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Recent experimental and numerical studies of the critical-temperature exponent ϕ for the superfluid–
Bose-glass universality in three-dimensional systems report strong violations of the key quantum critical
relation, ϕ ¼ νz, where z and ν are the dynamic and correlation-length exponents, respectively; these
studies question the conventional scaling laws for this quantum critical point. Using Monte Carlo
simulations of the disordered Bose-Hubbard model, we demonstrate that previous work on the superfluid-
to-normal-fluid transition-temperature dependence on the chemical potential (or the magnetic field, in spin
systems), Tc ∝ ðμ − μcÞϕ, was misinterpreting transient behavior on approach to the fluctuation region with
the genuine critical law. When the model parameters are modified to have a broad quantum critical region,
simulations of both quantum and classical models reveal that the ϕ ¼ νz law [with ϕ ¼ 2.7ð2Þ, z ¼ 3, and
ν ¼ 0.88ð5Þ] holds true, resolving the ϕ-exponent “crisis.”
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The disordered Bose-Hubbard (DBH) model is fre-
quently employed as a key prototype system to discuss
and understand a number of important experimental cases,
such as 4He in porous media and on various substrates, thin
superconducting films, cold atoms in disordered optical
lattice potentials, disordered magnets (see [1,2] and refer-
ences therein), and so forth.
The pioneering work [3,4] on the DBH model has

established that at T ¼ 0 an insulating Bose-glass (BG)
phase will emerge as a result of localization effects in
disordered potentials. On a lattice, this phase will intervene
between the Mott-insulator (MI) and superfluid (SF)
phases at arbitrary weak disorder strength [4,5], and will
completely destroy the MI phase at strong disorder. In
contrast with the gapped incompressible MI phase, the
BG phase has finite compressibility, κ, due to the finite
density of localized gapless quasiparticle and quasihole
excitations. Using scaling arguments, and the fact that
κ ¼ const at the critical point of the quantum SF-BG
transition, it was predicted that the dynamic critical
exponent, z, always equals the dimension of space; i.e.,
z ¼ d [4]. The decrease of the normal-to-superfluid tran-
sition temperature, Tc, on approach to the quantum critical
point (QCP) is characterized by the ϕ exponent,
Tc ∝ ðgc − gÞϕ, where g is the control parameter used to
reach the QCP. Standard scaling analysis of the quantum
critical free-energy density predicts that ϕ has to satisfy
the relation ϕ ¼ νz. Therefore, taking into account the
Harris criterion ν ≥ 2=d [6] for the correlation-length
exponent in disordered systems, it is expected that
ϕ ≥ 2, which is within the standard picture of quantum
critical phenomena.

Despite substantial research efforts in the last two
decades, some aspects of the universal critical behavior
described above remain controversial (see, e.g., Ref. [7]).
For instance, Ref. [8] argues that finite κ at the SF-BG
critical point might come from the regular analytic (rather
than singular critical) part of the free energy, and, thus,
z < d should be considered as an undetermined critical
exponent. Moreover, recent experiments on magnetic
systems [1], as well as quantum Monte Carlo simulations
of related disordered S ¼ 1 antiferromagnets with single-
ion anisotropy [9], which use a magnetic field (equivalent
to the chemical potential in the bosonic system) as a control
parameter to drive the system to quantum criticality, report
compelling evidence that the values ϕ ≈ 1.1ð1Þ and ν ≈
0.75ð10Þ are in strong violation of the key relation ϕ ¼ zν
and the bound ϕ ≥ 2. As a result, finite-temperature scaling
relations that have been used to describe SF-BG criticality
for decades are challenged.
In this Letter, we address the ϕ-exponent “crisis” in the

