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Full counting statistics of the two-stage Kondo effect
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We developed a theoretical framework which extends the method of full counting statistics (FCS) from
conventional single-channel Kondo screening schemes to a multichannel Kondo paradigm. The developed idea
of FCS has been demonstrated considering an example of a two-stage Kondo (2SK) model. We analyzed the
charge-transferred statistics in the strong-coupling regime of a 2SK model using a nonequilibrium Keldysh
formulation. A bounded value of the Fano factor, 1 � F � 5/3, confirmed the crossover regimes of charge-
transferred statistics in the 2SK effect, from Poissonian to super-Poissonian. An innovative way of measuring
the transport properties of the 2SK effect, by the independent measurements of charge current and noise, has
been proposed.
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I. INTRODUCTION

Quantized charge in nanoscale systems results in large cur-
rent fluctuations [1]. In addition, thermal fluctuations are ubiq-
uitous at finite temperature. These fluctuations are prevalently
measured by charge current and its noise, the first and second
cumulants of fluctuating current [2]. The study of noise in a
generic nanodevice provides underlying transport information
that cannot be inferred from the average current measure-
ments [1–8]. In particular, noise measurement imparts an
effective way of probing the dynamics of charge transfer [2,8].
Moreover, noise has revealed the nature of quasiparticle inter-
actions and different types of entanglements associated with
the system [9–11]. In addition to first and second cumu-
lants of the fluctuating current, the fundamental relevance of
higher-order cumulants to describe the transport processes in
nanostructures has been also demonstrated [9,12–19].

The method of full counting statistics (FCS) furnishes an
elegant way to scrutinize an arbitrary-order (nth-order) cumu-
lant of current through a nanodevice [3–5]. The probabilistic
interpretation of charge transport is at the core of FCS theory.
The primary object of FCS is the moment-generating function
(MGF) for the probability distribution function (PDF) of
transferred charges within a given time interval [3–5]. The
moments of PDF of order n � 2 characterize the current
fluctuations. The FCS scheme permits in this way a transpar-
ent study of the quantum transport in various nanostructures.
Notably, FCS of normal metal-superconductor hybrid struc-
tures, superconducting weak links, tunnel junctions, chaotic
cavities, entangled electrons, spin-correlated systems, charge
shuttles, and nanoelectromechanical systems are the most
striking examples [20–27].

In nanoscale transport studies, an archetype of an elec-
tronic device consists of an impurity sandwiched between two
reservoirs of conduction electrons [1,2]. The artificial atom,
molecule, quantum dot (QD), carbon nanotube (CNT), etc.,
plays the role of an impurity. Given their low tunneling rate,
the QDs represents archetypal setups for the study of a highly
accurate FCS [28], the main concern of the present work. The

transport through the QD depends strongly on the associated
number of electronic levels, while the orbitals of the impu-
rity play the major role in defining the underlying transport
characteristics [29]. Out of all the impurities-mediated trans-
port processes, those with intrinsic magnetic moment, and
hence those that are magnetic in nature, have attracted ever-
increasing interests [29,30]. One can expect variant transport
fingerprints when such magnetic impurities exchange coupled
to conduction electrons (for review see Ref. [31]).

In the low-energy regime of transport measurements, the
correlation between the localized spin of the impurity and the
spin of conduction electrons results in the well-known many-
body phenomenon, the Kondo screening effect [32]. The fun-
damental role of the Kondo effect in enhancing and control-
ling the transport through a nanostructure is the acknowledged
evidence [33–44]. In a transport setup with two reservoirs
(leads), the Kondo screening of the localized spin is caused
by at most two conduction channels, the symmetric and
antisymmetric combination of electron states in the leads. The
interplay between the number of conduction channels (K =
1, 2) and the effective spin of the magnetic impurity (S �
1/2) boosts further the richness of Kondo physics. Specifi-
cally, K = 2S put forward the controllable comprehension
of Kondo effects in nanodevices [45]. In this particular case,
the effective spin of the impurity gets completely screened
by the spin of the conduction electrons. Such fully screened
Kondo effects are of immense interest given their low-energy
behavior described by a local Fermi-liquid (FL) theory
[33–35].

The Kondo screening involving only a single channel
of conduction electrons (K = 1) and a spin half impurity
(S = 1/2) forms a prototypical example of the fully screened
Kondo effect. The magnetic impurities with only one orbital
manifest the single-channel Kondo (1CK) effect. Tremendous
perseverance [45–48] has been devoted to understanding the
transport behavior in paradigmatic 1CK schemes. Moreover,
various seminal works [49–54] paved the way to access the
associated FCS in the 1CK realm. Unlike the 1CK effect,
the transport characteristics of a multiorbital impurity have
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been less explored. In this facet, many orbitals of the con-
duction channels are involved in screening the impurity spin
(multichannel screening), which makes the problem more
obscure [55]. Nonetheless, several cogent evidences [55–59],
theoretical and experimental, are available to demonstrate the
relevance of the multichannel screening effect in a generic
transport setup. The simplest multichannel screening involves
two conduction channels (K = 2) and S � 1/2: the general
manifestation of a two-lead geometry. In the present work we
focus only on the particular case of multichannel screening
such that K = 2S in a two-lead setup. Thus the S = 1 im-
purity interacting with two channels of conduction electrons
forms the minimal description of multichannel screening in
the FL regime [60,61].

