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New Scenario for High-Tc Cuprates: Electronic Topological Transition
as a Motor for Anomalies in the Underdoped Regime
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We have discovered a new nontrivial aspect of electronic topological transition (ETT) in
2D free fermion system on a square lattice. The corresponding exotic quantum critical po
d ­ dc, T ­ 0 (n ­ 1 2 d is the electron concentration), is at the origin of anomalous behavio
in the interacting system on one side of ETT,d , dc. Most important is the appearance of the
line of characteristic temperatures,T psdd ~ dc 2 d. Application of the theory to high-Tc cuprates
reveals a striking similarity to the behavior observed experimentally in the underdoped regi
[S0031-9007(99)08666-4]
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This is a particularly exciting time for high-Tc. The
experimental knowledge converges. Almost all e
periments, nuclear magnetic resonance (NMR) [1,
angle-resolved photoemission spectroscopy (ARPES)
infrared conductivity [4], etc., provide evidence for th
existence of a characteristic energy scaleTpsdd in the
underdoped regime (d is hole doping). Below and around
the line Tpsdd, the “normal” state (i.e., aboveTc) has
properties fundamentally incompatible with the prese
understanding of metal physics. The field has reached
point where a consistent theory is necessary to underst
this exotic from theoretical point of view (but quite wel
defined from an experimental point) metallic behavio
The issue has a significance beyond the field of high-Tc

superconductivity—the fundamental question arise
What kind of metallic behavior is there, in addition to th
well-understood Fermi liquid?

In this paper we propose our variant of the answer. W
reexamine a free electron 2D system on a square lat
with hopping beyond nearest neighbors. We show th
when varying the electron concentration defined as1 2 d,
the system undergoes an electronic topological transit
(ETT) [5] at a critical valued ­ dc. The correspond-
ing T ­ 0 quantum critical point (QCP) combines two
aspects of criticality. The first standard one is related
singularities in thermodynamic properties, in density
states atv ­ 0 (Van Hove singularity), to additional
singularity in the superconducting (SC) response functi
(RF) [6]. The second nontrivial aspect is that the sam
QCP is the end of the critical lineT ­ 0, d . dc, each
point d of which is characterized by static Kohn singula
ity (KS) in polarizability of 2D free fermions. [What we
mean as a static KS is a singularity at the wave vector c
necting two points of Fermi surface (FS) with parallel ta
gents [7] ]. The two aspects of criticality are not relate
It is the latter aspect (never considered before) which,
we will show, is a motor for anomalous behavior in th
regime0 , d , dc of the system of noninteracting and
interacting electrons (or of any fermionlike quasiparticle
e.g., of those [8] appearing in thet 2 t0 2 J model de-
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scribing the strongly correlated CuO2 plane responsible
for the main physics in the cuprates). The found anom
alies have a striking similarity to anomalies in the un
derdoped high-Tc cuprates. The effect exists in all cases
t0 fi 0 or/and t00 fi 0, . . . , except for special sets of the
parameters corresponding to the perfect nesting in FS (
cluding t0 ­ t00 ­ . . . ! 0) studied in many papers (see,
e.g., Ref. [9]). For such sets, the QCP loses the latter a
pect of criticality and the anomalies disappear.

A starting point is a 2D electron system on a squar
lattice with hopping beyond nearest neighbors,

ek ­ 22tscoskx 1 coskyd 2 4t0 coskx cosky 2 · · · .
(1)

For any set of the parameterst, t0, t00, . . . , the dispersion
law is characterized by two different saddle points (SP’s
located ats6p , 0d ands0, 6pd with the energyes. When
we vary the chemical potentialm or the energy distance
from the SP,Z ­ m 2 es, the topology of the FS changes
when Z goes fromZ . 0 to Z , 0 through the critical
valueZ ­ 0. In vicinity of SP’s the dispersion law is

ẽskd ­ ek 2 m ­ 2Z 1 ak2
a 2 bk2

b , (2)

where k is measured froms0, pd (a ­ x, b ­ y) or
from sp, 0d (a ­ y, b ­ x). Explicit expressions fora
and b depend ont, t0, . . . . We consider the following
general case:a fi 0, b fi 0, a fi b. We choosea . b
corresponding tot0yt , 0.