three-dimensional SF-BG universality class by performing
accurate studies of quantum and classical model; we use
Monte Carlo simulations based on a worm algorithm
[10,11] and established protocols of measuring critical
points using finite-size scaling (FSS) plots of mean-square
winding number fluctuations (see, e.g., Ref. [12]) averaged
over disorder realizations (typically 5000–20 000 realiza-
tions). Regarding previous studies, we find that they were
performed away from the quantum critical region, and the
genuine critical behavior was simply out of reach—the
transition temperature drops below the detection limit before
the data become suitable for extraction of ϕ. However, the
low-Tc problem is avoided when the SF-BG transition is
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approached by increasing the disorder strength at constant
particle density. In this regime, simulations of the (dþ 1)-
dimensional classical J-current model (in the same univer-
sality class) reveal that z ¼ d ¼ 3, ϕ ¼ 2.7ð2Þ, and ν ¼
0.88ð5Þ are fully consistent with the ϕ ¼ νz relation. This
conclusion is further confirmed by quantum Monte Carlo
simulations of the hard-core DBH, putting an end to the
controversy.
Consider the hard-core DBH on the simple cubic lattice

(equivalent to the spin-1=2 XY ferromagnet in a magnetic
field) with the Hamiltonian

H ¼ −t
X

hiji
ða†i aj þ H:c:Þ −

X

i

μini; (1)

where aj is the bosonic annihilation operator, t is the
hopping amplitude, ni ¼ a†i ai is the particle-number oper-
ator with the hard-core constraint ni ≤ 1, h� � �i stands for
the summation over the nearest-neighbor sites, and
μi ¼ μþ δμi. Here μ is the chemical potential and δμi is
a bounded random potential with uniform distribution on
the [−Δ, Δ] interval that is uncorrelated in space. The
SF-BG transition is induced by fixing disorder strength at
Δ=t ¼ 16 and decreasing the chemical potential, similar to
the protocol employed in Refs. [1,7,9]. Our data for TcðμÞ
are shown in Fig. 1. They feature an extended region in the
parameter space where TcðμÞ is decreasing by closely
following the reported ðμ − μcÞ1.1 law. However, with
highly accurate data for Tc (our system sizes are at least
an order of magnitude larger than in previous work) we
observe that the last point is deviating from this power law
well outside of its error bar, see inset in Fig. 1; this indicates
that most of the points in Fig. 1 might not be in the critical
regime yet. This observation is confirmed by revealing the
nðμÞ dependence in Fig. 2. Since density remains finite at

the QCP, one requirement of being in the quantum critical
region is to have nðμÞ − nðμcÞ ≪ nðμcÞ. This condition is
clearly violated for most of the points used to establish the
Tc ∝ ðμ − μcÞ1.1 law in previous studies at low fields.
Because current problems with scaling relations likely

originate from strong nðμÞ dependence, when μ is used as a
control parameter (leading to the critical region with
extremely small Tc values), we radically change the
strategy and study the SF-BG criticality as a function of
disorder strengthΔ at constant density. Universal properties
of QCPs in d dimensions can be equally well studied using
(dþ 1)-dimensional classical mappings, which are algo-
rithmically superior from the numerical point of view. The
simplest classical counterpart of the hard-core DBH in
d ¼ 3 is the (3þ 1)-dimensional J-current model [13]

βH ¼ K
X

n;α

J2n;α −
X

n

μ~rJn;τ; (2)

with the Jn;α¼τ ¼ 0; 1 and Jn;α≠τ ¼ −1; 0; 1 constraints.
Here, index α enumerates space-time directions x̂; ŷ; ẑ, and
τ̂, n ¼ ð~r; τÞ is the site index in the hypercubic space-time
lattice, and μ~r ¼ μþ δμ~r is the chemical potential plus
bounded random potential energy that depends on the space
coordinate only. The random potential δμ~r is uncorrelated
in space and is uniformly distributed on the [−Δ, Δ]
interval. An integer-valued current Jn;α is defined on lattice
bonds hn; nþ αi and satisfies the divergence-free condi-
tion; i.e.,

