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The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we
consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described
by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise
terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to
Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling
coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schön effective action and the
corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the
SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced
by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion
of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a
protocol for experimental observation of this phenomenon.
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Introduction.—It is well-known that the kinetic part of
the action of a free spin of length S, whose position is
described in spherical coordinates by angles θ and ϕ reads
Sspin ¼

R
pdq. Here, the generalized coordinate is q≡ ϕ

and the conjugate momentum is p≡ Sð1 − cos θÞ. This
action, a.k.a. geometric (Berry) phase action or Wess-
Zumino-Novikov-Witten (WZNW) action, produces deter-
ministic spin dynamics if accompanied by, e.g., a Zeeman
term. If the spin is subject to dissipation its equations of
motion are expected to contain deterministic friction terms,
e.g., Gilbert damping, as well as stochastic Langevin terms.
Here, we show that the geometric phase determines the
form of these stochastic terms and analyze the consequence
of this for observables. Specifically, we focus on the
dynamics of the collective spin degree of freedom of either
a nanomagnet or a paramagnetic quantum dot near the
Stoner instability characterized by a large total spin [1–5].
The system is tunnel coupled to a normal lead, which gives
rise to a dissipative behavior.
We find that in the quantum regime, i.e., when the

precession frequency is higher than the temperature, the
stochastic spin torques, represented through random
Langevin terms, are substantially influenced by the
Berry phase accumulated by the system in the course of
precession. As an application of our theory, we calculate
the diffusion rate for a large spin, which is artificially held

on a high-energy precessing trajectory by a specific
multiple echo (“bang-bang”) protocol [6].
Our approach can be viewed as a generalization of the

Landau-Lifschitz-Gilbert (LLG)-Langevin equation [7,8],
central to the field of spintronics [9], to a regime where
quantum dynamics dominates. Stochastic LLG equations
have been derived in numerous publications for both a
localized spin in an electronic environment (a situation of
the Caldeira-Leggett type) [10,11] and for a magnetization
formed by itinerant electrons [12,13]. In all these papers,
the precession frequency was assumed to be lower than the
temperature or the voltage, thus justifying the semiclassical
treatment of the problem. In this regime, the geometric
phase did not influence the Langevin terms.
From a different perspective, the equation of motion

presented here is derived from a new action which con-
stitutes a generalization of the Ambegaokar-Eckern-Schön
(AES) theory [14,15]. The latter was written to describe the
dynamics of the charge degree of freedom [marked by an
Abelian U(1) symmetry]. Our generalized AES action,
which is the first main result of our analysis, is underscored
by the non-Abelian SU(2) dynamics. As only two out of
three SU(2) Euler angles are needed to describe the spin
position, a gauge freedom emerges. A central element
of our analysis is to employ this freedom and find
a gauge, which allows for efficient calculation and
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highlights the role of the Berry phase in the stochastic
Langevin terms.
Effective action.—Our derivation here is technically

close to that of Ref. [12]. However, in contrast to
Ref. [12], we do not limit ourselves to small deviations
of the spin from the instantaneous direction, but rather
consider the action on global trajectories covering the
whole Bloch sphere.
To demonstrate the emergence of an AES-like effective

action, we consider a quantum dot with strong exchange
interaction coupled to a normal lead. The Hamiltonian
reads H ¼ Hdot þHlead þHtun. The quantum dot is
described by the magnetic part [16] of the “universal”
Hamiltonian [1]

Hdot ¼
X
α;σ

ϵαa
†
α;σaα;σ − JS2 þ BS; ð1Þ

where S≡ ð1=2ÞPα;σ1;σ2a
†
α;σ1σσ1;σ2aα;σ2 is the operator of

the total spin on the quantum dot, B is the external magnetic
field, and J > 0 is the corresponding “zero mode” ferro-
magnetic exchange constant. The Hamiltonian of the lead

and that describing the tunneling between the dot and the
lead are standard: Hlead ¼