The T ­ 0 ETT has two characteristic aspects. The
first (trivial) one is related to thelocal change of FS
topologyin the vicinity of SP. This leads to divergences
in thermodynamic properties, in density of states atv ­
0, etc. From this point of view the corresponding QCP i
of a Gaussian-type with the dynamic exponentz ­ 2.

The nontrivial aspect is related tomutual changein
the topology of FS in vicinities of two different SP’s and
reveals itself when considering the electron polarizability

x0sq, vd ­
1
N

X
k

nFsẽkd 2 nFsẽq1kd
ẽq1k 2 ẽk 2 v 2 i01

. (3)

We show that the latter has a square-root singularity
© 1999 The American Physical Society
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v ­ 0 and wave vectorq ­ qm in a vicinity of Q ­
sp , pd for any Z on the semiaxisZ , 0: x0sq, 0d 2

x0sqm, 0d ~
p

jqm 2 qj for jqj . jqmj. It is a static KS
in the 2D electron system. The locus of the wave vecto
qm in the Brillouin zone (BZ) is a closed curve aroundQ
with jQ 2 qmj ~

p
jZj. With decreasingjZj the closed

curve shrinks and is reduced to the pointq 5 Q atZ ­ 0,
where x0sq, 0d diverges logarithmically. The curve of
the static KS’s withq close to Q does not reappear
for Z . 0: x0sq, 0d is peaked atq ­ Q in an intimate
vicinity of ETT and it exhibits a wide plateau around
q 5 Q for largerZ. To illustrate this we show in Fig. 1
the q dependence ofx0sq, 0d calculated based on (3) and
(1). [We use the model with onlyt0 fi 0 being a generic
model for the family:a fi 0, b fi 0, a fi b.] The curve
discussed above is the curve of singularities in Fig.
closest toq 5 Q. In the plot, one sees only a quarter o
the picture aroundq 5 Q; to see theclosedcurve around
sp , pd, one has to consider the extended BZ. (Few oth
curves of KS’s seen in Fig. 1 are not sensitive to ETT; w
discuss them elsewhere.)

As a result, the pointZ ­ 0, T ­ 0 turns out to be the
end point of the critical lineZ , 0, T ­ 0.

Paradoxically, theabsenceof the discussed curve of
static KS’s forZ . 0 leads to an anomalous behavior o
the system on this side of QCP. To see this, let us calcul
v dependencies of Rex0sq, vd, Im x0sq, vd andCsvd ­
Im x0sq, vdyv for the characteristic for this regime
wavevectorq ­ Q. The results are shown in Fig. 2a
One can see that all functions are singular at some ene
vc. Analytical calculations with the hyperbolic spec
trum (2) give the following expression: Imx0sQ, vd ­
Fsvyvc, byady2pt, Rex0sQ, vd ­ Rex0sQ, vcd 2

Fsvyvc, byadyt with

Fsx, yd ­

8>><>>:
ln

p
11xy1

p
11x

p
12xy1

p
12x

, 0 # x # 1

ln
p

11xy1
p

11x
p

xs12yd
, x $ 1

,

Fsx, yd ­

Ω
g1s yds1 2 x2d, x 2 1 , 0
g2s yd

p
x 2 1 , 0 # x 2 1 ø 1

(4)

[g1s yd ø 1]. The new energy scalewhich appears and
corresponds to the singularities in Fig. 2a is given by

vc ­ Zs1 1 byad .

The singularities atv ­ vc are dynamic 2D KS’s.
The dynamic KS’s atT ­ 0 transform into static Kohn

anomalies at finite temperatures (see Fig. 2b). Wh
comparing with Fig. 2a, one can see that the behav
is similar to being smoothed by the effect of finite
T . The important difference is that the characterist
temperatures of the Kohn anomalies for Rex0sQ, 0d and
for limv!0 Im x0sQ, vdyv being both scaled withZ,