A multiorbital quantum impurity with effective spin S = 1
connected to two terminals can lead to a Kondo effect exhibit-
ing two-stage screening [61]. The first-stage screening process
involves an underscreened Kondo effect where the impurity
spin is effectively reduced from S = 1 to S = 1/2. Subse-
quently, second-stage screening leads to complete screening
of the impurity spin and the formation of a Kondo singlet.
This feature of screening is called the two-stage Kondo (2SK)
effect [55,60]. The low-energy description of such 2SK effects
is still governed by a local FL theory. Nonetheless, transport
properties of such FLs get modified in dramatic ways com-
pared to the 1CK effect [61]. The strong interplay between
two conduction channels, both close to resonance scattering,
causes the aforesaid different transport features over the 1CK
effect. The lack of a compatible cure for the two Kondo
resonances has made the 2SK paradigm far from being trivial
for several years [55,60,62]. To analyze the equilibrium and
nonequilibrium transport properties of a generic 2SK effect, a
two-color local FL theory was recently developed [61]. Here,
the absence of a zero-bias anomaly and the nonmonotonicity
of FL transport coefficients are demonstrated as the hallmarks
of the 2SK effect.

These two traits of the 2SK effect, in contrast with the
1CK effect, have raised many fascinating concerns, for in-
stance, how these fingerprints can affect the higher cumu-
lants of charge current, particularly the noise-to-signal ratio.
This ratio is commonly known as the Fano factor (F ). The
zero-temperature limit of F is of extreme experimental in-
terest [47,63]. In the theoretical perspective, the method of
FCS pertaining to the two resonance channels of conduction
electrons has not been developed yet.

In this work we take the important step of revealing the
FCS for the 2SK effect. The structure of this paper is as
follows. The basis description of the 2SK effect setup and
model Hamiltonian are given in Sec. II. We present the theory
of FCS for two resonance channels of a local FL in Sec. III.
Section IV is devoted to discussing the results of applying
the many-body method of FCS developed in Sec. III to the
2SK model of Sec. II. Conclusions and future perspectives are
presented in Sec. V. Details of mathematical calculations are
given in the Appendixes.

II. SETUP AND MODEL HAMILTONIAN

The cartoon representing the generic 2SK effect is as
shown in the top panel of Fig. 1. The generic quantum

FIG. 1. Top: Schematic representation of a generic 2SK effect
setup. The effective spin S = 1 impurity is tunnel-coupled with two
external leads, the source S and the drain D. Bottom: Flow diagram
of the 2SK model from weak to strong coupling. For the entries in
the figure and their explanations see Sec. II.

impurity sandwiched between two conducting leads (the
source S and the drain D) is described by the Anderson model
with the Hamiltonian

HA =
∑
kασ

ξkc
†
αkσ cαkσ +

∑
αkiσ

tαic
†
αkσ diσ + H.c.

+
∑
iσ

εid
†
iσ diσ + EcN̂ 2 − J Ŝ2. (1)

The conducting leads are described by the first term of
Eq. (1) such that the operator c

†
αkσ creates an electron with

momentum k and spin σ = ↑(+),↓(−) in the α (α = S,
D) lead. Here ξk is the energy of conduction electrons with
respect to the chemical potential μ. The operator diσ describes
electrons with energy εi and spin σ in the ith orbital state
of the quantum impurity. The tunneling matrix elements are
represented by tαi , the charging energy of the impurity (dot)
is Ec, and J � Ec is an exchange integral accounting for the
Hund rule [62]. The total number of electrons in the dot is
given by an operator N̂ = ∑

iσ d
†
iσ diσ . The two electrons in

the dot ensure the expectation value of N̂ to be n̄d = 2 and the
total spin S = 1. Application of the Schrieffer-Wolff transfor-
mation [64] to the Hamiltonian Eq. (1) results in the effective
Kondo Hamiltonian for the spin-1 quantum impurity [45,62].

To proceed with the calculation of FCS relevant to the
setup in Fig. 1, we assume that the thermal equilibrium is
maintained in source and drain, separately, at temperature T .
The chemical potentials of the source and drain electrodes are
μS and μD , respectively. The applied voltage bias across the
source and drain drives the impurity-leads system out of equi-
librium. For the sake of simplicity, we consider symmetrically
applied bias voltage such that μS − μD = eV , where e is the
electronic charge. In this frame, the symmetrical (even, e) and
antisymmetrical (odd, o) combinations of electron operators
in the two leads interact with the impurity. Assuming cS/D

as an operator that annihilates an electron in the source or
drain, the even/odd combinations of electron operators are
be/o = (cS ± cD )/

√
2. These states are also known as con-

duction channels. In Fig. 1, we used arrows with different
colors to show that the electrons form even and odd channels
(↑, electron forms channel e; ↑, electron forms channel o).
Likewise, the interaction between even (odd) channel and
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impurity is represented by a two-headed arrow with in blue
(red). In our convention, blue (red) is generic for the even
(odd) channel.

In the conventional 1CK effect the odd channel is com-
pletely decoupled from the impurity [33]. The interacting
channel, the even one, is characterized by the Kondo tem-
perature T e

K . Depending upon the applied bias eV and the
temperature T in a particular setup, different coupling regimes
come into play, namely, (eV, T ) � T e

K , the strong-coupling
regime, and (eV, T ) � T e

K , the weak-coupling regime. Im-
mense efforts, experimental inclusive of theory, have been put
forth for the transport description of the 1CK effect in both of
the above regimes (see Refs. [29,45] for review).

