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We establish the full ground state phase diagram of the disordered Bose-Hubbard model in

two dimensions at a unity filling factor via quantum Monte Carlo simulations. Similarly to the three-

dimensional case we observe extended superfluid regions persisting up to extremely large values of

disorder and interaction strength which, however, have small superfluid fractions and thus low transition

temperatures. In the vicinity of the superfluid-insulator transition of the pure system, we observe an

unexpectedly weak—almost not resolvable—sensitivity of the critical interaction to the strength of (weak)

disorder.
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Disordered systems keep attracting attention as they
reveal the rich and nontrivial physics of the interplay
between interaction effects and localization [1,2]. Bosons
are particularly interesting because noninteracting parti-
cles are always localized in the region of space which
corresponds to the deepest bound state in the disorder
potential; i.e., the limit of weak disorder and weak inter-
actions is singular. The study of the so-called ‘‘dirty boson
problem’’ was first prompted by the disappearance of
superfluidity of 4He in porous media (vycor) [3]. Other
condensed matter systems of interest include thin super-
conducting films [4], Josephson junction arrays [5], super-
fluid helium films on substrates [6], etc.

More recently, the realization of ultracold atoms in
optical lattices [7,8] paved the road to studies of strongly
correlated systems in a controlled way, and to using them
as emulators for condensed matter models. In the presence
of disorder, most cold atomic systems are described by the
Bose-Hubbard model (BHM) with disorder in the on-site
potential. Control over disorder has been implemented in
optical lattices in several ways such as using bichromatic
lattices, a laser speckle field, and by loading a second
(heavy) component into the system [9–13]. Both weakly
interacting and strongly interacting limits have been real-
ized in these experiments.

Considerable amount of theoretical effort has been dedi-
cated in the past to understanding the phases and phase
transitions in the system [14–25]. In addition to the Mott
insulator (MI) and superfluid (SF) states present in the pure
case, disordered ground states feature a third, nonconduct-
ing but compressible, Bose glass (BG) phase. Whether
there exists a direct transition between the MI and SF states
has been the subject of a long debate. Fisher et al. [2]
argued that such a transition is unlikely; i.e., for finite
disorder MI and SF phases are always separated by BG,
but alternative possibilities were not ruled out rigorously.
This resulted in a controversy since, on one hand,

mean-field type theories are inadequate in capturing the
physics of rare statistical fluctuations driving the MI-BG
transition, and, on the other hand, various numerical tech-
niques are severely limited by finite-size effects [16,18,19].
The controversy has been resolved in Refs. [26,27], which
proved the theorem of inclusions and concluded that all
transitions between the fully gapped and gapless ground
states in disordered systems are of the Griffiths type and
thus the resulting gapless phase is insulating. Moreover, the
original conjecture [2,14] that the MI-BG boundary corre-
sponds to the disorder bound � equal to the MI gap in a
pure system turns out to be a rigorous result by the same
theorem. Here it is important that disorder is bounded since
otherwise the MI phase is eliminated altogether. [We note
that proofs based on rare statistical fluctuations are valid
only in the thermodynamic limit; in finite experimental
systems phase boundaries are replaced by crossovers, in-
cluding complete elimination of the BG state for weak
enough disorder.]
Theorems fix the overall topology of the phase diagram

but say nothing about its shape and quantitative features.
For example, we are not aware of any rigorous argument in
dimensions d > 1 for why weak disorder would favor SF
versus insulating states in the vicinity of the MI transition.
By simulations it was found to be the case in d ¼ 3; what
happens in d ¼ 2 remains unanswered. This question is
particularly interesting because all existing considerations
regarding relevance of weak disorder (see also below)
point out that d ¼ 2 is a special dimension. In the present
work we study a two-dimensional disordered BHM and
present the first accurate results for its ground state phase
diagram at unity filling factor [28]. The numerical method
of solution is based on the lattice path integral Monte Carlo
calculations using the worm algorithm [30]. We pay spe-
cial attention to the critical behavior of the system in the
limit of weak disorder in proximity to the SF-MI transition
in the homogeneous system.
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The disordered BHM reads as

H ¼ �t
X
hiji

ayi aj þ
U

2

X
i

niðni � 1Þ þX
i

ð"i ��Þni; (1)

where ayi ðaiÞ is the boson creation (annihilation) operator,

hiji denotes nearest neighbor sites, and n ¼ ayi ai is the
density operator. In what follows we use the hopping
matrix element t as a unit of energy, U is the on-site
repulsion between atoms, and � is the chemical potential.
Random disorder "i is uniformly distributed on the [� �,
�] interval with no correlations between the sites of a
square lattice. In our numerical study, we work at filling
factor n ¼ 1 and, for definiteness, choose the chemical
potential in the middle of the MI gap when appropriate;
i.e., gaps for creating particle and hole excitation in the MI
phase are both equal to Eg=2.

