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Phase diagram of the Hubbard-Kondo lattice model from the variational cluster approximation
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The interplay between the Kondo effect and magnetic ordering driven by the Ruderman-Kittel-Kasuya-
Yosida interaction is studied within the two-dimensional Hubbard-Kondo lattice model. In addition to the
antiferromagnetic exchange interaction J⊥ between the localized spins and the conduction electrons, this model
also contains the local repulsion U between the conduction electrons. We use variational cluster approximation
to investigate the competition between the antiferromagnetic phase, the Kondo singlet phase, and a ferrimagnetic
phase on square lattice. At half-filling, the Néel antiferromagnetic phase dominates from small to moderate J⊥
and UJ⊥, and the Kondo singlet elsewhere. Sufficiently away from half-filling, the antiferromagnetic phase first
gives way to a ferrimagnetic phase (in which the localized spins order ferromagnetically, and the conduction
electrons do likewise, but the two mutually align antiferromagnetically), and then to the Kondo singlet phase.
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I. INTRODUCTION

The interaction between itinerant electrons and impurity
spins plays a key role in many areas of condensed matter
physics, including, but not limited to, quantum materials,
spintronics, and quantum information processing [1]. In quan-
tum materials, this interaction can arise either through (i)
the hybridization of valence electrons with localized d or f

orbitals or (ii) a coupling of the electron spin density to the
spins of the localized electrons. In the first case, it can be
argued that the Kondo exchange [2] becomes the dominant
interaction if the localized orbitals, with a weak hybridization,
are slightly occupied [3]. In the second case, corresponding
to half-filled local orbitals, the Kondo lattice model presents a
generic minimal description of the low-energy physics. These
two mechanisms describe the physics of two main families
of the strongly correlated heavy fermion (HF) systems: In
uranium-based HF systems, the 5f electrons are strongly
hybridized with s, p, or d itinerant electrons. As a result, there
exist strong charge (valence) fluctuations. By contrast, the 4f

level in cerium-based HF systems is located well below the
Fermi level, due to which the charge fluctuations are frozen
out and the spin fluctuations play the central role. The effective
model describing their low-energy physics is known as the
Kondo lattice model [2,4–6].

The ground state of the Kondo lattice model at half-filling
is insulating either due to the formation of singlets between the
local moments and the cloud of conduction electrons (Kondo
cloud) [7], or due to magnetic ordering of local moments
via the Ruderman-Kittel-Kasuya-Yosida (RKKY) mediated by
itinerant electrons [5,8–11]. The mean field theory reveals that
the magnetic correlations depend on the density of conduction
electrons: they are antiferromagnetic (AFM) near half-filling

and ferromagnetic (FM) at lower fillings [12]. Increasing the
exchange interaction between the conduction electrons and
the localized moments leads the magnetic system to the spin-
gapped Kondo singlet phase. The spin gap formation associated
with hidden symmetries has been investigated analytically
in spin chains with AFM Heisenberg exchange interactions
coupling the conduction and the localized spins [13]. This
study was supported by Monte Carlo simulations [14,15].
Notice that these chains called spin-rotor chains are similar
to the spiral staircase Heisenberg ladder [16] for the study of
Kondo physics.

The Kondo lattice model of noninteracting conduction elec-
trons is the most promising candidate to capture the qualitative
physics of the HF systems, but it fails to correctly describe
the physics at lower temperature scale [17]. One example
is the electron-doped cuprate Nd2−xCexCuO4 [18], wherein
it is suggested that the Kondo effect plays some important
role due to strong correlation among the charge carriers and
therefore cannot be neglected. Indeed, the interaction between
conduction electrons can play a crucial role and even enhance
the Kondo temperature significantly [17]. In this spirit, some
effort has been undertaken to study the influence of correlations
of conduction electrons on the Kondo effect both for impurity
[19–22] and lattice models [23–26]. A Hubbard-type repulsion
U was introduced among the conduction electrons, resulting
in the Hubbard-Kondo lattice model. This model was studied
at half-filling [25] using dynamical mean field theory [27,28],
with an impurity model consisting of two correlated orbitals. In
Ref. [29], the role of this Coulomb repulsion was investigated
using both T = 0 quantum Monte Carlo and a bond-operator
mean field theory at half-filling. One of their findings is that
this model displays a magnetic order-disorder transition with
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a critical Kondo interaction which decreases as a function of
the Hubbard repulsion.

