic
relaxation. In other words, given that typically θ ∼ π/4,
we request that ∆θdet ∼ 1/K � 1 (here K is a large
integer). We thus choose ∆t = τ/K = 1/(ΓK). After N
bang-bang pulses the spread due to the geometric diffu-
sion is of the order of ∆θdiff ∼

√
DN∆t =

√
N/(KS).

For the latter quantity to be detectable, we require that it
is of order A/S (A� 1), where 1/S is the minimal spread
corresponding to quantum uncertainty. We assume here
that any spread larger than the quantum uncertainty is
detectable (this can be achieved by averaging over many
repetitions of the same bang-bang procedure). This leads
to a condition on the minimum number of bang-bang
pulses, N = KA2/S.

Let us assume for simplicity very strong π-pulses, i.e.
Ω > B, where Ω is the amplitude of a π pulse. Then the
diffusion constant during the π-pulses is equal toDpulse ∼
gΩ/S2, and the relaxation rate is given by Γpulse ∼ g/S.
The pulse duration is of order 1/Ω (remember we need
half a rotation in a π-pulse). The deterministic change
of θ due to and during N pulses (not counting the free
evolution between the pulses) is given by

dθN pulses
det ∼ ΓpulseN/Ω = Ng/S .

The diffusive spread due to and during N pulses (not
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counting the free evolution between pulses) is equal to

dθN pulses
diff ∼

√
NDpulse/Ω =

√
Ng/S2 .

Substituting N = KA2/S we obtain dθN pulses
det = F/S

and dθN pulses
diff =

√
F/S, where F = gKA2/S.

It is clear that we need to estimate both dθN pulses
det and

dθN pulses
diff , as neither of them is cancelled by the bang-

bang procedure. Both errors become of order 1/S for
F = 1, that is for g = S/(KA2). Thus, if the tunneling
conductance is smaller than this value the error due to
the bang-bang pulses is smaller than the spread due to
the geometric diffusion and therefore unimportant.

E. RELATION TO KONDO PROBLEM?

Below we expand the short argument given in the main
text leading us to conclude that our model is unrelated
to the Kondo problem. Our quantum dot Hamiltonian
(MainTextEq. (1)) does not include a charging term,
hence no Kondo physics. The best way to realize this
model is to think of a large quantum dot with negligi-
ble charging energy, as was the case, e.g., in Refs. [8, 9].
As a result we are neither in a Coulomb valley, nor at
a Coulomb peak. In this case three different types of
fluctuations may take place: (i) Keeping the total S con-
stant, the Sz component may fluctuate; (ii) S itself may
fluctuate. We note that in the vicinity of the macro-
scopic Stoner instability (on either side), the distance in
energy between an S and an S + 1 configuration is much
smaller than the level spacing δ (it is of order δ/S). Once
the temperature (or the dot-lead tunneling strength, see
below) is larger than this energy, such fluctuations in S
are facilitated. (iii) Once the temperature is higher than
the charging energy (or the tunneling strength becomes
larger than the mean level spacing), the Coulomb en-
ergy is irrelevant, and fluctuations in the total number
of electrons in the dot are allowed. Clearly, fluctuations
of either type (ii) or (iii) (or both) take us beyond any
Kondo model.

We note that the dissipative terms in our equations of
motion are quadratic in the tunneling amplitude (linear
in g, cf. for example MainTextEq. (10)). This has also
been the case in Refs. [8, 9]. By contrast, cotunneling
(facilitating fluctuations of Sz by 1, changing neither S
nor the total charge), which would be the building blocks
of high-order Kondo screening processes, is second order
in g, hence Kondo physics is not present in our analysis.

In passing we note that one standard scenario where
the charging energy, even if present, is not important
refers to multi-channel leads (not to confuse with multi-
channel Kondo). In this scenario each of the channels
is weakly coupled to the dot (the tunneling coupling is
|V |2), but the sum of all those couplings renders the

lead-dot conductance g > 1. Under these conditions the
charging energy is suppressed, but perturbation in |V |2 is
allowed (note that the condition for an underdamped mo-
tion of the spin implies g/S � 1; this allows for g � 1).

F. RELEVANCE OF LONGITUDINAL
FLUCTUATIONS OF M

In the main text we made an approximation M(t) =
M0, thus neglecting completely the longitudinal fluctu-
ations of the magnetization. Here we discuss the effect
of the latter and show that it is unimportant as far as
our AES dynamics is concerned. As shown in our pre-
vious works [10–12], in the regime of mesoscopic Stoner
instability the statistical fluctuations of M in an isolated
dot are of the order ∆M ∼

√
M0T . Close enough to

Stoner instability M0 � T and, thus, ∆M � M0. For
an isolated dot these are purely statistical fluctuations
(fluctuations between different ensemble members) since
the total spin is a constant of motion there. In an open
dot considered here dynamical fluctuations of M become
possible. One can show that these will be again limited
by ∆M ∼

√
M0T � M0. In addition these fluctuation

are slow (critical slowdown). Thus, the longitudinal fluc-
tuations can be safely neglected in an analysis of the spin
dynamics on the Bloch sphere. Clearly, in a ferromag-
netic dot (ferromagnetic side of Stoner) the longitudinal
fluctuations are even less noticeable.
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