In the two-lead setup with a generic quantum impurity hav-
ing more than one orbital, nonetheless, neither of the electron
combinations remains decoupled from the impurity [55,60].
Consequently, both of the conduction channels take part in the
screening of localized spin of the impurity. In addition to T e

K ,
another energy scale characterizing the Kondo temperature of
the odd channel, T o

K , is used to engage the problem of the 2SK
effect. The interplay between two Kondo temperatures (T a

K ,
a = e, o) makes the 2SK problem far richer than the 1CK
problem, but at the same time notoriously difficult. Pertur-
bation treatments of weak, (eV, T ) > max(T e

K, T o
K ), and in-

termediate, T o
K � (eV, T ) � T e

K , coupling regimes have been
formulated [60,62]. In the intermediate regime the impurity
spin gets partially screened via first-stage screening. Still
swapping the temperature and bias voltage down, to satisfy
the condition (eV, T ) � min(T e

K, T o
K ), results in the strong-

coupling regime of the 2SK effect. In this second stage the
complete screening of the impurity spin is achieved. These
three coupling regimes are shown in the bottom panel of
Fig. 1.

Furthermore, it has been argued [55,60] that the most
nontrivial part of the 2SK effect is the strong-coupling regime,
where both of the interacting channels are close to the res-
onance scattering. Since the 2SK effect satisfies the identity
K = 2S , it offers the transport description in terms of a local
FL. From now on, we focus only on the strong-coupling
regime of the 2SK effect. Owing to its low-energy behavior
as a local FL, we describe the strong-coupling regime of
the 2SK effect in the spirit of Noziéres’s FL theory [33,35].
Accordingly, the Kondo singlet (Kondo cloud) acts as the scat-
terer for the incoming electrons from the leads. Outgoing and
incoming electrons then differ from each other by the phase
shifts δa

σ (ε). At low energy, ε � min(T e
K, T o

K ), we expand
the phase shifts in terms of phenomenological parameters to
write [33]

δa
σ (ε) = δa

0 + αaε − φaδN
a
σ̄ + �σ (δNā

↑ − δNā
↓ ). (2)

Here, δa
0 = π/2 are the resonance phase shifts considered to

be the same for both channels and both spin components.
Writing Eq. (2) we explicitly consider the particle-hole (p-h)
symmetric limit: σ = ↑,↓ (σ̄ = ↓,↑). The first two terms of
Eq. (2) represents the purely elastic effects associated with the
two channels. These are, equivalently, known as the scattering
terms. The parameters αa are the Noziéres FL coefficients
characterizing the scattering. Although for ε = T = eV = 0
both channels are at resonance, the way the phase shifts
changes with energy is different in the two channels. This

consequence can be accounted for by defining the Kondo
temperature as [48,65]

T a
K = 1/αa. (3)

For definiteness, we consider T o
K � T e

K throughout the paper.
In addition, the third and fourth terms of Eq. (2) are due

to the finite inelastic effects. These are known as interaction
terms. The parameters φa quantify the intrachannel interac-
tions, and the interchannel interaction is accounted for by �.
The notation δNa

σ is defined by

δNa
σ =

∫ ∞

−∞
[〈b†aεσ baεσ 〉0 − �(εF − ε)] dε.

Here, εF , in the argument of step function �, is the Fermi
energy. The average 〈·〉0 is taken with respect to the non-
interacting Hamiltonian describing the free electrons in two
channels,

H0 = ν
∑
aσ

∫
ε

ε b†aεσ baεσ , (4)

where ν is the density of states per species for a one-
dimensional channel. We see that the phase-shift expression,
Eq. (2), consists of five FL parameters (αe, αo, φe, φo, and
�). However, the invariance of phase shifts under the shift of
reference energy (the floating of the Kondo resonance [47])
recovers the FL identity αa = φa . Thereupon, three indepen-
dent FL parameters (αe, αo, and �) completely describe the
low-energy sector of the 2SK problem. With the specification
of T a

K in terms of αa as in Eq. (3), we have only one FL
parameter (�) to relate with the physical observables. The re-
sponse function measurements could provide a way to access
the parameter � [61]. Therefore, all the phenomenological
parameters in Eq. (2) are under control in an experiment.

On theoretical grounds, the finding of the seminal work of
Ref. [35] paved the way to formulate the Hamiltonian describ-
ing the scattering and interaction processes in Eq. (2). The p-h
symmetry of the problem demands the scattering terms to be
represented by the Hamiltonian

Hel = − αa

2π

∑
aσ

∫
ε1−2

(ε1 + ε2)b†aε1σ
baε2σ

. (5)

Similarly, the intrachannel and interchannel quasiparticle in-
teractions are designated by the Hamiltonians Hφ and H�,
respectively, where Hin = Hφ + H� represents the total inter-
actions associated with the 2SK effect. Here,

Hφ = φa

2πν

∑
aσ

∫
ε1−4

:ρa
ε1ε2σ

ρa
ε3ε4σ̄

:, (6)

H� = − �

2πν

∑
σ1−4

∫
ε1−4

:So
ε1ε2σ1σ2

Se
ε3ε4σ3σ4

:. (7)

The notation : · · · : denotes the normal ordering. In Eqs. (6)
and (7) we used the short-hand notation

ρa
ε1ε2σ

≡ b†aε1σ
baε2σ , Sa

ε1ε2σ1σ2
≡ b†aε1σ1

τ σ1σ2baε2σ2 ,

with τ σiσj
the elements of Pauli-matrices. The scattering and

interaction parts of the Hamiltonian given in Eqs. (5)–(7) are
first order in 1/T a

K . The two-leg vertex αa and the four-leg
vertices φa and � are shown in Fig. 2. In general the symmetry
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FIG. 2. Feynman diagrammatic codex used for the calculation of
FCS in the presence of two conduction modes.

of the problem also allows one to construct the Hamiltonian
with an eight-leg vertex, for instance, H̃ ∝ φ̃(ρσρσ̄ )a (ρσρσ̄ )ā .
Note that in the present work we restrict ourselves to the
second-order correction to the statistics of the charge current;
thus the relevant terms are up to O(T/T a