In this paper we study the interplay between the Kondo
effect and the magnetic ordering within the Hubbard-Kondo
lattice model. The model includes a local Coulomb repulsion
U between the conduction electrons, in addition to the AFM
Kondo interaction J⊥ between the localized spin-1/2 moments
and the conduction electrons. We obtain its quantum phase
diagram at half-filling, and also at finite dopings, using the
variational cluster approximation (VCA) [30–32]. The VCA
is an approach based on a rigorous variational principle that
treats short-range correlations exactly. At half-filling, we find
that the ground state is a Néel AFM at moderate to small values
of J⊥ and UJ⊥, while the Kondo singlet phase is stable at
large J⊥ and U . The transition from the AFM to the Kondo
singlet phase is continuous (second order). At finite doping we
find that the antiferromagnet survives close to half-filling and
disappears upon doping further or increasing U (at least for
small U ). Then a ferrimagnetic phase becomes stable at lower
densities and small exchange interactions. The Kondo singlet
appears at large J⊥ for all values of the conduction electron
density. The transition from the magnetically ordered to the
Kondo singlet phase becomes discontinuous (first order) away
from half-filling.

The paper is organized as follows. In Sec. II we define the
model and briefly review the VCA method. We present and
discuss our results in Sec. III and conclude in Sec. IV.

II. MODEL AND METHOD

The Kondo lattice model (or the necklace Hamiltonian)
was introduced by Doniach [16]. It can be formulated as a
tight-binding model of the conduction electrons on a lattice,
where on each site there also sits a local spin that couples
to the conduction electron spin. The Hubbard-Kondo model is
obtained by adding to the Kondo lattice model a local Coulomb
repulsion U for the conduction electrons.

A. Hubbard-Kondo lattice model

The Hamiltonian of the Hubbard-Kondo lattice model on
square lattice can be written as follows:

HHK = −t
∑
〈i,j〉σ

c
†
iσ cjσ − t ′

∑
〈〈i,j〉〉σ

c
†
iσ cjσ − μ

∑
iσ

niσ

+U
∑

i

ni↑ni↓ + J⊥
∑

i

si · Si . (1)

In the above equation, ciσ annihilates a conduction electron
at site i with spin σ , t is the nearest-neighbor and t ′ is the
next-nearest-neighbor hopping amplitude, μ is the chemical
potential, and U is the on-site repulsion between the conduc-
tion electrons. The number of conduction electrons at site i

with spin σ is niσ = c
†
iσ ciσ . The J⊥ is the exchange interaction

between the itinerant spins si = 1
2

∑
σ,σ ′ c

†
iστ σσ ′ciσ ′ , and the

localized spin-1/2’s Si . We assume an AFM Kondo coupling:
J⊥ > 0. In this paper we will define all quantities in units of the
hopping amplitude t , that is, set t = 1. The model (1) neglects
explicit hybridization between the local and the conduction
electrons, although it implicitly exists through J⊥. This is a

good approximation for Ce-based heavy fermion materials
(see details in the review article [33]) in the regime of integer
valence where the 4f levels are located well below the Fermi
level and, therefore, their hybridization with the itinerant d

electrons is small.
We employ the VCA method to investigate this model.

But our implementation of the VCA can only deal with the
fermion operators. Hence, for the localized spins, we use
the representation Si = 1

2

∑
σ,σ ′ f

†
iστ σσ ′fiσ ′ in terms of the

electronlike fermion operators fi,σ and f
†
i,σ . To ensure that

this representation describes a pure localized spin-1/2, we
introduce an auxiliary, particle-hole symmetric, local repulsion
Uf between the f fermions. When Uf is very large (larger
than the parameters of the Hubbard-Kondo lattice model), it
guarantees that the f fermions correctly describe the localized
spin-1/2 moments. So, in effect, we study

H = HHK + Uf

∑
i

[
n

f

i↑n
f

i↓ − 1

2

(
n

f

i↑ + n
f

i↓
)]

, (2)

using VCA for a fixed large value of Uf (=100).

