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We consider a spin-1=2 ladder with a ferromagnetic rung coupling J? and inequivalent chains. This
model is obtained by a twist (�) deformation of the ladder and interpolates between the isotropic ladder
(� � 0) and the SU�2� ferromagnetic Kondo necklace model (� � �). We show that the ground state in
the (�, J?) plane has a finite string order parameter characterizing the Haldane phase. Twisting the chain
introduces a new energy scale, which we interpret in terms of a Suhl-Nakamura interaction. As a
consequence we observe a crossover in the scaling of the spin gap at weak coupling from �=Jk / J?=Jk
for � < �c ’ 8�=9 to �=Jk / �J?=Jk�2 for � > �c. Those results are obtained on the basis of large scale
quantum Monte Carlo calculations.
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Low-dimensional quantum magnets are fascinating ob-
jects from both experimental and theoretical points of
view. Spin-1=2 ladders have been widely studied and in-
terpolate between the physics of one-dimensional antifer-
romagnetic (AF) spin chains and two-dimensional systems
[1]. In the one-dimensional (1D) case, there is an important
mapping between spin-1=2 Heisenberg AF chains and
Luttinger liquids [2] which allows to treat such chains by
means of exact fermionization and bosonization methods,
resulting in a well-understood gapless phase [3]. Coupling
identical chains to form a spin ladder is, however, not a
trivial task from a theoretical point of view [4,5]. Indeed,
the coupling is a relevant perturbation and, up to logarith-
mic corrections, opens a gap proportional to the interchain
coupling J? [6,7]. In this Letter, we consider the case of
two inequivalent chains coupled with a ferromagnetic rung
coupling J? < 0. By using quantum Monte Carlo (QMC)
techniques we (i) demonstrate the existence of a finite spin
gap, characteristic of a Haldane phase, and (ii) observe the
emergence of a new energy scale at weak coupling. This
latter energy scale, which we interpret as a Suhl-Nakamura
interaction [8], appears only when the exchange energies
of each chain strongly differ. When the spin velocity on one
of the legs vanishes, the bosonization fails since a simple
formulation of the continuum limit on which this approach
relies [6] is inhibited. This regime requires high-precision
unbiased numerical simulations.

The model that we consider is dubbed the Spiral
Staircase Heisenberg Ladder:

 Ĥ � Jk
X
i

�Ŝ1;i � Ŝ1;i�1 � cos2��=2�Ŝ2;i � Ŝ2;i�1�

� J?
X
i

Ŝ1;i � Ŝ2;i: (1)

Here Ŝ�;i is a spin-1=2 operator on leg � and lattice site i.
Jk > 0 sets the energy scale and the interchain coupling is
taken to be ferromagnetic J? < 0. Geometrically, this
model may be interpreted as a result of twist deformation
of a 2-leg ladder [Fig. 1(a)] with twist performed along one
of the legs. Such a spiral structure is characterized by the
angle � [see Fig. 1(b)] and interpolates between the iso-
tropic ladder (� � 0) and a ferromagnetic SU�2� Kondo
Necklace [9] model (� � �) [10–13]. A motivation to
study this specific geometry comes from the fact that a
realization of the model schematically presented in
Fig. 1(c) was synthesized as a stable organic biradical
crystal PNNNO [14]. Possible candidates for realizations
with twist angle 0< �<� might be found in the families
of molecular chains decorated by magnetic radicals.

In the strong coupling limit, jJ?=Jkj 	 1, the model
maps onto the spin-1 Heisenberg chain with effective

θ

b) c)a)

FIG. 1 (color online). (a) Sketch of Spiral Staircase
Heisenberg Ladder. (b) View of the model from the top.
(c) For � � �, the model maps to the 1D SU�2� ferromagnetic
Kondo necklace model [9].
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exchange interaction Jeff � Jk
4 �1� cos2��=2��. This phase

has a spin gap [15] given by �H=Jeff � 0:41048�6� [16]
and is qualitatively grasped by the valence bond solid
(VBS) wave function of Affleck et al. [17]. This VBS state
has a hidden antiferromagnetic order [18] which is picked
up by the nonlocal string order parameter [19] (see a recent
discussion in [20] ):

 hÔs�n�i �
�
Ŝzn0 exp

�
i�

Xn0�n

j�n0

Ŝzj

�
Ŝzn0�n

�
(2)

