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Seebeck effect on a weak link between Fermi and non-Fermi liquids
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We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable
ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved
by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London)
526, 233 (2015)] designed for detection of macroscopic quantum charged states in multichannel Kondo systems.
We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-
dot–quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage
dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors.
High controllability of the device allows to fine tune the system to different regimes described by multichannel
and multi-impurity Kondo models.
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I. INTRODUCTION

The Fermi-liquid (FL) theory [1] is proven to provide a con-
sistent description of thermodynamic and transport properties
of the normal (nonsuperconducting) metals in the presence of
weak and strong disorder. In many cases, a strong (resonance)
scattering of fermions on quantum impurities also mimics
the FL properties. The majority of quantum impurity models
belong to universality classes of a resonant level [2] or Ander-
son/Kondo Hamiltonian [3]. It is well-known that the Kondo
effect [4] at the strong coupling limit is described by the local
FL paradigm in two important cases: (i) fully screened Kondo
effect, when the number of orbital channels of conduction elec-
trons M is equal to 2S (S is a spin of quantum impurity) [5,6]
and (ii) underscreened Kondo effect when M < 2S [5] (see
also more recent works [7–9]). The overscreened limit for M >

2S falls, however, to a completely different universality class
known as a non-Fermi liquid (NFL) [3,5,6,10–18]. A signif-
icant departure from the Fermi-liquid universality in thermo-
dynamic and transport properties of strongly correlated heavy
fermion compounds has been reported in many experimental
works (see, e.g., Ref. [19]). Several theoretical models based
on various realizations of the Kondo physics have been utilized
[20] for explanation of the strongly correlated NFL behavior.

Recently, new experiments in nanostructures [21–23] lead
to a revival of the interest in the Kondo physics. In addition to
shedding a light on understanding the conventional (FL) Kondo
physics, these experiments facilitated an access to the NFL
physics [24–26]. One of the main challenges for engineering
the NFL Kondo devices is associated with the lack of stability
of the NFL domain under small perturbations created by
variation of the external parameters such as magnetic and
electric fields. The unstable character of the overscreened
Kondo states [5,6,17] creates the main obstacle for reliable
observation of the NFL physics.

In recent experiments [27], a two-channel “charge” Kondo
setup has been realized in a single-electron transistor, in which
a quantum isospin S = 1/2 is constituted by two degenerate

macroscopic charge states of a metallic island (quantum dot).
These experiments not only provide yet another realization of
the “charge” Kondo physics in addition to the one theoretically
proposed in the pioneering works of Flensberg-Matveev-
Furusaki (FMF) [28–31], but also enrich the possibilities
of experimental access to the multichannel Kondo physics.
The charge Kondo effect in quantum-dot (QD)–quantum-
point contact (QPC) semiconductor nanodevices proposed by
Matveev and co-workers [30,31] relied on counting of mobile
electron channels through the quantum number given by a spin
projection (and, therefore, the number of channels can only
be either one or two as S = 1/2). The isospin-flip processes
being a cornerstone of the Kondo physics were related to the
backward scattering of the quasiparticles (electrons and holes).
The number of channels in the new quantum devices operating
in the integer quantum Hall (IQH) regime [27] (cf. with FMF
ideas) is determined by the number of QPC’s attached to
a metallic QD. The role of the spin-flip processes in these
devices is played by the electrons’ location: either inside the
QD (isospin up) or outside QD (isospin down). As a result,
firstly, the number of channels in the device can be arbitrary
(giving access to engineering the multichannel Kondo effect)
and, secondly, the tunability of each QPC provides remarkably
high accuracy in experimentally approaching to the unstable
NFL strong coupling fixed points.

