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Schwinger-Keldysh Semionic Approach for Quantum Spin Systems

M. N. Kiselev and R. Oppermann
Institut für Theoretische Physik, Universität Würzburg, D-97074 Würzburg, Germany

(Received 14 July 2000)

We derive a path-integral Schwinger-Keldysh approach for quantum spin systems. This is achieved by
means of a semionic representation of spins as fermions with imaginary chemical potential. The major
simplifying feature in comparison with other representations (Holstein-Primakoff, Dyson-Maleev, slave
bosons/fermions, etc.) is that the local constraint is taken into account exactly. As a result, the standard
diagram technique with the usual Feynman codex is constructed. We illustrate the application of this
technique for the Néel and spin-liquid states of the antiferromagnetic Heisenberg model.

PACS numbers: 75.10.–b, 75.40.Gb, 71.10.Fd
For a long time [1] physicists have been aware of the
fact that spin operators which commute on different sites
and anticommute on the same site are neither Fermi nor
Bose operators. Less convergent opinions exist on whether
fermionizations or bosonizations or none of those should
be used to take care of spin statistics in many body quan-
tum theory. At least the answers appear to be linked to the
type of physical problem considered. The widely accepted
view is that path integral representations and diagrammatic
expansions for spin systems are thus substantially more
complicated than those of pure fermion/boson systems.
Many variants of the diagram technique [2], which are
based on different representation of spins such as Bose
[1–4], Fermi [5–7], Majorana [8], supersymmetric [9],
or Hubbard [10] operators, have been proposed. Another
method to treat spin Hamiltonians is based on direct repre-
sentation of coherent states for spins (nonlinear s model,
see, e.g., [8]). Some of these techniques [1–10], being ap-
plicable only at low temperatures or in large spin �S ¿ 1�
limit, nevertheless describe well the excitations in ordered
magnets (ferromagnetic and antiferromagnetic magnons),
but fail to provide rigorous calculations in strongly cor-
related systems such as Kondo lattices or quantum mag-
nets. Other techniques, based on a successful choice for
the hierarchy of coupling constants, are mainly restricted
to equilibrium situations. The fundamental problem which
is at the heart of the difficulty is the local constraint. On
one hand, any representation of spin operators as a bilinear
combination of Fermi or Bose quasiparticles makes the di-
mensionality of the Hilbert space, where these operators
act, greater than the dimensionality of the Hilbert space
for spin operators. As a result, the spurious unphysical
states should be excluded from the consideration, result-
ing in substantial complication of corresponding rules of
diagrammatical summation. On the other hand, there is no
Wick theorem directly for spin operators but the Gaudin
theorem [11] instead (see also [7,10]). It cannot, how-
ever, avoid complications in diagram techniques based on
Hubbard operators, rendering the resummation of diagram
series in many cases practically uncontrollable. The ex-
clusion of double-occupied and empty states for impurity
spins interacting with a conduction electron bath (single
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impurity Kondo problem) [6] is cured by an infinite chemi-
cal potential for Abrikosov pseudofermions. It works for
dilute spin subsystems, where all spins can be considered
independently. Unfortunately, attempts to generalize this
technique to the lattice of spins result in the replacement
of the local constraint (the number of particles on each
site is fixed) by a so-called global constraint (in the saddle
point approximation), where the number of particles is
fixed only as an average value for the whole crystal. There
is no reason to believe that such an approximation is a good
starting point for the description of strongly correlated sys-
tems. Besides, it is very difficult to take into account the
fluctuations related to the replacement of a local constraint
by a global one.

An alternative approach for spin Hamiltonians free of
the local constraint problem has been proposed in the pio-
neering paper of Popov and Fedotov (PF) [12]. Based on
the exact fermionic representation for S � 1�2 and S � 1
operators, where fermions are treated as quasiparticles with
imaginary chemical potential, these authors demonstrated
the power and simplification of the corresponding Mat-
subara diagram technique. For these two special cases
the Matsubara frequencies are vn � 2pT �n 1 1�4� for
S � 1�2 and vn � 2pT �n 1 1�3� for S � 1, providing
a rigorous description of (and restricted to) the equilib-
rium situation. The semionic representation used by PF is
neither fermionic nor bosonic, but reflects the fundamen-
tal Pauli nature of spins. Later, the generalization of the
PF technique for arbitrary spin [13] was derived by intro-
ducing proper chemical potentials for spin fermions. The
goal of this paper is to derive a method for nonequilibrium
systems, which allows one to treat quantum spin Hamilto-
nians on the same footing as Fermi or Bose systems.