P
γ;σϵγc

†
γ;σcγ;σ and Htun ¼P

α;γ;σVα;γa
†
α;σcγ;σ þ H:c: We assume here a nonmag-

netic lead.
We consider the Keldysh generating functional Z ¼R
DΨ̄DΨ exp ½iSΨ�, where the Keldysh action is given by

SΨ ¼ H
K dtðiΨ̄∂tΨ −HÞ (plus the necessary source terms

which are not explicitly written). Here, for brevity, Ψ
denotes all fermionic fields and the time t runs along the
Keldysh contour. After standard Hubbard-Stratonovich
manipulations [3,4,17], decoupling the interaction term
−JS2, we obtain Z ¼ R

DM exp ½iSM� and the action for
the bosonic vector MðtÞ reads

iSM ¼ tr ln

��
G−1

dot −V̂
−V̂† G−1

lead

��
− i

I
K
dt

jMj2
4J

: ð2Þ

Here, G−1
dot≡ ½i∂t−ϵα− (MðtÞþB) ·σ=2�, while G−1

lead ≡
i∂t − ϵγ . Both G−1

dot and G−1
lead are matrices with time, spin,

and orbital indexes. We introduce MðtÞ≡MðtÞ þ B.
Expanding Eq. (2) in powers of the tunneling matrix V̂
and resumming, we easily obtain

iSM ¼ tr ln½G−1
lead� þ tr ln ½G−1

dot − Σ� − i
I
K
dt

jM − Bj2
4J

;

ð3Þ

where the self-energy reads Σ≡ V̂GleadV̂
†. The first term is

trivial; i.e., it would never contain the source fields. Thus, it
will be dropped in what follows.
Rotating frame.—We introduce a unit length vector

nðtÞ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ through MðtÞ ¼
MðtÞnðtÞ and transform to a coordinate system in which
n coincides with the z axis nðtÞ · σ ¼ RðtÞσzR†ðtÞ. This
condition identifies the unitary rotation matrix R as an
element of SUð2Þ=Uð1Þ. Indeed, if we employ the Euler
angle representation R¼ exp ½−ðiϕ=2Þσz�exp½−ðiθ=2Þσy�×
exp½−ðiψ=2Þσz�, then the angles ϕðtÞ and θðtÞ determine
the direction of nðtÞ, while ψðtÞ is arbitrary; i.e., the
condition nðtÞ · σ ¼ RσzR† is achieved with any value of
ψðtÞ. Thus, ψ represents the gauge freedom of the problem.
We introduce, first, a shifted gauge field χðtÞ≡ϕðtÞþψðtÞ.
This way a periodic boundary condition, e.g., in the
Matsubara representation RðτÞ ¼ Rðτ þ βÞ, is satisfied
for χðτ þ βÞ ¼ χðτÞ þ 4πm (The fact that m is integer is
intimately related to the spin quantization [18]). We can
always assume trivial boundary conditions for χ; i.e.,
m ¼ 0. We keep this representation of the rotation matrix
R also for the Keldysh technique.
We perform a transition to the rotating frame and obtain

iSM ¼ tr ln ½R†ðG−1
dot−ΣÞR�− i

H
K dtðM2−2BMÞ=ð4JÞ (we

omit the constant term ∝ jBj2). For the Green’s function of
the dot, this gives R†G−1

dotR ¼ i∂t − ϵα −MðtÞσz=2 −Q,

(a) (b) (c)

(d) (e)