In our paper, we generalize the ideas of FMF theory in
applying them to thermoelectric transport. We adopt these
ideas to the models describing the new IQH nanodevices and
provide a translation of Ref. [27] onto FMF language. We
propose a new design for the quantum-dot–quantum-point
contact (QD-QPC) devices for investigation of weakly coupled
Fermi and non-Fermi liquids (see Fig. 1). We develop a theory
of thermoelectricity (the Seebeck effect) [32,33] for the most
intriguing cases of the weak link between two NFLs and the
tunnel contact between FL and NFL. We demonstrate that the
new geometry of quantum devices not only gives an access
to observation of the NFL fingerprints, but also, thanks to
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FIG. 1. Schematic representation of a hybrid metal-semi-
conductor single electron transistor quantum device: two quantum
dots QD1 and QD2 (cross-hatched areas) are connected through a
tunnel barrier (blue dashed lines) controlled by a split gate (light green
boxes). Each QD being a metallic island with continuous electron
density of states is electrically coupled to a two-dimensional electron
gas (2DEG) denoted by pink and gray areas inside circles and strongly
coupled to large electrodes through the quantum point contacts (QPC)
labeled by A, B, C, and D. The QPCs are fine tuned by field effects
in split gates (not shown) to different regimes to provide a weak
coupling between (i) two coupled Fermi liquids; (ii) a Fermi liquid
coupled to a non-Fermi liquid; (iii) two coupled non-Fermi liquids
(see Sec. IV). The QPCs are formed by the 2DEG (pink and gray
areas inside parabolas) placed in a perpendicular magnetic field to
achieve a regime of the integer quantum Hall with ν = 2 [27]. The
current flows along two spin-polarized chiral spin edge channels. The
inner edge channel (not shown) is fully reflected and the outer edge
channel (shown by red dashed line with arrow) is partially transmitted
through almost transparent QPCs (see insert showing zoomed in area
of QPC). The pink color stands for the higher temperature T + �T

compared to the reference temperature T of the gray electrode.

high tunability and controllability of the devices, allows us
to monitor and control all FL-NFL crossovers.

The paper is organized as follows. We describe the theoret-
ical model for observing the FL and NFL behavior in Sec. II.
General equations for the electric conductance and thermoelec-
tric coefficients are presented in Sec. III. Section IV is devoted
to the presentation of the main results. The discussion of the
model crossover from the weak coupling to the strong coupling,
its realization with IQH devices, and possible thermotransport
experiments is given in Sec. V. Summary and conclusions are
presented in Sec. VI.

II. MODEL

We consider a setup (see Fig. 1) consisting of two large
metallic quantum dots with a continuous spectrum weakly
coupled through the tunnel barrier. Each QD is electrically
connected (see details in Ref. [27]) to a two-dimensional
electron gas (2DEG) denoted by pink and gray areas inside
circles and further connected to a large electrode through
several quantum point contacts. The building blocks for a
proposed experimental nanodevice are the QD-QPC structures
used in recent experiments [27]. The 2DEG confined in
the GaAs/Ga(Al)As heterostructure is a subject to a strong
quantizing magnetic field applied perpendicular to the 2DEG

plane. The 2DEG is in the IQH regime at the filling factor
ν = 2. The QPCs are fine-tuned to achieve a regime where
the current propagating along the inner chiral edge channel is
fully reflected and can be ignored (not shown in Fig. 1), while
the current propagating along the outer chiral edge channel is
partially transmitted across the QPCs (the later is drawn by the
dashed red line with the direction shown by the red arrow, the
gray dashed line on insert Fig. 1 denotes the current reflected
by QPC).

The logic behind the mapping of IQH setup to a multi-
channel Kondo problem is as follows. Let us consider, for
example, the QPC A on Fig. 1. The electrons of the electrode
A moving along the edge are transmitted at the QPC A to
the pink patch area of the QD1 (which we denote as QD1 A)
with a transmission amplitude close to one. A small fraction
of electrons is backscattered by the QPC A. We attribute an
isospin index (acquiring values ↑ and ↓) to the electrons in
QPC A (isospin ↓) and QD1 A (isospin ↑). Therefore the
backscattering at QPC is equivalent to a spin-flip processes.
Let us add the QPC B. Using the same logic, we assume that
the electrons from the QPC B will be transmitted to the pink
patch area of QD1, which we denote as QD1 B. Attributing
the isospin index to the backscattering process at the QPC
B, we conclude that the number of QPCs is equivalent to the
number of orbital channels in the S = 1/2 Kondo problem. The
mapping can be repeated for the QD2. The weak link between
QD1 and QD2 (blue dashed lines in Fig. 1) connects the pink
and gray patch areas (central part of the figure). The QDs are
assumed in the Coulomb blockade regime. Therefore the total
number of electrons in each dot, consisting of the number of
electrons in color cross-hatched areas and the electrons in all
three patches (pink or gray areas confined by the circles), is
weakly quantized [31].