A long time ago Keldysh [14] proposed a novel ap-
proach for the description of kinetic phenomena in metals.
This approach was found especially fruitful for normal
metals [15], and, in many recent applications, for super-
conductors [16] and for disordered interacting (normal or
superconducting) electron liquids [17], for example. The
previous application of the real-time formalism to the
quantum theory of Bose-Einstein condensation (BEC)
[18] allowed the derivation of a Fokker-Planck equation,
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which describes both kinetic and coherent stages of
BEC. Moreover, Ref. [19] developed the closed-time
path integral formalism for aging effects in quantum
disordered systems being in contact with an environment.
The Keldysh formalism in application to disordered
systems (see [20,21]) also attracted interest some time
ago as an alternative approach to the replica technique.
The main advantage of closed-time contour calculations
is an automatic normalization (disorder independent) of
the partition function. In this paper we derive the Keldysh
formalism for quantum spin systems (e.g., Heisenberg
clean and disordered magnets, Kondo systems [22,23]),
which is based on PF ideas of semionic representation.

We reformulate the PF concept by adopting it to real-
time formalism. As an example, we consider S � 1�2.
As it was first shown in [12] (see also [24]), the partition
function of a spin system with Hamiltonian HS can be re-
placed by the partition function of an effective “fermionic”
system with Hamiltonian HF as follows

ZS � Tre2bĤS � �6i�N Tre2b�ĤF6ipN̂F�2b�, (1)

where b � 1�T , and the usual fermionic representation
of spin similar to, e.g., Abrikosov pseudofermions [6]
is used: S1 � f

y
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Representing spins as bilinear combinations of Fermi
operators, we enlarged by a factor of 2 the Hilbert space of
the Hamiltonian. In addition to physical states j1, 0� and
j0, 1� two unphysical states j1, 1� and j0, 0� are introduced.
Nevertheless, in the average over all states, unphysical
states cancel each other, since Trunphys�exp�7ip�2��NF �
�7i�0 1 �7i�2 � 0. This representation being of
semionic origin results in the conventional Matsubara
diagram technique with vn � 2pT �n 1 1�4� or vn �
2pT �n 1 3�4�, depending on the sign in expressions (1).
Besides, one can introduce the auxiliary distribution
function for quasiparticles [25],

f �1�2��e� � T
X
n

eivntj10

ivn 2 e
�

1
e6ip�2 exp�be� 1 1

,

(2)
where (6) signs in the exponent (2) are the same as in
(1). We note that, since auxiliary Fermi fields do not
represent the true quasiparticles of the problem, helping
only to treat properly the spin operators, the distribu-
tion function for these objects in general should not
be a real function, e.g., f �1�2� � n�2e� 7

i
2 sech�e�T �,

where n�x� � �exp�x�T � 1 1�21 is the standard Fermi
distribution function. As we shall see for S � 1�2
and S � 1, 1 2 2 Ref�S��e� � BS�e�T � is expressed
in terms of the Brillouin function BS�x� � �1 1

1
2S � 3

coth��1 1 1
2S �x� 2 1

2S coth� x
2S �, e.g., for S � 1�2,

B1�2�x� � tanh�x�. We also note that in the T ! 0
limit the imaginary part of f�1�2� satisfies the identity
Imf �1�2��x� � 7ipTd�x��2.

The spin correlation functions of any order can be ex-
pressed in terms of the two-component field cT � � f"f#�:
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where r0 � exp�2bH0��Tr exp�2bH0� is the density
matrix and s denotes Pauli matrices. We included
the term ipNF��2b� into the Hamiltonian H0 �
2h

P
i Sz

i 6 ipT�2
P

i N
�i�
F of noninteracting spins in a

uniform external magnetic field h, since it exists both in
the numerator and denominator of r0.

Following the standard route [26] we can express the
partition function of the problem containing spin operators
as a path integral over Grassmann variables c̄ , c

Z�Z0 �
Z

Dc̄Dc exp�iA�
¡ Z

Dc̄Dc exp�iA0� ,

(3)
where actions A and A0 are taken as an integral along
the closed-time contour Ct 1 Ct which is shown in
Fig. 1. The contour is closed at t � 2` 1 it since
exp�2bH0� � Tt exp�2

Rb
0 H0 dt�. We denote the c

fields on the upper and lower sides of the contour Ct as c1
and c2, respectively. The fields C stand for the contour
Ct . These fields provide matching conditions for c1,2 and
are excluded from final expressions. Taking into account
the semionic boundary conditions for generalized Grass-
mann fields Cm�b� � iCm�0�, C̄m�b� � 2iC̄m�0�, one
gets the matching conditions for c1,2 at t � 6`,

c
m
1 �2`� � ic

m
2 �2`�, c

m
1 �1`� � c

m
2 �1`� . (4)

The correlation functions can be represented as a func-
tional derivation of the generating functional

Z�h� � Z21
0

Z
Dc̄Dc

3 exp

µ
iA 1 i

I
C

dt �h̄szc 1 c̄szh�
∂

,

where h represents sources and the sz matrix stands for
“causal” and “anticausal” orderings along the contour.