K )2. Since the vertex
φ̃ is already second order in 1/T a

K , it does not contribute
to the cumulants of charge current within the second-order
perturbative calculation and hence has been neglected. Thus
the Hamiltonian H ≡ H0 + Hel + Hin constitutes the minimal
model Hamiltonian of a generic 2SK effect. This particular
model has channel symmetry at the point αe = αo and αa =
3/2�, where the conductance vanishes due to the destructive
interference between two interacting channels [61]. It is worth
noting that the effects of breaking p-h symmetry can be ac-
counted for by introducing extra first and second generations
of FL coefficients into Eq. (2) in the spirit of Ref. [47].
The nth generation of FL coefficients refers to the nth-order
coefficients in the Taylor expansion of the scattering phase
shifts with respect to the energy. Moreover, for the description
of FCS beyond the p-h symmetric point, the density-density
interchannel interaction should be added. The finite poten-
tial scattering amounts to renormalizing the resonance phase
shifts in such a way that δa

0 → δa
0 + δa

P , δa
P � δa

0 [65].

III. FULL COUNTING STATISTICS

The randomness of transferred charge (q) through a nan-
odevice during a measurement time (T ) is specified by the
PDF, P (q ). Then, the central object of FCS, the MGF, is
given by

χ (λ) =
∑

q

P (q )eiλq . (8)

Here, λ is the charge counting field. Following the spirit of
pioneering works [49,50], we conceal the 2SK many-body
Hamiltonian into the MGF (see text below). The complete
charge-transferred statistics of the 2SK effect is, then, ob-
tained via the CGF ln χ (λ). The nth-order differentiation of
CGF with respect to the counting field delivers the arbitrary
moment (central) of charge current. In addition, the counting
field, λ, is explicitly time dependent, which takes different

values in forward (C−) and backward (C+) Keldysh contours:

λ(t ) =
⎧⎨
⎩

λ, if 0 < t < T and t ∈ C−
−λ, if 0 < t < T and t ∈ C+

0, else.
(9)

Here the Keldysh contour extends from −∞ to T and back
to ∞. Note that, in order to calculate the FCS, the current
measurement device has to be included in the Hamiltonian
description. Such terms in the Hamiltonian due to the mea-
suring device can be eliminated by means of unitary trans-
formation of the form U ∼ e−iλ(t )N̂α , N̂α being the number
operator of the electrons in the α reservoir [50]. This trans-
formation changes only the tunneling part of the Hamilto-
nian Eq. (1). Analogously, in the strong-coupling regime the
charge-measuring field causes the rotation of the even and odd
electron states in the reservoirs such that [49]

bλ
a = cos (λ/4)ba − i sin (λ/4)bā. (10)

Where, for simplicity, we omit the spin degrees of freedom.
Under this transformation the free part of the Hamiltonian,
H0, remains unchanged. Nevertheless, the Hamiltonian cor-
responding to the sum of scattering and interaction effects,
H (≡ Hel + Hin), transforms to Hλ = H + λ/4 Îbs. Here, we
considered only the lowest-order terms in the counting field.
The backscattering current, Îbs, is given by the commutator
Îbs = i[Q,H ], where Q is the charge-transferred operator
across the junction Q = 1/2

∑
kσ (b†ekσ bokσ + H.c.). Since

there are no zero-order transmission processes in the 2SK
process [61], the MGF is given by

χ (λ) =
〈
TC exp

[
−i

∫
C

Hλ(t )dt

]〉
0

, (11)

where TC is the time ordering operator in the Keldysh contour
C. The expansion of Eq. (11) in Hλ and the use of Wick’s
theorem paved the way to proceed with the perturbative study
of the MGF, χ (λ). Then the nth-order (arbitrary) moment of
charge current is given by

Cn = 1

T (−i)n
dn

dλn
ln χ (λ)

∣∣∣∣
λ=0

. (12)

To proceed with the calculation for the higher cumulants
of the charge current, we require Keldysh Green’s functions
(GFs) in λ-rotated basis. As the odd conduction channel
remains completely decoupled, the Keldysh GFs of the even
channel (Ǧee) suffice to characterize the transport of 1CK
schemes. However, the persistent treatment of the 2SK effect
requires two additional Keldysh GFs, the Keldysh GFs of
the odd channel (Ǧoo) and that of the mixed channel (Ǧeo/oe).
Note that the spin index in these GFs is implied. In addition,
we prefer the renaming of GFs Ǧee and Ǧoo as the channel-
diagonal GFs, and Ǧeo/oe as mixed GFs, whenever necessary.
The energy representation of these Keldysh GFs is

Ǧaa/aā (ε) =
[
G−−

aa/aā (ε) G−+
aa/aā (ε)

G+−
aa/aā (ε) G++

aa/aā (ε)

]
, (13)

where the diagonal GFs,

G−−
aa/aā (ε) = G++

aa/aā (ε) = iπν[(fS − 1/2)±(fD − 1/2)],

(14)
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FIG. 3. Top: Schematic representation of the CGF contribution
of scattering effects, ln χel (λ). Bottom: Topologically different di-
agrams accounting for the interaction contribution to the CGF,
ln χin (λ).

are independent of the counting field λ. Here, fS/D ≡ fS/D (ε)
is the free-electron Fermi distribution function of source/drain
reservoir. The off-diagonal GFs, explicitly dependent on λ, are
given by

G+−
aa/aā (ε) = eiλ/2(fS − 1) ± e−iλ/2(fD − 1), (15)

G−+
aa/aā (ε) = e−iλ/2fS ± eiλ/2fD. (16)

The pictorial representation of these GFs is shown in Fig. 2.
Neither of the above GFs included the principal parts, since
they do not contribute to the local quantities in the flat-band
model [49]. The Fourier transformation (FT) of Eq. (16) into
real time permits

G−+
aa/aā (t ) = ∓πνT

ei( λ
2 + eV

2 t ) ± e−i( λ
2 + eV

2 t )

2 sinh (πT t )
. (17)

The singularity in Eq. (17) is removed by shifting the contour
of integration upward from the origin such that t → t + iη

for η → 0. The GF G+−(t ) has the analogous expression
G−+(t ) [52].