Tp
Re ­ AZ, Tp

Im ­ BZ, A , B ,

are different; that is a usual effect of finiteT .
Another remarkable signature ofasymmetry inZ is the

following. Taken for the characteristic for each regim
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FIG. 1. q dependence ofx0sq, 0d through the BZ for (a)
Z , 0, (b) Z . 0, (c) Z ­ 0. Qx ­ qxyp, Qy ­ qyyp. The
point q 5 Q corresponds to the left corner. (t0yt ­ 20.3.)

wave vector,q ­ qm for Z , 0 and q 5 Q for Z . 0,
x0sq, 0d decreases rapidly withjZj for Z , 0 while for
Z . 0 it remains practically constant(and quite high)
for not too smallZ. Moreover, for finiteT , x0sQ, 0d
has a maximum atZ ­ ZpsT d . 0. As a result of the
describedT andZ dependencies ofx0sQ, 0d in the regime
Z . 0, the linesx0sQ, 0d ­ const have an unusual form
in the T 2 Z plane: They develop rather around th
“critical” lines Tp

ResZd andTp
ImsZd than around the QCP

T ­ 0, Z ­ 0.
On the contrary, the behavior of SC RF (in both cas

isotropics-wave ord-wave symmetry) is symmetrical in
Z being related to the first aspect of ETT. For the sam
reason, the SC RF decreases quite rapidly with increas
a distance from QCP, i.e., with increasingT andjZj.

Above we considered a system of noninteracting el
trons. In fact, the same picture takes place for a
system of fermion or fermionlike quasiparticles when t
dispersion law is determined by the topology of 2D squa

FIG. 2. Rex0sQ, vd (solid line), Imx0sQ, vd (dot-dashed
line), andCsvd ­ Im x0sQ, vdyv (dashed line) in the regime
Z . 0 (a) as a function ofv for T ­ 0 and (b) as a function
of T for v ! 0. Heret0yt ­ 20.3 andZyt ­ 0.21.
2371
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lattice and has a form (1). In [8], where we discus
some problems of strongly correlated systems, we sh
that such quasiparticles (with spin and charge) do exist
the t 2 t0 2 J model describing the strongly correlate
CuO2 plane. On the other hand, the shape of FS o
served by ARPES does imply the existence ofnnn hop-
ping t0 fi 0, so that the condition of the asymmetrya fi b
necessary for the existence of the discussed ETT is f
filled. Moreover, this shape impliest0yt , 0, the case
for which the critical dopingdc is positive. Below we
will pass from the energy distance from ETTZ to the
doping distancedc 2 d, using a large FS condition:
1 2 d ­ 2

P
k nFsẽkd [8].

Let us now consider the system in the presence
interaction. A quite trivial consequence of the ETT i
a developing of density wave (DW) and SC instabilitie
around the pointd ­ dc, T ­ 0. [The effects are related
to the logarithmic divergence ofx0sQ, 0d and lnZ ln T
divergence of the SC RF asT ! 0, Z ! 0.] Nontrivial
consequences concerning the DW degrees of freedom
related to the Kohn singularity aspect of ETT are (i)
strong asymmetry between regimesd , dc andd . dc,
and (ii) very long (in doping and temperature) memor
about DW instability in the disordered state on one sid
of ETT, d , dc. To see this, let us consider the electron
hole RF which in the random-phase approximation
given byxsq, vd ­ x0sq, vdyf1 1 Vqx0sq, vdg. In the
case of interactionVq in a triplet (singlet) channel the
instability and normal state fluctuations are of spin
density wave (SDW) [charge-density wave (CDW)] type
We will consider the former interaction:Vq ­ Jq ­
2Jscosqx 1 cosqyd (J . 0) as strongly supported by
neutron scattering and NMR experiments for the cupra
and on the other hand, as an interaction between the ab
discussed quasiparticles in thet 2 t0 2 J model [8]. For
such interaction both instabilitiesd-wave SC (see details
in [8]) and SDW take place around QCP. Because
the symmetry of SC RF inZ, TSCsdd is symmetrical
on two sides ofdc with a maximum atd ­ dc (see
Fig. 3). Therefore the regimesd , dc and d . dc can
be considered as underdoped and overdoped, respectiv
On the contrary, the line of SDW instability,TSDW sdd,
given by x0sq, 0d ­ 21yJq (q 5 Q for d , dc and
q 5 qm for d . dc) has an anomalous form in the regim
d , dc: It develops rather around the linesTp

Resdd and
Tp

Imsdd than around QCP (see Fig. 3), reproducing th
form of linesx0sQ, 0d ­ const discussed above.