The on-site Green’s functions (GF’s) which are matri-
ces 4 3 4 with respect to both Keldysh (lower) and spin
(upper) indices are given by

Gab
mn �t, t0� � 2i

d

idh̄a
m�t�

d

idh
b
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Z�h�jh̄,h!0 .

After a standard shift transformation [26] of fields c

the Keldysh GF of free PF fermions assumes the form
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FIG. 1. Keldysh double side contour going along real-time axis
2` ! 1` ! 2` and “closed” in imaginary time.



VOLUME 85, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 25 DECEMBER 2000
Ga
0 �e� � G

R,a
0

µ
1 2 fe 2fe

1 2 fe 2fe

∂

2 G
A,a
0

µ
2fe 2fe

1 2 fe 1 2 fe

∂
,

where the retarded and advanced GF’s are

G
�R,A�a
0 �e� � �e 1 sz

aah�2 6 id�21,

fe � f �1�2��e� .
(5)

The interdependence of matrix elements of the GF in
Keldysh space is more transparent after rotation

Ĝ )
1 2 isy

p
2

szG
1 1 isy

p
2

�

µ
GR GK

0 GA

∂
, (6)

whereGK
0 � 2i2pd�e 6 h�2� �B1�2�e�T� 6 i sech�e�T ��.

We emphasize that, unlike diagrammatic techniques for
Fermi and Bose operators, the off-diagonal element
(Keldysh component) in semionic representation is ex-
pressed in terms of a Brillouin function, containing correct
information about occupied states. We recall that diagonal
elements of the matrix (6) in “triangular” representation
satisfy the Dyson equation providing the exact description
of the system. The equation of motion for GK generally
constitutes the quantum-kinetic equation.

Let us illustrate the application of the Schwinger-
Keldysh formalism for spin Hamiltonians. We consider
the Heisenberg model with nearest neighbor interaction
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y
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We firstly discuss the Néel solution for the Heisenberg
model with isotropic antiferromagnetic (AFM) exchange
�J , 0�. By applying the PF transformation to the parti-
tion function, one obtains the action as an integral along
the closed-time Keldysh contour,

A � A0 1 Aint � A0 1
I

C
dt

X
q

J�q� �Sq�t� �S2q�t� ,

(7)
where A0 corresponds to noninteracting PF fermions

A0 �
I

C
dt

X
i
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µ
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0 �21

∂
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We denote Jq � J
P

�l� eiql, nq � Jq�J0 and apply the
eight-component PF representation with cT � �c̃T

k c̃
T
k1Q�,

where Q � �p, . . . , p� for hypercubic lattice. To decouple
the four-fermion term along the Keldysh contour with the
help of the Hubbard-Stratonovich transformation we in-
troduce the two-Keldysh-component vector (Bose) field
�FT � � �F1

�F2�. As a result we obtain

Aint � 2 Tr� �FT
q J21

q sz �Fq� 1 Tr�c̄ �Fm �sgmc� . (9)

Now we integrate out c fields and express the effective
action in terms of �F fields

Aeff � 2 Tr� �FT
q J21

q sz �Fq� 1 Tr ln�G21
0 1 �Fm �sgm� ,

where gm � �sz 6 1��2 acts in Keldysh space. Since
in general �F is a time- and space-dependent fluctuating
field, the partition function (3) cannot be evaluated exactly.
Nevertheless, when a magnetic instability occurs, we can
represent the longitudinal component of this field as a su-
perposition of a staggered time-independent part (“stag-
gered condensate”) and a fluctuating field

Fz
m�q, v� �

1
2N Jqgmdq,Qd�v� 1 fz

m�q, v� , (10)

where N is a staggered magnetization and F6
m �q, v� �

f6
m �q, v� with the matching conditions at t � 6`,

f6
1 �2`� � f6

2 �2`�, f6
1 �1`� � f6

2 �1`� . (11)

We expand Tr ln�G21
0 1 �fm �sgm� in accordance with

Tr ln�· · ·� � Tr lnG21
0 1

X̀
n�1

�21�n11

n
�G0

�fm �sgm�n.

(12)
The spectrum of the excitations (AFM magnons) can be

defined as poles of the transverse GF D12
x,t � D�x, t� �

2i�TCf
1
1 �x, t�f2

1 �0, 0��. The procedure of the calcula-
tion of this GF is similar to that for a fermionic GF. By
introducing the sources and evaluating (12), one gets

D0�v� � DR
0

µ
1 1 Nv Nv

1 1 Nv Nv

∂

2 DA
0

µ
Nv Nv

1 1 Nv 1 1 Nv

∂
,

where the retarded and advanced magnon GF’s are

D
R,A
0 �q, v� � �v 2 v�q� 6 id�21,

Nv � �exp�bv� 2 1�21.