We substitute the scattering (elastic) part of the Hamil-
tonian, Hel, into Eq. (11) and use Wick’s theorem to get
the elastic contribution to the CGF, ln χel(λ). Following the
diagrammatic codex of Fig. 2, we succeed in reexpressing
ln χel(λ) in terms of two topologically different Feynman
diagrams. These diagrams are classified as type E1 and type
E2 (see top panel of Fig. 3). Following the standard technique
of Feynman diagrammatic calculation with the GFs given in
Eqs. (14)–(16), we obtained the CGF contribution of type-E1
and type-E2 diagrams. As detailed in Appendix A, the CGF
for the 2SK effect contributed by the scattering effects is

ln χel

(αe − αo)2
= T V

24π

V 2 + 4(πT )2

sinh(V/2T )

∑
x=±

(e−iλx−1)exV/2T .

(18)

We have used the generalized notation e = h̄ = kB = 1 to
write Eq. (18) and for the rest of the discussion. Plugging
Eq. (18) into Eq. (12) and then taking the limit T → 0, we
bring the zero-temperature contribution of scattering effects

FIG. 4. Feynman diagrams representing the second-order inter-
action corrections to the CGF for the 2SK model.

to the nth moment of charge current,

Cel
n = V 3

12π
(−1)n(αe − αo)2. (19)

We follow a procedure similar to that for the calculation
of the scattering contribution to get the interaction correction
to the CGF. Substituting the interaction (inelastic) part of
the Hamiltonian, Hin, into Eq. (11) and applying Wick’s
theorem, we obtain the Feynman diagrams accounting for the
interaction effect in the 2SK effect. These diagrams are shown
in Fig. 4. We allocate these interaction correction diagrams
into three topologically different classes, namely, type I1, type
I2, and type I3, as shown in the bottom panel of Fig. 3.
We introduce the notation ln χIj(λ) (j = 1, 2, 3) to represent
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the interaction correction to the CGF corresponding to the
diagram of type Ij. The real-time GFs given in Eq. (17) pave
the way for systematic calculation of ln χIj(λ). As detailed in
Appendix B, we write the type-I1 and type-I3 diagrammatic
contribution to the CGF as

ln χI1/I3 = ±�2T V

24π

[
V 2+4(πT )2

sinh(V/2T )

∑
x=±

(e−iλx−1)exV/2T

± 2
V 2+(πT )2

sinh(V/T )

∑
x=±

(e−2iλx − 1)exV/T

]
. (20)

Furthermore, the type-I2 diagram produces the interaction
correction to the CGF as

ln χI2 = �2T V

12π

V 2+(πT )2

sinh(V/T )

∑
x=±

(e−2iλx−1)exV/T . (21)

Substituting Eqs. (20) and (21) into Eq. (12), we get the nth-
order cumulant of the charge current, CIj

n , corresponding to the
type-Ij diagram. Of particular interest, the zero-temperature
results are

CI1/I3
n = ± V 3

12π
(−1)n[1 ± 2n+1]�2, (22)

CI2
n = V 3

12π
(−1)n2n+1�2. (23)

IV. RESULTS AND DISCUSSION

Collecting all the interaction contributions as detailed in
Fig. 4, and the scattering contribution given in Eq. (19), we
get the nth cumulant of the charge current at T = 0 as

Cn = (−1)n
V 3

6π
(αe − αo)2[1 + 2nL], (24)

with

L ≡ 1 + 9Z, Z = (�−2/3αe )(�−2/3αo)

(αe − αo)2 . (25)

The parameter Z signifies the lack of universality away
from the symmetry point, αe = αo and � = 2/3 αa of the
2SK Hamiltonian. In addition, it has been predicted that the
parameter Z is bounded such that −1/9 � Z � 0 [61]. For
the sake of simplicity, we introduce the new parameter L
(≡ 1 + 9Z) in such a way that 0 � L � 1. The minimum of
L corresponds to the exact symmetry between two channels
at resonance. The case of infinite asymmetry between even
and odd channels, T o

K/T e
K → 0, is characterized by the upper

bound of L. This particular point, where the odd channel is
decoupled from the impurity, recovers the 1CK paradigm.
We see, from Eq. (24), that the nth cumulant of the charge
current exactly vanishes at the symmetry point due to the
destructive interference between the two resonance channels.
The same result holds true even at finite temperature. How-
ever, l’Hôpital’s rule permits us to have the finite value of the
normalized nth cumulant, Cn/C1. Then we define the measure
of backscattering via the generalized Fano factor

F ≡ | C2/C1| = 1 + 4L
1 + 2L . (26)

FIG. 5. The evolution of Fano factor (F ) as a function of
channel-asymmetry parameter (L) for a generic 2SK effect. Inset:
The nonmonotonic conductance behavior, the major hallmark of 2SK
effect (see text for details).