B. The variational cluster approximation

In order to probe the possibility of magnetism in model
(2), we use the variational cluster approximation (VCA) with
an exact diagonalization solver at zero temperature [30].
This method has been applied to many strongly correlated
systems in connection with various broken symmetry phases,
for example in superconductivity [34,35] and magnetism [36].
For a detailed review of the method, see Refs. [31,32]. Like
other quantum cluster methods, VCA starts by a tiling of the
lattice into an infinite number of identical clusters. We will use
the eight-site cluster illustrated in Fig. 1. In VCA, one considers
two systems: the original system described by the Hamiltonian
H , defined on the infinite lattice, and the reference system,
governed by the Hamiltonian H ′, defined on the cluster only,
with the same interaction part as H . Typically, H ′ will be a
restriction of H to the cluster (i.e., with intercluster hopping
removed), to which various Weiss fields may be added in order

FIG. 1. The Hubbard-Kondo lattice and its decomposition into
identical eight-site clusters. The conduction and localized orbitals are
represented by blue and red dots, respectively.
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to probe broken symmetries. More generally, any one-body
term can be added to H ′. The size of the cluster should be
small enough for the electron Green function to be computed
numerically by an exact diagonalization method. The optimal
one-body part of H ′ is determined by a variational principle.
More precisely, the electron self-energy � associated with H ′
is used as a variational self-energy, in order to construct the
Potthoff self-energy functional [37]:

�[�(ξ )] = �′[�(ξ )] + Tr ln
[−(

G−1
0 − �(ξ )

)−1]
− Tr ln(−G′(ξ )). (3)

The quantities G′ and G0 above are the physical Green function
of the cluster and the noninteracting Green function of the
lattice, respectively. The symbol ξ stands for a small collection
of parameters that define the one-body part of H ′. Tr is a
functional trace, i.e., a sum over frequencies, momenta, and
bands, and�′ is the grand potential of the cluster, i.e., its ground
state energy, since the chemical potential μ is included in the
Hamiltonian. G′(ω) and �′ are computed numerically via the
Lanczos method at zero temperature. The Potthoff functional
�[�(ξ )] in Eq. (3) is computed exactly, but on a restricted space
of the self-energies �(ξ ) that are the physical self-energies of
the reference Hamiltonian H ′. We use a standard optimization
method (e.g., Newton-Raphson) in the space of parameters ξ

to find the stationary value of �(ξ ):

∂�(ξ )

∂ξ
= 0. (4)

This represents the best possible value of the self-energy �,
which is used, together with the noninteracting Green function
G0, to construct an approximate Green function G for the
original lattice Hamiltonian H :

G(k̃,ω) = 1

ω − t(k̃) − �(ω)
, (5)

where k̃ is a wave vector belonging to the reduced Brillouin
zone, i.e., the zone associated with the superlattice of clusters,
and t(k̃) is the dispersion relation. The Green function G, along
with t, are in a mixed representation: real space up to the cluster
size (hence they are matrices) and k space beyond that (hence
their dependence on k̃). The self-energy �(ω), being limited to
the cluster, does not depend on k̃. From that Green function one
can compute the average of any one-body operator, in particular
the order parameters associated with magnetism. The actual
value of �(ξ ) at the stationary point is a good approximation
to the physical grand potential of the lattice Hamiltonian H .

There may be more than one stationary solution to Eq. (4).
For instance: A normal state solution in which all Weiss fields
used to describe broken symmetries are zero, and another
solution, with a nonzero Weiss field, describing a broken
symmetry state. As an additional principle, we assert that
the solution with the lowest value of the functional (3) is
the physical solution [39]. Thus competing phases may be
compared via their value of the grand potential �, obtained
by introducing different Weiss fields.

III. RESULTS AND DISCUSSION

In order to probe magnetism in the Hubbard-Kondo model,
we introduce the following local operators [for the conduction
electrons as well as the f fermions in Eq. (2)] in the cluster
Hamiltonian, within the VCA:

M̂Q = MQ

∑
i

eiQ·ri (ni↑ − ni↓), (6)

where Q = (π,π ) for antiferromagnetism and (0,0) for ferro-
magnetism, and MQ is the Weiss field, which is determined by
solving Eq. (4) (ξ = MQ). We have applied the VCA with the
cluster system shown in Fig. 1, and used the AFM Weiss field
M(π,π) at half-filling and both M(π,π) and M(0,0) away from
half-filling.

A. Phase diagram at half-filling

The particle-hole symmetry of the models (1) and (2) on
square lattice for t ′ = 0 at half-filling implies that μ = U/2.
Thus, to neatly realize half-filling (n = 1, where n is the total
number of conduction electrons per site), we set μ to U/2 and
t ′ to zero. For this case, the results of the VCA computation
are described below.