The magnon spectrum vq is determined by the zeros of the
expression J21

q 2 P
12
2 �v� (see Fig. 2a) in equilibrium

vq � jJ0jN
p

1 2 n2
q ) cjqj ,

N � tanh

µ
JQN

2T

∂
.

(13)

The magnon damping is defined by four-magnon processes
P

1212
4 , shown in Fig. 2b. The derivation of the kinetic

equation and calculation of magnon damping is reserved
here for a detailed publication. The results (13) (and
similar for quantum FM) are in full agreement with the
spin-wave theory (see, for example, Refs. [2] and [3,7]).

The second possibility to decouple the four-fermion
term in the Heisenberg model is provided by the bilocal
scalar bosonic field Lij depending on two sites. By intro-
ducing new coordinates �R � � �Ri 1 �Rj��2, �r � �Ri 2 �Rj

FIG. 2. Feynman diagrams contributing to dispersion (a) and
damping (b) of magnons. The solid line denotes PF fermions.
5633



VOLUME 85, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 25 DECEMBER 2000
and applying a Fourier transformation, we obtain the ef-
fective action

Aeff � 2
1
2 Tr�LT

Pq1
J21

q12q2
szLPq2�

1 Tr ln�G21
0 2 Lmgm� .

This effective action describes the nonequilibrium quan-
tum spin liquid (SL). We confine ourselves to consider
the uniform phase [27] of resonant valence bonds (RVB)
in 2D antiferromagnets. It is suitable to rewrite the func-
tional in new variables, namely, the amplitude D and the
phase Q � �r �A� �R�, according to formula

L�ij�
m � �R, �r� � D� �r�Jgm exp�i �r �Am� �R�� . (14)

The exponent in (14) stands for gauge fluctuations to be
taken in eikonal approximation. The spectrum of excita-
tions in the uniform SL is defined by the zeros of p

R,ab
q,v �

Tr�papb�GR
p1qGK

p 1 GK
p1qGA

p � 1 dabf�JpD�� in equi-
librium [28] and is purely diffusive (see, e.g., [27])

vq � iJDjqj3, D � 2
X
q

n�q� tanh

µ
JqD

T

∂
. (15)

The quantum kinetic equation for nonequilibrium spin
RVB liquids can be obtained by taking into account the
higher order diagrams similar to Fig. 2b with currentlike
vertices and will be presented elsewhere.

We discuss finally the Schwinger-Keldysh formalism for
spins S . 1�2. As shown by Popov and Fedotov for S �
1, it is possible to eliminate the unphysical states by in-
troducing three-component fermions cT � � f"f0f#� with
imaginary chemical potential l � 2ipT�3. The bound-
ary conditions for C on the imaginary part of the contour
Ct read as follows: Cm�b� � eip�3Cm�0�, C̄m�b� �
e2ip�3C̄m�0�. As a result, the distribution function in
equilibrium is f �1��e� � 1��e6ip�3 exp�e�T � 1 1�. Thus,
the Schwinger-Keldysh formalism with 6 3 6 matrices for
GF (6) and fe � f �1��e� in equilibrium is obtained. The
off-diagonal Keldysh component is given by

GK
0 � 2i2pd�e 6 h�

3

∑
B1�e�T � 6 i

p
3 sinh

µ
e

2T

∂ ¡
sinh

µ
3e

2T

∂∏
.

For arbitrary spin values S . 1 there is no unique imagi-
nary chemical potential for 2S 1 1 component PF fermi-
ons, but instead they are distributed on each lattice site j
according to

P�lj� �
�S21�2�X

l�0

ald�lj 2 ll� ,

al �
2i

2S 1 1
sin

µ
p

2l 1 1
2S 1 1

∂
,

where ll � ipT �2l 1 1���2S 1 1� [13]. Thus, the
Schwinger-Keldysh approach can be generalized for
arbitrary spin values in the same fashion as for S � 1�2
and S � 1.

In summary, we derived the technique applicable for
nonequilibrium dynamics of quantum spin systems. Un-
5634
like other techniques this approach takes into account the
constraint rigorously and allows one to treat spins on the
same footing as Fermi and Bose systems. The method de-
rived can be applied especially to problems where the local
constraint becomes important, e.g., quantum phase transi-
tion in clean and disordered magnets, spin glasses, Kondo
lattices, nonequilibrium Kondo systems, etc.
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