Plugging the parameter L into Eq. (26), we get the Fano factor
bounded from above and below in such a way that 1 � F �
5/3. The upper bound recoups the Fano factor of the 1CK
effect, the super-Poissonian charge-transferred statistics [63].
The regime of maximum interaction in the 2SK effect results
in the lower bound of F . This minimum of F (= 1) represents
the Poissonian regime of charge distribution. Therefore, a
generic 2SK effect exhibits the crossover regime of charge-
transferred statistics, from Poissonian to super-Poissonian, de-
pending upon the channel asymmetry. This monotonic depen-
dence of F on the channel-asymmetry parameter L is shown
in Fig. 5. The nonmonotonic conductance of the 2SK effect
as a function of temperature, extracted from C1|T �=0,V →0, is
shown in the inset of Fig. 5 (see Ref. [61] for a detailed
description).

In 1CK schemes, the definition of the generalized Fano
factor follows from F ≡ δC2/δC1|T →0, where δC1/2 represents
the corresponding quantity after subtracting the linear part
(those terms ∝ V ). Nevertheless, the nth cumulant of the
charge current in 2SK schemes, Eq. (24), does not show
the linear terms in V . This makes for a very straightforward
extraction of F in the 2SK effect, since it does not require the
proper subtraction of linear terms.

The differential conductance of the 2SK effect as a func-
tion of B (the Zeeman field), T , and V is given, in terms
of FL transport coefficients, as G/G0 = cBB2 + cT (πT )2 +
cV V 2, where G0 is the unitary conductance. The trans-
port coefficients bear the compact form: cT /cB = (L + 2)/3
and cV /cB = L + 1/2 [61]. Thus, the measurement of L
would suffice in the study of transport behaviors of the 2SK
effect. The compelling monotonic dependence of F on L,
as shown in Fig. 5, could furnish an experimental way to
extract L as follows. Given an experimental setup in the 2SK
scheme, the independent measurements of charge current and
noise impart the Fano factor. Thus obtained, the Fano factor
uniquely defines the corresponding asymmetry parameter L
via Eq. (5). Following this way of measuring transport coef-
ficients could be less involved than measuring the response
functions.
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V. CONCLUSION

We extended the FCS method from conventional 1CK
schemes to the multichannel Kondo paradigm. The developed
framework of the FCS has been demonstrated considering
an example of the 2SK effect. We analyzed the charge-
transferred statistics in the strong-coupling regime of a 2SK
model using a nonequilibrium Keldysh formulation. We found
that the arbitrary cumulant of the charge current gets nullified
at the symmetry point of the 2SK model due to the destructive
interference between the two conducting channels. We studied
the destructiveness and constructiveness of interference in
terms of the channel asymmetry parameter, L. The nth-order
normalized cumulant of the charge current, Cn/C1, took a com-
pact function of L only. A bounded value of the Fano factor,
1 � F � 5/3, has been discovered. Studying the observed
monotonic growth of F as a function of L, we uncovered the
crossover regimes of charge-transferred statistics in the 2SK
effect, from Poissonian to super-Poissonian. We proposed a
way of obtaining the FL transport coefficients of the 2SK
effect by the independent measurements of charge current
and noise. The developed formalism imparts all the transport
information of the 1CK effect as well. All the calculations
have been performed at finite temperature; one can easily
study the effect of temperature on an arbitrary cumulant of
the charge current [66].
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APPENDIX A: SCATTERING CORRECTIONS TO THE CGF

The scattering correction to the MGF of the 2SK model
reads

χel(λ) =
〈
TC exp

[
−i

∫
C

Hλ
el(t )dt

]〉
0

, (A1)

where the scattering Hamiltonian is given in Eq. (5). The
logarithm of Eq. (A1), ln χel(λ), imparts the corresponding
CGF. The second-order expansion of ln χel(λ) in Hλ

el followed
by the use of Wick’s theorem results in four different Feynman
diagrams as shown in Fig. 3 (top). The first and second
diagrams are composed of only the channel-diagonal GFs.
Owing to their similar geometry, we classified them as type-
E1 diagrams. Note that, in our convention, the two diagrams
are geometrically similar if they contain an equal number
of channel-diagonal GFs (if present) and an equal number
of mixed GFs (if present). The type-E2 diagrams shown in
Fig. 3, nonetheless, consist of only mixed GFs. The interfer-
ence between two channels, due to the scattering effects, is
accounted for by these type-E2 diagrams. The contribution of
type-E1 diagrams to the CGF is proportional to α2

a . Similarly,
the CGF contribution of type-E2 diagrams is proportional to
αaαā . Therefore, the overall scattering contribution to CGF is

written as

ln χel =
∑

a

(
ln χα2

a
+ ln χαaαā

)
. (A2)

Topologically the type-E1 and type-E2 diagrams are quite
distinct. The type-E1 diagram has already appeared in several
previous works [49,50,52–54]; however, the type-E2 diagram
has not been considered yet. For completeness, we present the
mathematical details of the diagrammatic contribution to the
CGF for both diagrams. For type-E1 diagrams we write

ln χα2
a

= −1

2

α2
a

(2πν)2

∑
kk′σ

∑
pp′σ ′

(εk + εk′ )(εp + εp′ )

×
∫
C
dt1dt2〈TCb

†
akσ (t1)bak′σ (t1)b†apσ ′ (t2)bap′σ ′ (t2)〉.