Figure 2 shows the AFM order parameter as a function of J⊥
for several values of U , obtained by using a single variational

FIG. 2. The AFM order parameter of the conduction electrons
(upper panel) and localized spins (lower panel) as a function of J⊥
at half-filling (conduction electron density n = 1) for several values
of the on-site repulsion U ranging from 0 to 12; from the variational
cluster approximation. See text for details.
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FIG. 3. Phase diagram of the Hubbard-Kondo model (2) at half-
filling (n = 1) and t ′ = 0 in the J⊥-UJ⊥ plane. Note how the critical
U towards the Kondo singlet scales like 1/J⊥ when J⊥ is small. The
curve is a fit to the form J⊥(J⊥ + aU ) = b obtained from the theory
of Ref. [38], with a ≈ 0.58 and b ≈ 4.26.

parameter M(π,π) for antiferromagnetism in the conduction
band. The upper panel shows the AFM order parameter for
the conduction electrons and the lower panel the corresponding
quantity for the localized spins. Upon increasingJ⊥, the system
undergoes, as expected, a continuous transition from the AFM
phase to the Kondo singlet phase at some critical value of J⊥.
This critical value decreases upon increasing U , and therefore
the singlet phase is favored by the on-site repulsion between
the conduction electrons. The effect of U is mainly to suppress
any RKKY phase which needs itinerant electrons to mediate
the magnetic interaction.

The exchange interaction alone can be responsible for both
magnetic and Kondo singlet phases depending on its strength,
as we can see from the U = 0 curve. For U = 0, the critical
exchange interaction is found to be J⊥ = 2.05, quite a bit larger
than the value J⊥ = 1.45 found using the Monte Carlo method
[9]. This can be attributed to the small cluster size, which
quenches the destabilizing action of spin waves, which can only
act within the cluster itself. In comparison, the calculations in
Ref. [38] give a slightly lower critical value of J⊥ = 1.12. At
U = 0 the AFM order parameter for the conduction electrons
goes to zero asJ⊥ → 0, but it is nonzero atJ⊥ = 0 for any finite
value of U , as known for the Hubbard model on square lattice.
Notice that this is not the case for the AFM order parameter
of the localized spins, which tends to a finite value as J⊥ → 0
for U = 0.

Collecting all the critical J⊥’s for different values of U

in Fig. 2, we obtain the phase diagram shown in Fig. 3. The
system goes from an antiferromagnet to a Kondo singlet upon
increasing J⊥ or U . The Hubbard interaction U favors the
Kondo singlet phase, as increasing U at fixed J⊥ brings the
system from the AFM to the Kondo singlet phase. Overall,
our phase diagram is in agreement with the one obtained
using the Monte Carlo method [29]. Interestingly, the critical
value of U is found to scale like 1/J⊥ when J⊥ is small, i.e.,
the phase boundary tends towards a finite value of UJ⊥ as
J⊥ → 0. This being said, at J⊥ = 0, the system will always
remain an antiferromagnet, as it will always be a Kondo
singlet if J⊥ is large enough. The theory of Kondo insulators
of Ref. [38] provides the following leading behavior for the
critical boundary between the AFM and Kondo singlet phases:

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

0 2 4 6 8 10 12 14 16 18

t = 0
n = 1

Δc

1/J⊥

Δc(U = 0) × 2
Δc(U = 2)
Δc(U = 4)

FIG. 4. The charge gap as a function of 1/J⊥ at half-filling for
U = 0,2,4. The second neighbor hopping t ′ is set to 0. The system is
an insulator for any finite value of J⊥.

J⊥(J⊥ + aU ) = b, where a is a positive constant and b is
a power series in 1

(J⊥+aU )2 . At leading order, b is just a
positive constant, and is treated here as such. Indeed, the phase
boundary in Fig. 3 looks quite like a parabola where from
our numerical data a ≈ 0.58 and b ≈ 4.26. Notably, it also
explains why U helps the Kondo singlet. It does so because it
adds to J⊥ and acts likewise.

Figure 4 shows the charge gap �c as a function of 1/J⊥,
for U = 0, 2, and 4. At a fixed U , increasing J⊥ increases the
spectral gap. At half-filling, the system is always an insulator
for all values of J⊥ and U , both in the AFM and the Kondo
singlet phases. But depending on the strength of J⊥ (and U ),
the charge gap comes from different points in the Brillouin
zone [38].