FIG. 1 (color online). “Bang-bang” protocol. Standard NMR
techniques in the rotating frame are employed: rotations around,
e.g., the x and the y axes of the rotating frame are achieved by
applying resonant driving pulses, which are π=2 phase shifted
with respect to each other. (a) First, a θ0 pulse around the y axis
drives the spin in the xz plane of the rotating frame to form angle
θ0 with the z axis; (b) During timeΔt ≪ τrel, the spin is left alone,
and it relaxes to θ ¼ θ0 − δθ, where δθ ≈ ~g ~B sin θ0Δt ≪ π; (c) A
π pulse around x is performed. The spin is again in the xz plane
but at θ ¼ π=2 − ðθ0 − δθÞ; (d) The spin is left alone again for
time Δt. The relaxation brings it to θ ¼ π=2 − θ0; (e) A π pulse
around x is performed. The spin returns to θ ¼ θ0 in the xz plane.
This cycle is repeated multiple times. At the end a −θ0 pulse
around y axis would bring the spin back to the north pole, but
with an accumulated uncertainty (gray cloud in all panels) due to
the quantum geometric diffusion.
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where we define the gauge (Berry) term as Q≡
R†ð−i∂tÞR ¼ Q∥ þQ⊥. Here, Q∥≡½ _ϕð1−cosθÞ− _χ�σz=2
andQ⊥ ≡ − exp ½iχσz�½_θσy − _ϕ sin θσx� exp ½iϕσz�=2. Note,
that Q depends on the choice of the gauge field χ. Finally,
we obtain

iSM ¼ tr ln ½G−1
dot;z−Q−R†ΣR�− i

I
K
dt

�
M2

4J
−
BM
2J

�
; ð4Þ

where G−1
dot;z ≡ i∂t − ϵα − ð1=2ÞMðtÞσz.

To find the semiclassical trajectories of the magnetiza-
tion, we need to consider paths MðtÞ, θðtÞ, ϕðtÞ on the
Keldysh contour such that the quantum components are
small (in Supplemental Material C [19], we discuss the
physical meaning of this approximation). The quantum (q)
and classical (c) components of the fields are expressed
in terms of the forward (u) and backward (d) compo-
nents [17], e.g., ϕqðtÞ ¼ ϕuðtÞ − ϕdðtÞ and ϕcðtÞ ¼
(ϕuðtÞ þ ϕdðtÞ)=2. Performing the standard rotation
[17], we thus obtain

iSM¼ tr ln½ ~G−1
dot;z− ~Q− ~R† ~Σ ~R�þi

Z
dt
BMq

2J
−i

Z
dt
McMq

2J
;

ð5Þ

where ~G−1
dot;z ≡ τxG−1

dot;z. The local in time matrix fieldsQðtÞ
and RðtÞ also acquire the 2 × 2 matrix structure in the
Keldysh space, e.g., ~Q ¼ Qcτx þQqτ0=2, where τx;y;z;0 are
the standard Pauli matrices.
Adiabatic limit.—Thus far, we have made no approx-

imations. The action [Eq. (5)] governs both the dynamics of
the magnetization amplitudeMðtÞ and of the magnetization
direction nðtÞ. Here, we focus on the case of a large
amplitude M (more precisely, M fluctuates around a large
average valueM0 (see also Supplemental Material F [19])).
Such a situation arises either on the ferromagnetic side of
the Stoner transition or on the paramagnetic side, but very
close to the transition. In the latter case, as was shown in
Refs. [3,4], it is the integration out of the fast angular
motion of n which creates an effective potential for M,
forcing it to acquire a finite average value. More precisely,
the angular motion with frequencies ω ≫ max ½T; B�
(we adopt the units ℏ ¼ kB ¼ 1) can be integrated out,
renormalizing the effective potential for the slow part of
MðtÞ. The very interesting question of the dissipative
dynamics of slow longitudinal fluctuations of MðtÞ in
the mesoscopic Stoner regime will be addressed elsewhere.
Here, we focus on the slow angular motion and substitute
MðtÞ ¼ M0. Thus, the last term of Eq (5) can be dropped.
We note that in the adiabatic limit, we may neglect ~Q⊥ as it
contributes only in the second order in dn=dt [4].
The idea now is to expand the action Eq. (5) in both ~Q