(A3)

Here, we introduced the set of momentum indices
(k, k′, p, p′), spin indices (σ, σ ′), and time indices (t1, t2).
Equation (A3) imparts the nonzero contribution only if
k = p′, k′ = p, and σ = σ ′. Therefore, use of the method of
Keldysh disentanglement in Eq. (A3) results in

ln χα2
a
= − 1

2

α2
aT

(2πν)2

∑
kk′σ

(εk + εk′ )2

×
∑
η1η2

η1η2

∫
C
dt Gη1η2

aa,k′σ (t )Gη2η1
aa,kσ (−t ), (A4)

where T is the measurement time (see Sec. III), and ηi (i =
1, 2) are the Keldysh branch (forward and backward) indices
such that ηi = ±1. The channel-diagonal GFs, Gη1η2

aa , are
defined in Eqs. (14)–(16). These GFs acquire the special prop-
erty νGη1η2

aa,kσ (ε) = Gη1η2
aa,σ (ε)δ(ε − εk ), where δ(ε − εk ) stands

for the Kronecker delta. Then, Eq. (A4) reads

ln χα2
a
=−1

2

α2
aT

(πν)2

∑
η1η2,σ

η1η2

∫
C

dε

2π
ε2 Gη1η2

aa,σ (ε)Gη2η1
aaσ (ε).

(A5)

Summing Eq. (A5) over η1/2 and then plugging in the various
Keldysh GFs from Eqs. (14)–(16) leads to

ln χα2
a
= α2

aT
2π

∑
σ

Jel,σ , (A6)

with the compact form of the integral characterizing the
scattering effects,

Jel =
∫ ∞

−∞
ε2dε[fS (1−fD )(e−iλ−1)+fD (1−fS )(eiλ−1)].

(A7)

We called this integral the “elastic integral”; the mathematical
details of its computation are discussed in Appendix C.

Repeating all the above calculations for type-E2 diagrams
with the same notation, we get the quite similar result

ln χαaαā
= − αaαāT

2π

∑
σ

Jel,σ . (A8)
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Though the origins of these two elastic diagrams and corre-
sponding topology are quite distinct, it turns out that they
produce equal but opposite contributions to the CGF. Plugging
Eqs. (A6) and (A8) into Eq. (A2) imparts the contribution of
scattering effects to the CGF, which is written as

ln χel = (αe − α0)2T
2π

∑
σ

Jel,σ . (A9)

Substituting the value of the elastic integral from Eq. (C10)
into Eq. (A9), we get the final expression for the scattering
contribution to the CGF in the 2SK model, which is Eq. (18)
in the main text of this paper.

APPENDIX B: INTERACTION CORRECTIONS
TO THE CGF

In the same way and using the same notation as for the
scattering contribution, we get several Feynman diagrams
contributing to the CGF of the 2SK model as shown in Fig. 4.
These diagrams are classified into three different groups: type
Ij (where j=1, 2, 3) diagrams, based upon the numbers of
channel-diagonal GFs and mixed GFs present in a particular
diagram (see the bottom of Fig. 3). For instance, the diagram
with all (four) channel-diagonal GFs has been classified as
a type-I1 diagram, those with two channel-diagonal and the
remaining two mixed GFs as type I2, and diagrams with all
mixed GFs as type I3. As detailed in Fig. 4, we expressed
the interaction contribution to the CGF in terms of these three
diagrams. The two diagrams belonging to the same group
might have different weight factors. The numbers of close
fermion loops, the product of Pauli matrices, and the renor-
malization factor in the Hamiltonian determines the weight
factor corresponding to a particular diagram (for detail see
Ref. [61]).

A single diagram of type I1 (with CGF contribution pro-
portional to φ2

e/o) completely characterizes the FCS of the
1CK schemes [49,50,52–54]. However, the type-I2 and type-
I3 diagrams are generic features of multichannel, multistage
screening effects. These diagrams have not been studied yet.
In this Appendix we provide the mathematical details of
computing the CGF contribution of type-Ij diagrams.

The type-I1 diagram shown in the bottom of Fig. 3 pro-
duces a CGF contribution proportional to �2. Following the
standard technique of Feynman diagram calculation, we cast
the CGF contribution of the type-I1 diagram into the form

ln χI1 = −1

2

(
�

πν

)2 ∫
C
dt1dt2

[
Gee,σ (t1 − t2)Gee,σ (t2 − t1)

×Goo,σ (t1 − t2)Goo,σ (t2 − t1)
]
. (B1)

In Eq. (B1) we did not consider the spin summation for being
more general (implying that the spin index σ is either down
or up). Using the technique of Keldysh disentanglement we
write Eq. (B1) as

ln χI1 =−T
2

(
�

πν

)2 ∑
η1η2

η1η2

×
∫
C
dt

[
Gη1η2

ee,σ (t )Gη2η1
ee,σ (−t )Gη1η2

oo,σ (t )Gη2η1
oo,σ (−t )

]
. (B2)

Summing Eq. (B2) over Keldysh indices η1/2 and using the
expressions of GFs in Eq. (17), we get

ln χI1 = (π�T 2)2T
∫ ∞+iγ

−∞+iγ

cos4
(

λ
2 + V

2 t
)

sinh4(πT t )
dt. (B3)

Coming from Eq. (B1) to Eq. (B3), we retain only the λ-
dependent terms. The integral involved in Eq. (B3) is com-
puted in Appendix D. Then we write the CGF contribution of
the type-I1 diagram in the form

ln χI1 = �2T
96π

[
8V (V 2 + (πT )2)

sinh(V/T )

∑
x=±

e2ixλe−xV/T

× 4V (V 2 + 4(πT )2)

sinh(V/2T )

∑
x=±

eixλe−xV/2T

]
+π�2T 3T

2
.

(B4)

For proper renormalization of the PDF we subtract the λ = 0
contribution of Eq. (B4) from the same Eq. (B4), which results
in the final expression of CGF contributed by a diagram of
type I1:

ln χI1 = �2T V

24π

[
2
V 2+(πT )2

sinh(V/T )

∑
x=±

(e2ixλ−1)e−xV/T

+ V 2+4(πT )2

sinh(V/2T )

∑
x=±

(eixλ−1)e−xV/2T

]
. (B5)

In the same way and using the same notation as for the
type-I1 diagram, the CGF contribution of the type-I2 diagram
as shown in Fig. 3 reads

ln χI2 = −(π�T 2)2T
∫ ∞+iγ

−∞+iγ

sin2
(

λ
2 +V

2 t
)

cos2
(

λ
2 +V

2 t
)

sinh4(πT t )
dt.