When, at certain doping,d ­ dSDW , the ordered SDW
solution disappears, it is the disordered metallic sta
which retains this type of behavior: the regimeTp

Resdd ,

T , Tp
Imsdd ( II) turns out to be a regime of aminimum

disorderand the regimeT , Tp
Resdd ( I) is a regime ofa

reentrant in temperature quantum SDW liquid.Indeed,
the two most important parameters characterizing SD
liquid, k2 ­ 1 2 jJQjx0sQ, 0d describing a “proximity”
to the SDW instability andGQ ­ k2yCs0d describing a
relaxation energy, behave in a reentrant way in increas
2372
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FIG. 3. Phase diagram with the lines of SDW andd-wave SC
instabilities and the linesTp

Resdd, Tp
Imsdd (t0yt ­ 20.3, tyJ ­

1.9). We consider only the metallic part of the phase diagra
(for a discussion about a passage from the AF localized-sp
state at low doping to the metallic state with large FS fo
intermediate doping, see Ref. [8]).

T : k2 decreases (slightly) withT until Tp
Resdd and GQ

decreases (strongly) untilTp
Resdd , Tp

G , Tp
Imsdd as if the

system would move towards an ordered phase. Howev
it does not reach it; the reentrancy stops and the syst
passes to the regime II of a minimum disorder above whic
a standard disordered state behavior is restored (regi
III). On the other hand, the quantum SDW liquid stat
in the regime I is practicallyfrozen in dopingdue to the
very weak dependence ofk2 on doping. As a result the
disordered metal state in the regimed , dc keeps a strong
memory of the ordered SDW phase (and therefore develo
strong critical SDW fluctuations) very far in doping and
in temperature. On the contrary, in the regimed . dc

the memory of SDW instability and the correspondin
fluctuations disappear rapidly due to the sharp decrease
x0sq, 0d with increasingd 2 dc andT . The same is valid
in both regimesd . dc andd , dc, for SC fluctuations
due to the above discussed behavior of SC RF as a funct
of T and jZj. Therefore, although the SDW phase itse
is energetically unfavorable with respect to the SC pha
(except in the case of very highJyt), the metal state above
TSC in the underdoped regime is a precursor of the SDW
phase rather than of the SC phase.

The linesTp
Resdd andTp

Imsdd are basic lines for anoma-
lies in the disordered metallic state. To demonstrate ho
the anomalies appear for different properties we consid
some examples. In Fig. 4a we show calculated quasista
magnetic characteristics corresponding to these measu
by NMR 1yT1T and1yT2G on copper as functions ofT .
The physical reason for a slight increase of1yT2G , extend-
ing until øTp

Re, and a much stronger increase of1yT1T ,
extending untilT ø Tp

G, is the reentrant behavior ofk2

and GQ with T discussed above. The theoretical behav
ior is very close to that observed experimentally (Fig. 4b
and explains it in fact for the first time.

In Fig. 5 we show an electron spectrum calculated fo
the ordered SDW phase (a) and for the disordered me
state (namely, for the regime II) (b). For the ordere
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FIG. 4. 1yT1T and1yT2G (a) calculated ford ­ 0.15 (t0yt ­
20.3, tyJ ­ 1.9) (should be considered only aboveTSC) and
(b) taken from NMR for YBCO6.6 [2].

phase the spectrum is given bý1,2 ­ seA 1 eBdy2 6p
fseA 2 eBdy2g2 1 D2 [eAskd ; eskd, eBskd ; esk 1

Qd] with the gapD determined self-consistently in the
usual way. For the disordered state the “spectrum”
obtained from the maxima of electron spectral function
strongly renormalized due to the interaction with th
above described SDW fluctuations. The characteris
form of the spectrum in both cases is a result of
hybridization of two parts of the bare spectrum in th
vicinity of two different SP’s s0, pd and sp, 0d. The
hybridization is static for the ordered SDW phase an
is dynamic for the disordered state. (Details about th
pseudogap opening in the disordered state and its beha
with T andd will be the subject of a separate paper.) Th
spectrum is in excellent agreement with ARPES data (s
Fig. 5c) (ARPES measures only the part corresponding
e , 0). The effect of splitting into two branches, and
of the pseudogap, disappears quite rapidly in the regim
d . dc due to the rapid weakening of SDW fluctuations
It disappears roughly aboveTp

Imsdd for the same reason.
Both facts agree with experiments for the cuprates.

