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Vibration-Induced Kondo Tunneling through Metal-Organic Complexes
with Even Electron Occupation Number
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We investigate transport through a mononuclear transition-metal complex with strong tunnel coupling
to two electrodes. The ground state of this molecule is a singlet, while the first excited state is a triplet. We
show that a modulation of the tunnel-barrier due to a molecular distortion which couples to the tunneling
induces a Kondo-effect, provided the discrete vibrational energy compensates the singlet-triplet gap. We
discuss the single-phonon and two-phonon-assisted cotunneling and possible experimental realization of

the theory.
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Tunneling through single-molecule devices is a complex
phenomenon involving vibrational motion and many-
particle processes in metallic leads. Vibrational effects
have been observed in the sequential [1-3] and strong
tunneling regime [4—6]. Phonon satellites coexist with
resonance Kondo cotunneling [4] in transport through
transition-metal (TM) organic complexes (TMOCSs). The
Kondo effect is a direct manifestation of strong correlation
effects in tunneling [7]. Theoretical attention first focused
on the weak coupling limit, where exchange of mechanical
energy quanta with tunneling electrons (vibration assisted
tunneling) [8—13] and modulation of the tunnel barriers
(shuttling) [9,14] were discussed. In the strong tunneling
limit the effect of vibrations on the Kondo anomaly in the
linear conductance was discussed due to assisted tunneling
[15-18] and also due to tunnel-barrier modulation [18]. In
this Letter, however, we demonstrate that discrete vibra-
tions through tunnel-barrier modulation can induce a
Kondo effect in TMOCs with an even number of electrons
by compensating for the singlet-triplet splitting at zero
bias. Already for molecules of moderate size, many vibra-
tional modes are available, underlining the importance of
considering the above effect. Our effect is essentially dif-
ferent from the phonon-assisted Kondo effect in [17,18]:
no strong electron-vibration coupling is required nor are
special gate-voltage restrictions.

We study the transport through a TMOC with a TM ion
secluded in a ligand cage. The cage is in tunnel contact
with metallic reservoirs (surface, STM nanotip, or edges of
metallic wire in electromigration or break junction geome-
try). Figure 1(a) illustrates this setup. We consider a
TMOC with even electron number N fixed by charge and
energy quantization. The ground state is supposed to be a
spin singlet, and the energy of the lowest triplet excitation
A exceeds Kondo temperature 7. The linear conductance
is thus suppressed. To investigate how intramolecular vi-
brations may induce transport through a Kondo effect, first
one should incorporate a vibronic mode in a generic tun-
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neling Hamiltonian
H = Hmol + Hres + Htun' (1)

Here H,,, includes the 3d electron levels in a ligand field
of the cage electrons, the molecular orbitals of these
ligands, as well as interactions within the 3d shell and
within the cage. One should take into account the three
most relevant charge states including their dependence on
the vibrational coordinate of the cage Q:

Hpo = HY + HY'V + HY ™) + T, (2)
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FIG. 1. Schematic situation: (a) Electrode tunnel-coupled to a
transition-metal-organic complex. Charging of the complex by a
tunnel process deforms the outer part of the ligand cage without
strongly affecting the direct coordination sphere of the metal ion
and thereby the ligand-field splitting. We assume that the extra
electron is localized mainly on the cage. Electrons tunnel onto
the ion through the tails of the molecular state centered on the
ion, which includes admixtures of the outer shell electronic
states. Therefore the main effect of the charging is the modula-
tion of the tunnel barrier between the ion-centered states and
electrode. (b) Occupation of the two e-type orbitals (orbital
splitting &) discussed in the text in order of increasing many-
particle energy going from left to right: 0, 6 — I, §, 28, where 1
is the exchange energy.
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The last term T, is the kinetic energy of the cage distortion.
The eigenstates of H, (QNil) are admixed to those of H™) by

the tunneling H,,, of electrons from the reservoir H., SO
that H, = H,,, + H,. has the form

H, = Zekc,:rgcka + W(Q)Z(c?;a,,cka +Hec). (3
ko

kpo

Effectively a single electrode remains after the standard
rotation of electron states [7]. We assume that there is no
direct tunneling contact between the 3d electrons of the
caged TM and the electrodes. However, the 3d orbitals are
hybridized with ligand molecular orbitals, and tunneling
becomes possible due to small overlap between the “tails™
of distorted orbitals d and the lead electrons [see caption of
Fig. 1(a) for more details].