In Fig. 5 we show the spectral function in the two phases at
U = 1. In the AFM phase (top panel, J⊥ = 0.5), the spectral
(one-particle) gap opens along the AFM zone boundary, as
expected. By contrast, in the Kondo singlet phase (bottom
panel, J⊥ = 3), the spectral gap is more or less constant across
the zone and the spectrum resembles more that of a Mott
insulator. This is because the charge gap in a Kondo insulator is
the cost of destroying a singlet locally by adding or removing
a conduction electron [40], which is exactly like the Mott
gap, that is, the cost of adding or removing an electron in the
half-filled Hubbard model. Notably, the approach developed
by Kumar et al. nicely establishes the similarity between the
Kondo and Mott-Hubbard insulators [38,41]. The charge gap
in the half-filled Hubbard-Kondo lattice model from our VCA
calculations is basically showing the same. Our VCA method
does not allow access to the (two-particle) spin gap, which is
expected to vanish in the AFM phase because of Goldstone’s
theorem.

B. Phase diagram at finite doping

We now push the system away from half-filling, going to
small doping δ = 1 − n by changing the number of conduction
electrons. In order to guarantee that the spin susceptibility of
the host metallic state at small δ is peaked at wave vector
Q = (π,π ), we add a second-neighbor hopping, t ′ = −0.3
[42]. Note that the presence of a nonzero t ′ breaks particle-hole
symmetry in the model, which helps bringing the system
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FIG. 5. The spectral function in the AFM (upper panel, J⊥ = 0.5)
and in the Kondo singlet phase (lower panel, J⊥ = 3) at half-filling.
The on-site repulsion U is set to 1 and t ′ = 0. The Fermi level is
located at zero frequency and the Lorentzian broadening is set to
η = 0.12.

smoothly away from half-filling in the variational cluster
approximation. It also adds magnetic frustration to the system.
The results are presented in Fig. 6 in the (J⊥,δ) plane.

Close to δ = 0, the ground state remains antiferromagnetic.
Upon increasing δ, the conduction electrons prefer to order
ferromagnetically. The localized spins also do the same. But
relative to each other, these two subsystems order antifer-
romagnetically. However, the net magnetization is nonzero
because the conduction electron magnetization does not fully
cancel the magnetization of the localized moments. Hence,
we like to call this a “ferrimagnetic” (fM) phase. The critical
doping where the AFM phase disappears completely is about
δ ≈ 0.09 at U = 2 and δ ≈ 0.08 at U = 4. The fM phase
extends to larger dopings for small J⊥, since in this limit, the
Kondo singlet formation gets weaker and a larger doping does
not favor the AFM phase.

At any finite doping (with magnetic order at low J⊥), the
Kondo singlet phase is always reached by increasing J⊥ to

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

t = −0.3

AFM

fM

Kondo singlet
J⊥

δ

AFM: U = 4
AFM: U = 2

fM: U = 4
fM: U = 2

FIG. 6. Phase diagram of the Hubbard-Kondo lattice model (2) in
the (J⊥,δ) plane. At moderate J⊥, the ground state is an antiferromag-
net (AFM) at lower doping δ and a ferrimagnet (fM) at higher doping,
before transiting towards the singlet phase. The Kondo singlet phase is
stable at large J⊥ for all electronic densities. The Coulomb interaction
is set to U = 2 and U = 4, and the second-neighbor hopping to
t ′ = −0.3.

sufficiently high values. But now, unlike the half-filled case,
the transition between the Kondo singlet and magnetically
ordered phases becomes discontinuous (first order). Moreover,
if we compare the critical J⊥’s near δ = 0 in Fig. 6 with the
corresponding data in Fig. 2, it is clear that a nonzero t ′ reduces
the critical J⊥ for the Kondo singlet phase.

IV. CONCLUSION

We solved the Hubbard-Kondo lattice model (of interacting
conduction electrons coupled to localized spins) numerically
using the variational cluster approximation method. We ob-
tained its ground state phase diagram in the J⊥-UJ⊥ plane at
half-filling relevant to Kondo insulators, and in the δ-J⊥ plane
at finite dopings relevant to metallic heavy fermion systems.
At half-filling, the model exhibits a continuous transition
from Néel antiferromagnetism at small J⊥’s to the Kondo
singlet phase at large J⊥’s with a critical J⊥ that decreases
with increasing U . The boundary between the two phases is
described by the equation, J⊥(J⊥ + aU ) = b, for a ≈ 0.58
and b ≈ 4.26. Away from half-filling, the antiferromagnetic
phase survives at small doping, but a ferrimagnetic phase
appears at larger doping and lower J⊥. The Kondo singlet
phase is stable at strong J⊥. The transition from the Kondo
singlet to the magnetic phases becomes discontinuous at finite
dopings.
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