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Derivation of Friedel sum rule for moving shuttle

Original Friedel sum rule [1] formulated for the sta-
tionary quantum mechanical states establishes connec-
tion between the scattering phase shifts and the number
of occupied states inserted by an impurity potential and
screened by the free electrons in the Fermi sea. This uni-
versal rule is valid also for strongly correlated systems in-
volving many-particle effects like orthogonality catastro-
phe (Fermi-edge singularity, Kondo effect). In the latter
case the Friedel-Langreth rule fixes the Kondo screening
effect [2], i.e. counts the number of free electron states
involved in formation of the Kondo singlet ground state
and thus excluded from the Fermi bath with N electrons.
In case of single-channel Kondo effect for impurity spin
1/2 the s-partial wave is scattered with the phase shift
δσ(εF ) = σπ/2. This phase shift fixes the number of elec-
tronic degrees of freedom spent for complete dynamical
screening of impurity spin.

Specific feature of our case is that we consider dy-
namical screening of slowly moving spin by the elec-
trons in the left lead in a strong coupling regime near
the unitarity limit fixed point following the Nozieres’
phenomenological Fermi liquid approach [3] under con-
ditions of finite (T, eVbias, ω) ≪ TK (we adopt notations
kB=~=1). Kondo temperature plays part of effective en-
ergy scale (”bandwidth”) for fermionic excitations above
the ground state (Kondo singlet plus Fermi sphere with
N−1 electrons). In adiabatic regime the hierarchy of en-
ergy levels is conserved, but TK and therefore δσ become
slow functions of time.

The phase shifts enter the spin-dependent T - matix
defined as

−πρTσ(ω) =
1

2i

[

e2iδσ(ω) − 1
]

+ e2iδσ(ω) [−πρTin(ω)] (1)

where Tin accounts for inelastic processes and ρ is a total
density of states at the Fermi level. To derive Eq. (10)
of the main text we start with definition

N1 −N2 ≡ 〈N̂1 − N̂2〉 = (2)

T
∑

n

∑

σ

∫

d~p

(2π)3
[G1σ(~p, ωn)− G2σ(~p, ωn)] e

iωnτ|+0 .

Here Giσ are the Matsubara Green functions and the
channels 1 (2) are symmetric (antisymmetric) combina-
tions of left ± right leads. Only the channel 1 is involved
in the Kondo interaction with moving island. Averaging
is performed with Nozieres Kondo fixed-point Fermi liq-
uid Hamiltonian. The Green functions in the channels
1,2 are given by

G1σ = G0σ + G0σTσG0σ, G2σ = G0σ (3)

(G0σ(~p, ωn) = (iωn − ξp,σ)
−1 is the bare propagator in

channels 1 and 2 and ξp,σ = εp,σ − µ is the disper-
sion of Fermi excitations with the bandwidth 2TK in the
Nozieres’ Fermi liquid model).

Near the fixed point one may use the conformal field
theory approach for T -matrix [4], which gives

−πρTin(ω) = i
ω2 + π2T 2

2T 2
K

. (4)

As usual, we introduce the density of states for given spin
projection:

̺σ(ε) =

∫

d~p

(2π)3
δ(ε− ξp,σ)

Then

N1 −N2 = (5)

T
∑

n

∑

σ

∫ TK

−TK

dεG0σ(ε, ωn)̺σ(ε)Tσ(ωn)G0σ(ε, ωn).

Substituting (4) and (1) in (5) and integrating over ε, we
get

N1 −N2 =
2

π
Re

{

T
∑

n

∑

σ

TK

ω2
n + T 2

K

[−πρTσ ]

}

(6)

where ρ = ̺σ(µ). At T ≪ TK we replace Matsubara
summation for integration T

∑

n →
∫

dω/2π [5] and per-
form Wick’s rotation iωn ↔ ω. Combining Eqs. (4) and
(1) we obtain after simple transformations:

N1 −N2 →
δt
π

+O(δ̃3↑ + δ̃3↓) (7)

This equation is in fact Eq. (10) of the main text plus
higher order corrections in the phase shifts. It should be
stressed that we work near the unitarity limit δσ → σπ/2
(here δ̃σ = δσ − σπ/2) and total phase δt = δ↑ + δ↓ is
defined in the interval 0 ≤ δt ≤ π. Index t stands for
parametric time dependence in the adiabatic regime.
Summarizing, presented derivation is nothing but gen-

eralization of Affleck - Ludwig - Pustilnik - Glazman
procedure [4, 6] for time-dependent adiabatic motion of
quantum impurity. Less general procedure (based on the
Langreth perturbation theory [2] applied to Anderson’s
model of localized impurity states in metals) has been
proposed for the Friedel sum rule in Ref. [7] devoted to
the charge pumping in the Kondo regime.
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