We write H,, for the low-lying many-particle

states of the TMOC in the compact form HY) =

mol

Sa=sror=EA(QXM, where XAV =|AXA'| are so
called Hubbard operators describing transitions between
four eigenstates A, A’ of the TMOC corresponding to
singlet (S) and triplet (70, T = ) states. All many-particle
effects and their coordinate dependence are included in the
energies E,(Q). Similarly, states of the charged TMOC
with N — N = 1 are denoted as |y). The microscopic
origin of the low-energy singlet (S) and triplet (T) is
most easily conceived as follows. The evenly occupied
ligand cage is in a singlet spin state, and it does not affect
the structure of the spin multiplet. We assume that the
ligand field of the cage has low symmetry, so that the
fivefold orbital degeneracy is completely lifted. For in-
stance, for a distorted tetrahedral symmetry of the ligand
field we focus on the configuration d*(e*) with two
e-orbital levels split by & due to this distortion. In case
of distorted cubic symmetry, the same S-7 multiplet arises
for the configuration d®(t%¢?). Figure 1(b) illustrates the
occupations of the orbital of the TMOC: it is seen that in
the case of a weak intrashell exchange / < § the ground
state is singlet S and the lowest excitation is the S-T
transition. The many-particle energy difference A = E; —
Eg = 6 — I results from competition between orbital en-
ergy and exchange energy gain. We assume A to be larger
than the Kondo temperature 7. The many-particle exci-
tation energies of two singlet excited states S’ and S are &
and 29, respectively. We ignore these singlet excitations
since they are not involved in the Kondo tunneling.

We use the simplest approximation of a single harmonic
vibration mode with frequency (). We assume that the
relative shifts of the harmonic potentials in different ex-
cited and charged states are negligibly small; i.e., for all
x=A,v we have E(Q)=E, +QQ%*/2 and T, =
QP?/2. The coordinate Q is normalized to the zero-point
motion. In this weakly nonadiabatic limit, vibrations are
slow compared to the electron motion on the molecule. No
vibrational excitations can be induced by the tunneling in
the linear transport regime, unless the distortion of the
ligand cage Q affects the tunnel amplitude W(Q). Then

virtual local phonons can be emitted and absorbed. The
tunneling Hamiltonian may be rewritten in the form

Htun = W(Q)Z Z/[XAkag. + HC] (4)

k Ayo

(here the second summation is restricted by spin selection
rules). This situation is opposite to the antiadiabatic limit
where the vibrations are fast and many phonon excitations
are involved in the Kondo exchange [16].

Thus we consider the effect of the modulation of the
tunnel amplitude on the linear transport in the Coulomb
blockade regime. In this regime one has to eliminate the
tunneling term from the Hamiltonian by summing over
virtual processes where N = 1 electrons occupy the mole-
cule and vibrational quanta are excited in these virtual
states. This procedure known as a Schrieffer-Wolff (SW)
transformation, leads us to a Kondo Hamiltonian [Eq. (6)
below] for a S-T multiplet [19] and an oscillator with
electron-phonon interaction built into the exchange cou-
pling. According to Ref. [19], transitions within the
singlet-triplet spin manifold are described by two vectors
S and R, where S is the usual spin 1 vector and R is a
vector describing S-T transitions. These two vectors are
constructed by means of Hubbard operators X" in the
following way [19]:

St = \/i(XlO + XO_I),
R+ — ﬁ(xls _ XS_I),

SZ = Xll _ X—l—l
&)
R* = —(X% + X50),

The effective Hamiltonian arising after the SW trans-
formation has the form

1 A A Q
Hep = Hieg +§ASZ +JsS s+ JgR s +?P2. ©6)

The electron spin operator is given by the conventional
expansion s = %Zkkr > oo CZUT,WM:,{/(,/, where 7 is the
Pauli vector. The exchange coupling constants J sr(0)
are estimated as J¢(Q) ~ ZVIW(Q)P/IET — E,|and Jp =
aJg. Here a <1 is a coefficient arising because of the
admixture of singlet states S’, S” to the ground state [19]. In
the weakly nonadiabatic regime the kinetic energy in the
denominator has been neglected and the nearly identical Q
dependence is practically cancelled out in the addition
energies. Thus, no multiphonon replicas appear in the
denominators of J s.g> unlike in Ref. [16]. The main source
of phonon emission or absorption in our case is the tunnel-
ing rate |W(Q)|?. Expanding it in the quantized displace-
ment operator Q = (bt + b)/v/2 we come to phonon-
assisted exchange vertices presented in Fig. 3. In accor-
dance with Fig. 2, we retain only single-phonon processes
for Jz(Q) and only two-phonon processes for Jg(Q):
Js(Q) = Jg + js0% and JR(Q) = Jg + jzQ. It is obvious
that j < jig.

To draw these vertices we used the fermionic represen-
tation for the operators [(5)]
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M S s Y pends on the phonon-assisted exchange constant j,
T T hl T T
| t, t :t1 t,,: T}?) ~ Dexp(— YUT > < T;(I), (11)
| b ?
S — H —_ i One concludes from these calculations that the single-
t, () te t; (b) t, phonon processes are sufficient to compensate the energy

FIG. 2 (color online). Two types of phonon-assisted Kondo
cotunneling processes. (a) Virtual phonon absorption initiates a
S-T transition, Kondo processes take place in an intermediate
triplet state, and the phonon is emitted in the end. (b) Every spin-
flip process in the intermediate triplet state is accompanied by a
two-phonon process. Points and crosses denote spin-flip process
in the S-T and T-T channels, ¢; ; are initial and final times, and
ty, ..., t, denote the intermediate cotunneling acts.

ST=N20f o+ 1T f0, S =rtr -t fo
R =2(fTf, = rlr-), RE==(lf+ £ifo)

The spin-fermion, electron, and phonon propagators are
presented in Fig. 3 by solid, dashed, and wavy lines,
respectively. Physically, Figs. 2(a) and 3(d) describe the
regime where the virtual phonon absorbed by the TMOC in
the process of cotunneling brings the energy necessary to
compensate the S-T gap A. Then the Kondo effect devel-
ops as multiple spin-flip cotunneling in the triplet state.
Finally, the system returns to the ground state singlet after
virtual phonon emission. We emphasize that to compensate
for the S-T gap no nonequilibrium occupation of the
excited vibration levels is required. The vertex corrections
are calculated by means of analytical continuation of
Matsubara-type diagrams from imaginary axis to the real
frequency axis. Summation of all parquet diagrams enter-
ing the 4-tail box in Fig. 3(d) gives for y;

)

10 P L ®)
1 = JsAplog(rri—an) |

here A ~ 1 is a constant determined by spin algebra. The
Kondo temperature extracted from this equation reads

1

(1)

Ty ~D exp(— ) 9
K ApJg

Here D is the effective width of the electron conduction
band and p is the density of states on the Fermi level. The
second channel illustrated by Figs. 2(b) and 3(e) involves
two single-phonon processes compensating S-7 transi-
tions. The exchange acting in the intermediate triplet states
is accompanied by two-phonon processes. Then summa-
tion of parquet diagrams entering the 4-tail vertex in
Fig. 3(e) gives for vy,

Y1~ (jR)ZP[

log(max[T,lDAfﬂl]) . (10)
- .jSAIp log(max[TJDA_QH)

The Kondo temperature characterizing this channel de-

Y2~ (jR)Zp[

of the S-T splitting and induce resonance tunneling
through the TMOC provided a local vibration mode with
appropriate frequency satisfying the condition that

Q- Al =T (12)

exists in the cage. One can expect in this case a significant
enhancement of the tunnel conductance already at 7 > Tg)
according to the law G/G, ~ ln_z(T/Tg)) [7], where G,y is
the conductance at unitarity limit 7 — 0.