P
αðJn;α þ Jn;−αÞ ¼ 0, where it is understood that

Jn;−α ¼ −Jn−α;α. Graphically, the configuration space is
composed of J-current loops mimicking path-integral
trajectories of bosonic particles. In terms of the underlying
bosonic system, fJn;α¼τg and fJn;α≠τg represent the on-site
occupation numbers and hopping transitions, respectively,
while K ∝ 1=t.
An accurate determination of the critical exponent ϕ

ultimately rests on the precise location of the QCP, or
critical disorder strength Δc, where the power law
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FIG. 1. Critical temperature of the hard-core Bose-Hubbard
model as a function of chemical potential for disorder strength
Δ=t ¼ 16 fitted to the Tc ¼ Aðμ − μcÞ1.1 power law. The dashed
line is to guide the eye.
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FIG. 2. Density at the thermal critical point of model 1 as a
function of chemical potential for Δ=t ¼ 16. The dashed line is a
linear fit.
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originates. [Otherwise, one can be easily misled by the
transient behavior (similar to that shown in Fig. 1).
Likewise, all data points for the J-current model can be
fit nearly perfectly with the power law based on ϕ ≈ 3.3, if
Δc is kept as a free parameter.] To determine Δc along with
the correlation-length exponent ν, we employ FSS of scale-
invariant mean-square winding number fluctuations,

hW2i ¼ ð1=dÞ
X

α¼x;y;z

hW2
αi; (3)

where Wα ¼ ð1=LαÞ
P

nJn;α is the winding number in α
direction. If a small detuning from the QCP is characterized
by δ ¼ ðΔc − ΔÞ=Δc, then the correlation lengths in space
and time directions, ξ and ξτ, diverge as ξτ ∝ ξz ∝ jδj−νz,
and hW2i is a universal function of length-scale ratios

hW2i ¼ fðL=ξ; Lτ=ξτÞ ¼ ~fðL1=νδÞ: (4)

In the last equality, we assume that the ratio Lτ=Lz is fixed.
By plotting hW2i for different system sizes, one determines
the critical parameter from the crossing point of ~f curves (if
z was guessed correctly). We argue that z ¼ d is an exact
relation. Indeed, in the vicinity of QCP the compressibility
can be formally decomposed into critical and regular
(nonsingular) parts κðΔÞ ¼ κsðδÞ þ κregðδÞ, with κs ∝
jδjνðd−zÞ [4]. One may speculate that finite κðδ ¼ 0Þ is
due to the regular part, while the critical part vanishes at
δ ¼ 0. However, this possibility is immediately ruled out
by the observation that finite κ in the BG phase is due to
localized single-particle modes, while such modes do not
exist in the superfluid phase. Thus, finite κð0Þ is entirely
due to critical modes and z ¼ d (our FSS data are in perfect
agreement with this conclusion, see Fig. 3).
Our simulations of model 2 were done with K ¼ 2 at

half-integer filling factor, when μ ¼ K. For FSS at the QCP

we fix Lτ=L3 ¼ 2 and consider only large system sizes,
fromN ¼ 2 × 126 to N ¼ 2 × 206 sites. (We hit the limit of
what a modern computer cluster can handle in reasonable
time, given that every parameter point has to be averaged
over 5000–20000 disorder realizations.) The crossing of ~f
curves shown in Fig. 3 pinpoints the critical disorder
strength to be at Δc ¼ 9.02ð5Þ.
From Eq. (4), it follows that at the critical point

∂hW2i=∂Δ ¼ const × L1=ν; (5)

enabling one to determine the correlation-length exponent ν
from the slopes of universal curves at the crossing point.
The corresponding analysis is shown in Fig. 4, where ν ¼
0.88ð5Þ is deduced from the log-log plot of ~f derivatives.
This result is in full agreement with previous find-
ings [9,14].
We now proceed to the evaluation of the critical-