[which is small due to the slowness of nðtÞ] and ~R† ~Σ ~R
(which is small due to the smallness of the tunneling

amplitudes). A straightforward analysis reveals that a naive
expansion to the lowest order in both violates the gauge
invariance with respect to the choice of χðtÞ. One can show
that the expansion in ~R† ~Σ ~R is gauge invariant only if all
orders of ~Q are taken into account, that is if ð ~G−1

dot;z − ~QÞ−1
is used as zeroth order Green’s function in the expansion.
This problem necessitates a clever choice of gauge, such
that ð ~G−1

dot;z − ~QÞ−1 is as close as possible to ~Gdot;z; i.e., the
effect of ~Q is “minimized”.
Choice of gauge.—As the action [Eq. (5)] is gauge

invariant, we are allowed to choose the most convenient
form of χðtÞ. We make the following choice

_χcðtÞ ¼ _ϕcðtÞ½1 − cos θcðtÞ�;
χqðtÞ ¼ ϕqðtÞ½1 − cos θcðtÞ�; ð6Þ

which satisfies the necessary boundary conditions; i.e.,
χqðt ¼ �∞Þ ¼ 0.
We next motivate the choice of Eq. (6). Ideally, we

should have chosen a gauge that would lead to Q∥ ¼ 0.
However, any gauge has to satisfy the boundary condition
χqðt ¼ �∞Þ ¼ 0. This condition is violated by the naive
gauge, in which on both forward and backward Keldysh
contours _χ ¼ _ϕð1 − cos θÞ, and, thus, Q∥ vanishes identi-
cally. The gauge [Eq. (6)] satisfies the boundary conditions
and leads to the desired cancellation Q∥;c ¼ 0, whereas the
quantum component of Q∥ remains nonzero:

Q∥;q ¼
1

2
σz sin θc½ _ϕcθq − _θcϕq�: ð7Þ

At the same time, this choice allows for the expansion of
the Keldysh action in the small ϕq and θq as there are no _ϕq

terms in Eq. (7) (see Supplemental Material A [19]).
Berry phase (WZNW action).—Expanding the zeroth

order in ~Σ term of the action [Eq. (5)] to first order in ~Q, we
obtain the well known in spin physics (see, e.g.,
Refs. [18,23]) Berry phase (WZNW) action iSWZNW ¼
− 1

2

R
dttr½GK

dot;zðt; tÞQ∥;qðtÞ�, which after a straightforward
calculation reads

iSWZNW ¼ iS
Z

dt sin θc½ _ϕcθq − _θcϕq�; ð8Þ

where S≡ NðM0Þ=2 is the (dimensionless) spin of the dot.
Here, NðM0Þ is the number of orbital levels of the dot in the
energy interval M0 around the Fermi energy. Roughly,
S ¼ M0ρ̄dot=2, where ρ̄dot is the density of states averaged
over the energy interval M0. The effects of mesoscopic
fluctuationsof thedensityof stateswere considered inRef. [5].
AES action.—The central result of the current Letter

is the AES-like [14,15] effective action, which we
obtain by expanding [Eq. (5)] to the first order in
~R† ~Σ ~R: iSAES ¼ −tr½ ~Gdot;z

~R† ~Σ ~R�. This gives
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iSAES ¼−g
Z

dt1dt2

× tr
�
(R†

cðt1Þ R†
qðt1Þ
2 )(

0 αA

αR αK)ðt1−t2Þ(
Rcðt2Þ
Rqðt2Þ

2
)
�
;

ð9Þ
where g ¼ 1

2
ðπjVj2ρ↑dotρlead þ πjVj2ρ↓dotρleadÞ is the (spin-

independent) conductance per spin direction. Here, ρ↑=↓dot
are the densities of states at the respective ↑ and ↓ Fermi
levels, whereas the density of states in the lead, ρlead, is spin
independent. The standard [15] Ohmic kernel functions are
given by αRðωÞ−αAðωÞ¼2ω and αKðωÞ¼2ωcothðω=2TÞ.
The action Eq. (9) strongly resembles the AES action [15],
withU(1) exponents exp ½iφ=2� replacedby theSU(2)matrices
R. Fixing the gauge of R is an essential part of our procedure.
Semiclassical equations of motion.—From the effective

action [Eq. (9)], we derive the following semiclassical
equation of motion (see [24] and Supplemental Material B
[19] for details)