We will now discuss the behavior of Imxsq, vd, the
characteristics measured by inelastic neutron scatter
( INS). As follows from the previous analysis, belowTp

Im
it has a maximum atv ­ v0 ~ k2 (being peaked at
q ­ Q). Sincek2 almost does not change withd, the
position of the peak does not as well. This agrees with IN
data and explains (for the first time) the existence of th
characteristic energy (,30 MeV) aboveTSC for all d; see,
e.g., the summarizing picture in Fig. 25 in [11]. As wa
emphasized before, strong SDW fluctuations disappear
the overdoped regimed . dc. In the underdoped regime
they disappear (or strongly diminish) aboveTp

Imsdd. Both
facts are in good agreement with INS.

Summarizing, the simple picture arising from the effec
of ETT in a 2D electron system on a square lattice gives
unified vision of normal state anomalies in the underdop
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FIG. 5. Electron spectruḿskdyt alongG-X symmetry lines,
(a) in SDW phase [Zyt ­ 0.03 (d ­ 0.25), T ­ 0], (b) in the
metallic state aboveTSC [Zyt ­ 0.3 (d ­ 0.1), Tyt ­ 0.15],
(c) ARPES data [10] for underdoped Bi2Sr2CaCu2O815 above
TSC. The dashed lines correspond to the bare spectrum, and
thin line in (a) corresponds to the spectrum with the spectr
weight less than0.1. t0yt ­ 20.3, tyJ ­ 1.8; wave vectors
are taken in units ofp.

high-Tc cuprates for both magnetic and electronic prope
ties. We succeed in explaining the temperature anomal
in 1yT1T and 1yT2G NMR characteristics, some crucial
features of INS in the normal state, the disappearance
magnetic fluctuations in the overdoped regime, an openi
of a pseudogap in the electron spectrum, the shape of
latter in a vicinity ofs0, pd, and the disappearance of the
pseudogap in the overdoped regime. All of these are mo
nontrivial experimental results. Regarding that the theo
does not use any external phenomenological hypothe
and only two microscopical parameterst0yt and tyJ, the
similarity between the theoretical results and experimen
seems quite remarkable. We emphasize that the eff
exists for anyt0yt, t00yt, . . . , except for two limit cases:
(i) isotropic a ­ b in Eq. (2) (t0 ­ t00 ­ . . . ­ 0) and
(ii) extreme anisotropic onea ­ 0 or b ­ 0. Although
ETT exists in both cases, the corresponding QCP’s belo
to different classes of universality. Fora ­ b (nesting)
the behavior is symmetrical inZ, the anomalous regime
discussed in this paper disappears.

[1] H. Alloul et al., Phys. Rev. Lett.63, 1700 (1989).
[2] M. Takigawa, Phys. Rev. B49, 4158 (1994).
[3] H. Ding et al., Nature (London)382, 51 (1996).
[4] S. L. Cooperet al., Phys. Rev. B40, 11 358 (1989).
[5] I. M. Lifshitz, Sov. Phys. JETP11, 1130 (1960).
[6] J. E. Hirschet al., Phys. Rev. Lett.56, 2732 (1986).
[7] W. Kohn, Phys. Rev. Lett.2, 393 (1959).
[8] F. Onufrievaet al., Phys. Rev. B54, 12 464 (1996).
[9] A. Virosztek et al., Phys. Rev. B42, 4064 (1990).

[10] D. S. Marshallet al., Phys. Rev. Lett.76, 4841 (1996).
[11] F. Onufrievaet al., Phys. Rev. B52, 7572 (1995).
2373