temperature exponent ϕ from accurate measurements of
TcðΔÞ (using similar FSS analysis) and the power-law
Tc ¼ Aδϕ fit to the lowest transition temperatures, see
Fig. 5. In striking contrast to Fig. 1 and previously reported
results [1,9], all data points nicely follow the power-law
curve Tc ∝ ð8.83 − ΔÞ3.27, as Tc decreases by nearly 2
orders of magnitude. If Δc were left undetermined, we
would have to conclude that ϕ ≈ 3.3. However, if the
power-law fit is performed with the known value of QCP
(i.e., with Δc ¼ 9.02), the prediction is different: The ϕ
exponent decreases from 2.9 to 2.7 as we reduce the
number of the lowest-temperature points to be included in
the fit, from Tc < 0.1 to Tc < 0.01. We thus claim our final
result as ϕ ¼ 2.7ð2Þ, which is in good agreement with the
prediction based on the quantum critical relation ϕ ¼ zν
with z ¼ 3 and ν ¼ 0.88ð5Þ. [The order parameter expo-
nent deduced from the constant-density approach,
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FIG. 3 (color online). Finite-size scaling plots for hW2i ¼
~fðL1=νδÞ for system sizes L ¼ 12 (black), L ¼ 14 (red), L ¼ 16
(blue), L ¼ 18 (magenta), and L ¼ 20 (green) with fixed ratio
Lτ ¼ 2L3. Data points are fitted with second-order polynomials.
We do not observe corrections to scaling within our error bars.
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FIG. 4 (color online). Deducing 1=ν from the linear fit of
ln j∂hW2i=∂Δj as a function of lnL using four points near the
critical point, Δ ¼ 8.8; 9.0; 9.2, and 9.4. Error bars are based on
the uncertainty of the fitting procedure, given the data points and
their statistical error bars in Fig. 3.
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β ¼ 1.5ð2Þ, also differs significantly from the value β ≈
0.6ð1Þ characteristic of the transient μ=t ≥ −14 interval.]
To verify the universality of our findings and to shed light

on what to expect if a similar study is attempted experimen-
tally using magnetic or cold-atom systems, we performed
quantumMonte Carlo simulation of model 1 at half-integer
filling factor (i.e., at μ ¼ 0, or zero external magnetic field in
the case of spin-1=2 XY ferromagnet). Our data for the
normal-to-superfluid transition temperature as a function of
disorder strength are shown in Fig. 6 [TcðΔÞwas determined
fromFSSanalysisofhW2iplotswith8 ≤ L ≤ 64].Giventhat

simulations of quantum models are more challenging
numerically, we did not attempt to determineΔc, and instead
averaged results over a smaller number of disorder realiza-
tions, from 5000 at high temperature to 500 at low temper-
ature. The lowest transition temperatures can be perfectly
fitted to the Tc ∝ ðΔc − ΔÞ2.7 law with Δc=t ¼ 24.67. This
critical behavior starts at temperatures as high asTc=t < 0.5;
wewere able toverify it down toTc=t ≈ 0.03, seeFig. 6 inset.
There is no doubt that the ϕ > 2 condition is satisfied at
the SF-BG transition.
In summary, we addressed the current ϕ-exponent crisis

for the superfluid-to-Bose-glass universality class in three
dimensions. Previous work questioned conventional scal-
ing relations z ¼ d and ϕ ¼ zνwith ν > d=2 for the SF-BG
quantum critical point. Using extensive Monte Carlo sim-
ulations of the hard-core DBH and its classical J-current
counterpart, we were able to identify problems with
previous analyses [strong dependence of density (magneti-
zation) on chemical potential (external magnetic field) on
approach to quantum criticality]. We argued that z ¼ d is
an exact relation, and used it to determine the critical-
temperature exponent ϕ from simulations of the J-current
model. Our final result, ϕ ¼ 2.7ð2Þ, is in good agreement
with the quantum critical prediction ϕ ¼ zν ¼ dν based on
ν ¼ 0.88ð5Þ, putting the controversy to an end. We verified
the universality of our findings and determined under what
conditions the ϕ exponent can be studied experimentally.
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