_θc þ ~g sin θc _ϕc ¼ ηθ;

sin θcð _ϕc − γBÞ − ~g_θc ¼ ηϕ; ð10Þ

where ~g≡ ðg=2SÞ and γ ¼ ðJρ̄dotÞ−1 is the “giromagnetic”
constant of order unity. The Langevin forces (torques) are
given by

ηθ ¼
1

2S
cos

θc
2

h
ξx cos

�
ϕc −

χc
2

�
þ ξy sin

�
ϕc −

χc
2

�i

−
1

2S
sin

θc
2

h
ξz cos

χc
2
þ ξ0 sin

χc
2

i
;

ηϕ ¼ −
1

2S
cos

θc
2

h
ξx sin

�
ϕc −

χc
2

�
− ξy cos

�
ϕc −

χc
2

�i

−
1

2S
sin

θc
2

h
ξz sin

χc
2
− ξ0 cos

χc
2

i
: ð11Þ

The lhs of Eqs. (10) represent the standard Landau-Lifshitz-
Gilbert (LLG) equations [7] (without a random torque). The
rhs represent the random Langevin torque. The latter is
expressed in terms of four independent stochastic variables
ξj (j ¼ 0; x; y; z), which satisfy hξjðt1Þξkðt2Þi ¼
δjkgαKðt1 − t2Þ and hξji ¼ 0. On the Gaussian level, i.e.,
if fluctuations of θc and ϕc are neglected in Eqs. (11),
the Langevin forces ηθ and ηϕ are independent of each
other and have the same autocorrelation functions:
hηθðt1Þηϕðt2Þi ¼ 0 and hηθðt1Þηθðt2Þi ¼ hηϕðt1Þηϕðt2Þi.
We emphasize that, in general, the noise depends on
the angles θc and ϕc leading to complicated dynamics within
Eqs. (10). In the classical domain, i.e., for frequencies
much lower than T, we can approximate hξjðt1Þξkðt2Þi ¼
4gTδðt1 − t2Þδjk. Then hηϕðt1Þηϕðt2Þi ¼ hηθðt1Þηθðt2Þi ¼
ðgT=S2Þδðt1 − t2Þ. Thus, the situation is simple, and we
reproduce Ref. [8].

In the quantum high-frequency domain, the situation
is different. We cannot interpret the four independent
fields ξn as representing the components of a fluctuating
magnetic field. Solving Eqs. (10) for _θ and _ϕ, we obtain
(see Refs. [8,12])

_ϕc − ~B ¼ 1

sin θc
ξϕ;

_θc þ sin θc ~g ~B ¼ ξθ; ð12Þ
where ξϕ ≡ ½ðηϕ þ ~gηθÞ=ð1þ ~g2Þ� and ξθ ≡ ½ðηθ −
~gηϕÞ=ð1þ ~g2Þ� and ~B≡ ½ðγBÞ=ð1þ ~g2Þ�. A close inspec-
tion of these equations shows that in the regime of weak
dissipation, S ≫ 1 and ~g ≪ 1, the spin can precess with
frequency ~B at an almost constant θ for a long time of order
(shorter than) ð~g ~BÞ−1. For such times, we can approximate
ϕc ¼ ~Bt and χc ¼ ð1 − cos θcÞϕc ¼ ð1 − cos θcÞ ~Bt. Thus,
the Langevin fields ξn in Eq. (11) are multiplied by fast
oscillating cosines and sines with frequencies ωc ≡
~B cos2ðθc=2Þ and ωs ≡ ~Bsin2ðθc=2Þ. Thus, [25]