To construct the phase diagram we employ standard
procedures. The SF-BG transition lines are determined
from finite-size scaling of the superfluid stiffness calcu-
lated from the statistics of winding numbers squared, hW2i,
using formula �s ¼ hW2iL2�d=Td [31]. According to the
theorem of inclusions, the BG-MI line is determined by the
� ¼ Eg=2 criterion (recall that it is impossible to detect this

boundary directly in finite-size simulations).
Figure 1 shows hW2i=2 vs �=t curves at U=t ¼ 22 for

different system sizes averaged over 500 disorder realiza-
tions with error bars dominated by sample-to-sample fluc-
tuations. In this case we scale space and imaginary time
dimensions according to the dynamical critical exponent
z ¼ 2 predicted in Ref. [2] (strictly speaking, in the ther-
modynamic limit any value of z > 0 can be used for
determination of the critical point). A barely measurable
flow of intersection points with the system size allows us to
estimate transition points with relatively high accuracy.
From the data in Fig. 1 we deduce �c=t ¼ 7:76� 0:06.
The full ground state phase diagram in the (U, �) plane is

shown in Fig. 2. The boundary between the MI and BG
phases at �=t ¼ Eg=2 was constructed using data for the

MI gap in a pure system calculated in Ref. [32].
Reentrant behavior, similar to that observed in d ¼ 1

and d ¼ 3 phase diagrams, is also present in d ¼ 2 in
agreement with earlier observations at finite disorder
[16,29]. In compliance with the theorem of inclusions,
BG always separates SF and MI states which meet only
at the MI-SF transition point of the clean system atUc=t ¼
16:7424ð5Þ. As we move away in the vertical direction,
weak disorder always works in favor of the SF phase
shifting the transition points to the right—this appears to
be a common behavior in all physical dimensions. The
mechanism, however, is not universal and only in d ¼ 1 it
can be explained theoretically by the destructive interfer-
ence of the vortex instanton contributions to the partition
function [20].
In the weak interaction limit U ! 0, the transition line

goes to zero with an infinite slope �c /
ffiffiffiffi
U

p
[33]. In this

region, the interaction is very efficient in screening deep
potential wells and stabilizing superfluidity. Numerically,
it is extremely hard to study [34] and we were not able to
clearly resolve the square-root law though our data provide

an estimate for the prefactor in � � 20
ffiffiffiffiffiffi
Ut

p
.

Remarkably, superfluidity persists up to extremely large
values of disorder and interactions. For intermediate inter-
actions, superfluidity survives when disorder potential
is about 10 times larger than the bandwidth, �=t ¼ 72.
Likewise, the superfluid ‘‘finger’’ at �=t ¼ 30 extends all
the way toU=t ¼ 49. However, superfluid properties of the
system in the large disorder and large interaction limits are
not robust. In Figs. 3 and 4 we plot the superfluid stiffness
calculated along two representative cuts of the phase dia-
gram, one at fixed interaction U=t ¼ 26 and the other at
fixed disorder �=t ¼ 35. Small values of �s for �> 30t

FIG. 1 (color online). Finite-size scaling of winding number
fluctuations as a function of disorder bound � for interaction
strength U=t ¼ 22 and dynamical exponent z ¼ 2. Data are
shown for � ¼ ðL=4Þ2.

FIG. 2 (color online). Zero temperature phase diagram of
the two-dimensional BHM at filling factor n ¼ 1. The MI-BG
transition at � ¼ Eg=2 is obtained using gap data from Ref. [32].

The green triangle point on the SF-BG boundary was obtained in
Ref. [29]. The dashed line is the square-root law predicted for the
�, U ! 0 limit in Ref. [33].
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ensure small superfluid-normal transition temperatures
according to the Nelson-Kosterlitz relation Tc=t ¼
ð�=2Þ�sðTcÞ. Note that Figs. 3 and 4 can be used to
determine upper bounds on Tc because �sðTcÞ<�sð0Þ.
For example, numerical simulations of the SF-normal tran-
sition temperature at U=t ¼ 26 and �=t ¼ 35 yielded
Tc=t ¼ 0:07� 0:012 below the upper bound estimate
Tc=t ¼ 0:2.

Low transition temperatures have important consequen-
ces for current cold-atom experiments. Though the (U=t ¼
26, �=t ¼ 35) point is chosen to be far from the edges of
the SF-BG boundaries in Fig. 2, the value of Tc is well
below typical experimental temperatures which are still at
(or above) the tunneling amplitude t. Thus observing the
ground state phase diagram remains a challenging task. In
current experimental setups, only a small fraction of the
superfluid region will survive finite temperature effects.