(B6)

Using the integral given in Appendix D followed by the proper
renormalization of the PDF, Eq. (B6) results in

ln χI2 = �2T V

12π

V 2 + (πT )2

sinh(V/T )

∑
x=±

(e2ixλ − 1)e−xV/T . (B7)

Similarly, the CGF contribution of a type-I3 diagram as
shown in Fig. 3 is given by

ln χI3 = (π�T 2)2T
∫ ∞+iγ

−∞+iγ

sin4
(

λ
2 +V

2 t
)

sinh4(πT t )
dt. (B8)

The simplification of Eq. (B8) upon proper renormalization of
the PDF imparts

ln χI3 = −�2T V

24π

[
V 2+4(πT )2

sinh(V/2T )

∑
x=±

(eixλ−1)e−xV/2T

− 2
V 2+(πT )2

sinh(V/T )

∑
x=±

(e2ixλ−1)e−xV/T

]
. (B9)

APPENDIX C: ELASTIC INTEGRAL

This section contains the details of the calculation of the
elastic integral in Eq. (A7) using the properties of FT. First
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we factorized the elastic integral as

Jel = (e−iλ − 1)J 1
el + (eiλ − 1)J 2

el . (C1)

Here, we introduced the shorthand notation

J 1
el =

∫ ∞

−∞
ε2dεfS (1−fD ), J 2

el =
∫ ∞

−∞
ε2dεfD (1−fS ).

(C2)

At T = 0 we have fS/D (ε) = �(μS/D − ε) and 1 −
fS/D (ε) = �(ε − μS/D ). Thus the zero-temperature limit of
Eq. (C1) is quite trivial:

Jel|T =0 = (e−iλ − 1)
∫ μL

μR

ε2dε = (e−iλ − 1)
V 3

12
. (C3)

However, the Fermi distribution functions of the source and
drain, and their FT at finite temperature, are

fS/D (ε) = e−(ε−μS/D )/2T

2 cosh[(ε−μS/D )/2T ]
;

fS/D (t ) = iT

2

e−itμS/D

sinh(πT t )
. (C4)

For the sake of simplicity we define another function hL/R (ε)
and its FT as

hS/D (ε) = e− ε
T fS/D (ε), hS/D (t ) = − iT

2

e−itμS/D− μS/D

T

sinh(πT t )
.

(C5)

The function hS/D (ε) in Eq. (C5) paves the way to convert the
product of Fermi functions into a weighted sum. For instance,

fS (ε)fD (ε) = hS (ε) − hD (ε)

e− μD
T − e− μS

T

= hS (ε) − hD (ε)

2 sinh(V/2T )
. (C6)

Then, J 1
el and J 2

el simplify to

J 1/2
el =

∫ ∞

−∞
ε2dεfS/D (ε)−

∫ ∞
−∞ ε2dε[hL(ε) − hR (ε)]

2 sinh(V/2T )
.

(C7)

Having defined the FT of the functions fS/D and hS/D , we
performed the integration of Eq. (C7) by using the property of
FT [61], ∫ ∞

−∞
εny(ε)dε = 2π

(−i)n
∂n
t [y(t )]

∣∣
t=0

. (C8)

Here, y(ε) is an arbitrary function with FT y(t ) and ∂n
t

represents the nth-order differentiation with respect to t .
Substitution of Eq. (C8) for n = 2 into Eq. (C7) and then using
the definitions of fS/D (t ) and hS/D (t ) defined in Eqs. (C4)
and (C5) lead the result

J 1/2
el = ±V

2

[
(πT )2

3
+ V 2

12

][
1 ± coth

(
V

2T

)]
. (C9)

Plugging in J 1/2
el from Eq. (C9) into Eq. (C1), we obtain the

final expression for the elastic integral:

Jel = V

24

V 2+4(πT )2

sinh(V/2T )
[(e−iλ−1)eV/2T +(eiλ−1)e−V/2T ].

(C10)

This is the central equation governing the CGF contribution
of scattering effects in the 2SK model.

APPENDIX D: INELASTIC INTEGRAL

For the computation of integrals in Eqs. (B3), (B6),
and (B8), we expand their numerators in powers of
e±i(λ/2+V t/2). Each term gives an integral of the form

I± =
∫ ∞+iγ

−∞+iγ

e±iAt

sinh4(πT t )
dt, A > 0. (D1)

The singularity of the integral in Eq. (D1) is removed by
shifting the time contour by iγ in the complex plane such that
γD � 1, γ T � 1, and γA � 1. Here, D is the band cutoff.
The poles of the integrand of I± are given by the solution of
sinh(πT t ) = 0 for t , which leads to

πT t = ±imπ ⇒ t = ± im

T
, m = 0,±1,±2,±3, . . . .

With the choice of the rectangular contour shifted by i/T in
the complex plane which includes the pole of the integrand at
t = 0, the standard method of complex integration results in

I+(1 − eA/T ) = −2πi × Res|t=0, (D2)

where Res|t=0 stands for the Cauchy residue of the integrand
in Eq. (D1) at t = 0. Plugging the residue into Eq. (D2) results
in

I+ = −2π (A3 + 4A(πT )2)

6(πT )4

1

1 − e
A
T

. (D3)

Similarly we computed I−. The integrals I± are sufficient for
the computation of all the inelastic diagrams shown in Fig. 4.
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