Thus we formulated in this Letter conditions under
which phonons are not only involved in Kondo screening
but even induce Kondo tunneling. In is worth mentioning
that in spite of the fact that the Kondo effect exists in our
case only under phonon assistance, the Kondo temperature
(11) is the same as in the usual Kondo effect. Since T is
high enough ( ~ 10 K) in electromigrated junction experi-
ments with a TMOC deposited between contacts [4—6], the
effect predicted in this work seems to be easily observable.
The crucial point is the existence of the phonon satisfying
condition (12) in a TMOC with the S-7 multiplet as a
lowest spin excitation. One should note, however, that even
if this condition is not exactly satisfied, one may tune the
system by applying the magnetic field. Then the triplet is
split, and only the level Ey = E; — E7 is involved in the
phonon induced Kondo tunneling (E; is the Zeeman en-
ergy). Then A in (12) is substituted by A, = A — E, and
E; may be tuned until the inequality is satisfied. Thus the
vibration gives rise to a magnetic field induced Kondo
effect at Zeeman energies which can be much smaller
than A. The Kondo screening takes place due to the pro-
cesses presented in Figs. 2(a) and 3(d). The only difference
is that in this case the effective spin of the TMOC is one-
half instead of one [20]. The theory of this effect will be
presented in a separate publication.

FIG. 3 (color online). (a) Bare exchange vertices Jgg; (b) -
single-phonon correction jp to the vertex Jg; (c) two-phonon
correction jg to the vertex Jg; (d),(e) renormalized vertices vy ,
corresponding to the processes illustrated by Figs. 2(a) and 2(b),
respectively.
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Another way to tune the condition (12) is to stretch the
break junction and thereby distort the TMOC and change
the frequency (). Such mechanical control was demon-
strated experimentally for the H, molecule [21]. There it
was also shown that the isotope effect may be used for the
same purpose.

The generic feature of the phonon-assisted Kondo
screening discussed in this work is that only the virtual
phonon excitations enter the cotunneling amplitude to
compensate the S-T energy gap A, so that the Kondo effect
manifests itself as a zero-bias anomaly. Another mecha-
nism of such compensation was discussed in Ref. [22],
where the energy deficit was covered by the conduction
electron acceleration at finite bias. In that case, the Kondo
regime arises in nonequilibrium condition, so it is fragile
against dephasing effects [22,23]. In our case the system
remains in thermodynamic equilibrium around a zero-bias
anomaly, so that the only limiting factor of this sort is the
lifetime of local vibration mode, which is usually long
enough in comparison with 71/ Tx.

To conclude, we demonstrated in this work that phonon
emission or absorption can induce Kondo tunneling in a
transition-metal-organic complex with even electron occu-
pation and a spin singlet ground state, when the conven-
tional Kondo effect is suppressed. Unlike the situation
studied in the current literature [15-18], where the influ-
ence of real phonon excitations on the conventional Kondo
effect is discussed, and various kinds of sideband satellites
due to the polaronic effect are considered, we appeal to
virtual phonon excitation, so that the system remains in a
quasielastic tunneling regime. Because the gate potential
can tune the energetic costs of the various virtual processes
that contribute to the ordinary Kondo effect, elastic cotun-
neling, vibrationally inelastic cotunneling, etc., further
work beyond the scope of this Letter is required to assess
the expected gate dependence of the Kondo resonance. One
of essential ingredients of our theory is that we use the
dynamical symmetry of the TMOC, which characterizes
both the spin algebra of localized spin itself and transitions
between various levels of different spin multiplets [19]. In
our case the dynamical symmetry group is SO(4).

Since the tunnel contact between magnetic ion and
metallic reservoir in TMOC is mediated by a ligand
cage, one may be sure that the relevant vibration excita-
tions are the local phonons characterizing this cage.
Although we confined ourselves to a specific model with
two electrons in an e subshell, the mechanism is quite
general. The theory may be easily modified for any system
with the same structure of the lowest spin multiplets. One
of such examples is the so-called “Fulde molecule” [24]
schematically representing the spectra of lanthanocenes,
where the rare-earth magnetic ion is sandwiched between
two rings of CH radicals. In that case the number of
electrons in the cage and in the 4f shell is odd. Another
candidate is the endofullerene family with atoms [25] or
magnetic ions within a carbon cage [26]. The theory of

vibration-induced Kondo effect may be also generalized
for the case of degenerate modes and for more complicated
spin-multiplets including half-integer spins. These issues
will be discussed in forthcoming publications.
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