with Ŝzj � Ŝz1;j � Ŝz2;j. At weak couplings, the analysis
depends on the twist angle �. For small twist angles (i.e.,
close to the isotropic case), one can rely on the bosoniza-
tion and numerical results of Refs. [6,7] which yield a spin
gap proportional to jJ?j up to logarithmic corrections. On
the other hand, at � � � the spin velocity on the second leg
vanishes thus inhibiting the very starting point of Ref. [6].
Alternative approaches such as a mean-field theory based
on a Jordan-Wigner transformation, which yields the cor-
rect result for the isotropic ladder, predicts a spin gap � /
J2?=Jk at � � � [21]. A flow equation calculation has
recently been carried out for the SU�2� Kondo necklace
model [22] [i.e., � � � in Eq. (1)] and is interpreted in
terms of the onset of a spin gap irrespective of the value of
J?=Jk. Note that in this analytical approach, the conclusion
about the existence of the spin gap at small J?=Jk subtly
depends on the treatment of the energy cutoff. Moreover,

this method cannot predict the scaling of the spin gap in
this weak-coupling regime.

To disentangle this situation, we have performed large
scale QMC simulations of the ferromagnetic spiral stair-
case model. Two variants of the loop algorithm [23] were
applied. For the string order parameter and the spin-spin
correlation functions, we used a discrete time algorithm
and extract the spectral functions via stochastic analytical
continuation schemes [24,25]. For the spin gap calculation,
a continuous time loop algorithm was used, where the gap
is calculated by a second moment estimator of the corre-
lation length [16].

Our results for the spin gap in units of Jeff in the (�, J?)
plane are plotted in Fig. 2. Enhancing the twist angle from
� � 0 to � � �=2 leaves the spin gap, measured in units of
Jeff , next to invariant thereby showing that a small twist is
an irrelevant perturbation [26]. For larger values of �, � is
suppressed, and in the limit � � � the approach to the
Haldane value in the limit J? ! 
1 is surprisingly slow.
At small values of jJ?=Jkj, and � � 0 we reproduce the
results of Ref. [7], namely, � / J? [see Fig. 2(b)]. Here
and in what follows, we neglect logarithmic corrections in
our discussion. Figure 2(b) shows that this weak-coupling
behavior of the spin gap is sustained up to � < �c ’ 8�=9.
Beyond this critical angle [27], the data allow for different
interpretations. Let us concentrate on the twist angles � �
8�=9 and � � �. A linear extrapolation of the data would
lead to the vanishing of the spin gap at a finite critical value
of J?. However, in this parameter range, we find a finite
string order parameter (see below), incompatible with a
gapless phase. As suggested by a Jordan-Wigner mean-
field analysis [21], we instead assume the existence of an
inflection point and fit the data to a quadratic form in the
limit J? ! 0 [see inset of Fig. 2(a)]. Let us note, however,
that we cannot exclude the possibility of an exponential
scaling.

The scaling of the spin gap at � > �c implies a rapid
increase of the spin correlation length � / Jk=�. For � �
� and J?=Jk � 
0:5, spin correlations decay exponen-
tially with characteristic length scale � ’ 115 (see Fig. 3).
At J?=Jk � 
0:3 no sign of exponential decrease is ap-
parent on the considered 2� 800 lattice. This is consistent
with a spin gap decreasing as J2?=Jk (or faster). Indeed,
such a scaling leads to � � 300 which is comparable to the
largest distance L=2 � 400 accessible in our simulation of
a 2� 800 lattice.

On length scales ji
 jj< � the spin-spin correlation
functions follow a slow power law. In particular, the data of
Fig. 3 at J?=Jk � 
0:3 are consistent with S�ji
 jj� /
�
1�ji
jjji
 jj
1=3. At � � �, the effective interaction on
the second leg is set by the Suhl-Nakamura (SN) [28]
interaction [8]. In second order perturbation theory, with-
out attempting any self-consistent calculation, this interac-
tion takes the form JSN�q� / J2?�s�q;! � 0� in Fourier
space. Here, �s�q;! � 0� is the spin susceptibility of the
spin-1=2 chain. A first step towards a self-consistent treat-