Let us now focus on the weak disorder case at the tip of the
Mott lobe in the pure system. Similar to the one-
dimensional case (see Refs. [2,20,35]), the qualitative
aspects of the effect of disorder can be described within
Popov’s superfluid hydrodynamic action (@ ¼ 1)

S ¼
Z

d~r
Z

d�

�
ihni _�þ �

2
_�2 þ�s

2
½r��2

�
; (2)

where � is the compressibility, � is the imaginary time,
�ð ~r; �Þ is the superfluid phase field, and hnð ~rÞi is the
average density at the lattice point ~r (the integral over d~r
is understood as a discrete lattice sum, and the gradient as a
finite difference). Since the first term contains a full time
derivative of the phase variable, we observe that (i) the

integral
R _�d� can be only a multiple of 2�, (ii) in a pure

system with hnð~rÞi ¼ 1 this term is irrelevant and the
effective action (after rescaling of the time variable with
the sound velocity) is that of the classical 3D XY model,
(iii) in a disordered system this term is of any importance
(not a multiple of 2�) only in the presence of topological
defects in the phase field. More precisely, its value is purely
imaginary and for the (2þ 1)-dimensional space-time vor-
tex loop with projected (on the space plane) d-dimensional
algebraic area A is given by a simple formula

Sloop ¼ 2�i
Z
A
d~rh�nð~rÞi; (3)

where �nð ~rÞ ¼ nð~rÞ � 1 is the local density fluctuation
about the mean value.
The nature of the SF-MI transition in a clean system

described by the 3D XY model is linked to the proliferation
of large vortex-loop instantons which disorder the phase
field. In the absence or irrelevance of the phase term all
vortex-loop instantons act in ‘‘unison,’’ in other words their
contributions interfere constructively in the partition func-
tion. This is no longer the case in the disordered system
since an area integral in Eq. (3) is now a random variable.
When random vortex phases become large, their contribu-
tions to the partition function cancel each other making
them inefficient in destroying phase coherence across the
system. Let us estimate the typical phase of a vortex loop of
size �where � is the correlation length. It is proportional to
the total particle number fluctuation in the area A� �2 in
response to the random chemical potential fluctuation in
this region, ��A ¼ A�1

R
�rd

2r, which, by the central
limit theorem, scales as �=�. Using the system’s com-
pressibility, � ¼ @n=@�, we then find

ImSloop � 2�A��=�� 2����: (4)

As long as disorder remains perturbative (i.e., Sloop � 1),

we have �� ð1�Ucð�Þ=UÞ�	 where 	 ¼ 0:671 55 is
the correlation length exponent and Ucð�Þ is the critical
interaction for a given �. Equation (4) extrapolated to
ImSloop � 1 predicts how close U should be to Ucð�Þ to
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FIG. 4. Superfluid stiffness as a function of interaction strength
U=t at fixed disorder bound, �=t ¼ 35, and temperature, T=t ¼
0:042, for system size L ¼ 12� 12.
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FIG. 3. Superfluid stiffness as a function of disorder bound
� at fixed interaction strength, U=t ¼ 26, and temperature,
T=t ¼ 0:042, for system size L ¼ 12� 12.
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start seeing relevance of disorder, provided the system size
is exponentially large, L> � / expðU=�Þ; see Eq. (5)
below.

One might think that Eq. (4) implies linear scaling of
phase with the correlation length. However, in the vicinity
of the particle-hole symmetric SF-MI transition point, the
renormalized compressibility itself vanishes as �� 1=U�,
canceling dependence on � in Eq. (4). It means that each
length scale contributes equally to the vortex-loop phase;
i.e., the final dependence is only logarithmic:

ImSloop / ð�=UÞ ln�: (5)

We thus conclude that d ¼ 2 is the ‘‘critical dimension’’
starting from which the relevance of weak disorder cannot
be seen by assuming that compressibility follows the
Josephson relation, � / �1�d; i.e., the shape of the critical
line Ucð�Þ is determined by the nonuniversal microscopic
physics. [Finite � in Eq. (4) clearly implies relevance of

disorder on length scales >ð��Þ�2=d.] This is to be con-
trasted to d ¼ 1 where relevance of weak disorder defines
the critical line; see [20].

In Fig. 5 we show the phase diagram close to the tip of
the Mott lobe. Critical points were determined using finite-
size scaling with z ¼ 1. Clearly, critical points for the SF-
BG transition are at disorder values much larger than the
Eg=2 boundary for the MI phase. Surprisingly enough, the

first data points for the SF-BG line are indistinguishable
from the critical value in the clean system Uc=t ¼
16:742 4ð5Þ within the error bars. This was unfortunate
because even though critical points were determined with
accuracy better than four digits we still did not have
enough parameter range to make an unambiguous case
for the form of the line Ucð�Þ.

Summarizing, we have presented the full ground state
phase diagram of the disordered BHM at unity filling factor.
Interestingly, while the superfluid phase is remarkably stable

against strong interactions and disorder it is rather fragile
with regards to finite temperature effects. Our numerical
data feature an essentially vertical SF-BG line for weak
disorder; understanding physics behind this phenomenon
in d � 2 remains a challenge.
This work was supported by the National Science
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