hηϕ;θðt1Þηϕ;θðt2Þiω¼0 ¼
g
4S2

½cos2ðθc=2ÞαKðωcÞ
þ sin2ðθc=2ÞαKðωsÞ�: ð13Þ

In the quantum regime T ≪ ~B, these correlation
functions differ substantially from the classical ones,
hηϕðtÞηϕðt0Þiω¼0 ¼ hηθðtÞηθðt0Þiω¼0 ¼ gT=S2. Thus, if the
spin could be held on a constant θ trajectory for a long
time, the diffusion would be determined by the quantum
noise at frequencies ωc and ωs, which are governed by the
geometric phase.
We are now ready to discuss the physical meaning of the

semiclassical approximation, i.e., the expansion of the
action [Eq. (9)] up to the second order in θq and ϕq (see
also Supplemental Material C [19]). The nonexpanded
action is periodic in both θq and ϕq. The periodicity in ϕq

corresponds to the quantization of the z spin component
Sz ¼ S cos θc. By expanding, we restrict ourselves to the
long time limit, in which Sz has already “jumped” many
times by ΔSz ¼ 1 in the course of spin diffusion. We
neglect, thus, higher than the second cumulants of spin
noise (see, e.g., Ref. [26] for similar discussion of charge
noise). We obtain, however, a correct second cumulant with
down-converted quantum noise (similar to shot noise in the
charge sector). This is due to the “multiplicative noise”
character of our Keldysh action [Eq. (9)] similar to the
original AES case [15] (see also [27]).
Measurement protocol.—The simplest idea on how to

observe the Langevin terms influenced by the Berry phase,
would be to perform a Ramsey protocol [28] to measure
dephasing. Unfortunately, this is not a viable option, as for
T ≪ ~B, the deterministic relaxation time τrel ∼ ð~g ~BÞ−1 ∼
Sðg ~BÞ−1 is much shorter than the characteristic diffusion
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time τdiff ∼ S2ðg ~BÞ−1. Thus, at the time at which substantial
dephasing takes place, the spin is long at the north pole
(θ ¼ 0). To circumvent this hurdle, we propose to imple-
ment a “bang-bang” protocol [6] as shown in Fig. 1 (See
also Supplemental Material D [19]). In our protocol, we
keep the spin at θc ≈�θ0 for a long time. Thus, the
diffusion will be determined by the noise [Eq. (13)] at
θc ¼ θ0. More precisely, the spread of θc and ϕc (in the
rotating frame) will be given by ðΔθÞ2 ¼ sin2θ0ðΔφÞ2 ¼
Dt, where

D ¼ ðg=S2ÞTeff ; ð14Þ
and the effective temperature is calculated from Eq. (13) to
be [29]

Teff ¼
~B
2
cos4

�
θ0
2

�
coth

�
~B
2T

cos2
�
θ0
2

��

þ
~B
2
sin4

�
θ0
2

�
coth

�
~B
2T

sin2
�
θ0
2

��
: ð15Þ

At T ≫ ~B, we obtain Teff ≈ T, and the geometric effects
are completely washed out. We are thus back to the
classical regime of [8]. In the quantum regime, T ≪ ~B,
the effective temperature has a characteristic θ0 dependence
Teff ¼ ð1=2Þ ~B½cos4ðθ0=2Þ þ sin4ðθ0=2Þ� which, if mea-
sured, would provide a direct evidence in favor of the
geometric noise derived in this Letter.
Summary and conclusions.—We have derived an SU(2)

generalization of the AES effective action for a large spin.
The latter gives rise to semiclassical LLG-Langevin equa-
tions with Langevin torques being influenced by geometric
phases. We have proposed here a driving protocol that
would allow us to observe geometric spin diffusion in the
quantum regime. We envision our formalism being applied
to a broad range of other problems, e.g., easy-axis spin
switching, the line width associated with persistent pre-
cession in magnetic tunnel junctions [12], or transport in
arrays of quantum dots [30].
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