FIG. 2 (color online). (a) Spin gap ��J?� as a function of
jJ?=Jkj for different twist angles �. The gap is rescaled by Jeff �
Jk
4 �1� cos2��=2�� such that in the large-jJ?j limit, it converges
asymptotically toward the Haldane gap of a spin-1 chain. At
weak couplings, we have carried out QMC simulations up to
�Jk � 2500 and 2� 512 spins to ensure size and temperature
convergence. Inset: zoom on the weak-coupling region.
(b) Results for spin gap on a semilogarithmic scale.
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ment is to allow for a gap, �, in �s�q;! � 0�. Thereby and
in real space we expect SN interaction to have a range set
by �. We interpret the above mentioned very slow decay of
the spin-spin correlations on both legs and on a length scale
set by � as a consequence of the SN interaction. The SN
interaction at � � � sets a new low-energy scale in the
problem, corresponding to the slow dynamics of the spin
degrees of freedom on the second leg. Because of the
ferromagnetic coupling between the chains, this slow dy-
namics will equally dominate the low-energy physics of
the spins on the first chain. This new energy scale is also
apparent in the dynamical spin structure factor S�q;!�
plotted in Fig. 4. As is apparent, a narrow magnon band
emerges as the angle � grows from 0 to �. To lend support
to the interpretation in terms of the SN interaction, we have
checked with exact diagonalization methods that the width
of the magnon band at � � � indeed scales as J2?=Jk in the
weak interleg coupling limit (data not shown). In the
vicinity of � � �, we hence expect that the low-energy
effective model is given by a spin-1 Heisenberg chain with
exchange coupling set by the SN interaction. Assuming the
validity of this low-energy model, we predict a spin gap
which scales as JSN / J2?=Jk.

The above arguments and data suggest that irrespective
of the twist angle and coupling J?, the ground state of the
model corresponds to the Haldane phase.

We confirm this point of view by computing the string
order parameter Os � hÔs�n�ijn�L=2 on a 2� 800 lattice
[see Fig. 5(a)], which is finite in the Haldane phase [19].

Strictly speaking, this is not a sufficient condition to ascer-
tain the Haldane physics since we also need to show that
OH � hexp�i�Pn0�n

j�n0
Ŝzj�ijn�L=2 vanishes in the thermody-

namic limit (when both Os > 0 and OH > 0, an Ising order
is present [19] ). In the region where the correlation length
� exceeds the lattice length, finite-size effects are present
(see caption of Fig. 5). In particular, when the lattice size is
smaller than the correlation length, both OH and Os take
nonzero values, since the very slow decay of the spin
correlations mimics Ising-type order. As the system size
grows beyond the correlation length, OH decreases expo-
nentially whereas Os in enhanced. Those size effects are
explicitly shown in Fig. 5(b) at J?=Jk � 
0:2, � � 8�=9
where L 	 � and J?=Jk � 
0:3, � � � where our maxi-
mal system size barely exceeds the estimated correlation
length. Taking those size effects into account, we conclude
that in the thermodynamic limit, only the string order
parameter Os is finite in the whole (�, J?) plane.

In conclusion, we have established that the ferromag-
netic spiral staircase is in a Haldane phase, irrespective on
the twist � and coupling constant J?. In the weak-coupling
region, twisting the ladder introduces a new low-energy
scale which we interpret in terms of a SN interaction. As a
consequence and for � > �c  8�=9, we have provided
numerical data showing that at weak coupling, the spin gap
decreases faster than the linear J? behavior of the 2-leg
ladder (� � 0). Analysis of the data is consistent with the
picture that, for � � �c, the spin gap tracks the SN scale
and is hence proportional to J2?=Jk.

FIG. 4 (color online). Dynamical spin-spin correlations at J?=Jk � 1 for the ladder system (� � 0) and the Kondo necklace model
(� � �). Here we consider a bonding combination of the spins across the rungs (�Jk � 200, L � 100).

FIG. 3 (color online). Spin-spin correlation function (a) on the first leg and (b) on the second leg for the Kondo necklace model
(� � �) at different couplings J?=Jk on a 2� 800 lattice. Simulations are carried out at �Jk � 7000 (J?=Jk � 
0:3, 
0:4), �Jk �
5000 (J?=Jk � 
0:5), and �Jk � 2000 (J?=Jk � 
0:6).
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FIG. 5 (color online). (a) String order parameter Os and OH as
a function coupling J?=Jk and several twist angles. For � �
8�=9, � finite-size effects are still present for the considered
L � 800 lattice in the parameter range jJ?=Jkj< 0:5. For
jJ?=Jkj> 1:0 the system size L � 400 is sufficiently large
enough to guarantee convergence. Simulations are carried out
up to �Jk � 7000. (b) Finite-size scaling of the order parameters
for the parameter sets J?=Jk � 
0:2, � � 8�=9 (blue) and
J?=Jk � 
0:3, � � � (red). The data for OH are fitted to the
form: OH / L
� exp�
L=��.
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