The Hamiltonian describing two weakly coupled QDs
consists of three terms: H = H1 + H2 + HT . The Hamiltonian
representing each QD (1 or 2)-QPC structure in which the QD
is strongly coupled to the leads through almost transparent
QPCs characterized by a weak backscattering (BS) has the
form Hj = H0,j + HC,j + HBS,j .

For example, the Hamiltonian H0,1 is given by

H0,1 = ivF

∑
λ=↑,↓

∑
α=A,B

∫ ∞

−∞
dxψ

†
λ,α,1(x)∂xψλ,α,1(x). (1)

Here, ψλ,α,1 are the operators describing one-dimensional
fermions in the QPCα-QD1 system, vF is a Fermi velocity,
index α = A,B enumerates both QPCs and the corresponding
patch areas between QPCα and QD1, index λ takes values
λ = ↑ for QD1 A and QD1 B and λ = ↓ for electrodes (A and
B). We assume that all quantum point contacts are operating in
a single mode regime and therefore modeling by 1D fermions
is justified [28].

In the same spirit, the Hamiltonian H0,2 is written as

H0,2 = ivF

∑
λ=↑,↓

∑
α=C,D

∫ ∞

−∞
dxψ

†
λ,α,2(x)∂xψλ,α,2(x). (2)

The Hamiltonians HC,j describe the Coulomb interaction
in the dots QD1 and QD2 [34]:

HC,j = EC,j [n̂↑,j + n̂j − Nj (Vg,j )]2, j = 1, 2, (3)
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where n̂↑,j = ∑
α ψ

†
↑,α,jψ↑,α,j denotes the particle number

operator of the electrons coming through the QPCs and n̂j is an
integer-valued operator counting the numbers of the electrons
coming through the tunnel barrier. Here, EC,j are charging
energies of the dots and Nj (Vg,j ) are dimensionless parameters
which are proportional to the gate voltages Vg,j .

The Hamiltonian HBS,j models the backward scattering at
the QPCs’ positions of the (QD-QPC) j [35] (we assume that
the coordinate axes xj for the left and right devices are chosen
independently and therefore left/right QPCs are located at their
own origin xj = 0):

HBS,j =
∑

α

∫ ∞

−∞
dx[ψ†

↑,α,j (x)Vα(x)ψ↓,α,j (x) + h.c.]. (4)

Here, Vα(x) is a short-range QPCs’ isospin-flip potential. As
we have already pointed out, the QPC index α = A,B(C,D)
labels the channels in the multichannel Kondo problem. There-
fore the model describing a nanodevice in the IQH regime
(where a real spin does not play any significant role being fully
polarized due to strong magnetic field) is one-to-one mapped
to the Matveev-Furusaki model [30,31].

The tunneling at a weak link is described by the Hamiltonian
HT :

HT = td
†
1d2 + H.c., (5)

where t is a tunnel amplitude and dj stands for the electrons
in the tunnel patch areas of the dots j = 1,2 (see Fig. 1
where pink and gray tunnel patch areas are connected by
the blue dashed lines). We omitted the isospin index ↑
in the notations for the operators d since both QDs are
characterized by the same isospin state and the tunneling
therefore does not flip it. Note that the number operator
d
†
j dj=

∑
α ψ

†
↑,α,j (−∞)ψ↑,α,j (−∞) is expressed through the

fermionic operators ψ↑,α,j (x)∼eiφα,j (x) in the one-dimensional
channel describing the chiral edge of j th QD using the standard
bosonization codex [18] (see also Refs. [36] and [37] for more
details). Due to lack of correlations between transmission of
electrons from different QPCs, only one term (either from
QPC A or from QPC B) should be accounted in the sum over
α. The scattered states of the α,j th QPCs are bosonized as
ψ↓,α,j (x)∼e−iφα,j (x). Since the quasiparticles transmitted from
the QPCs to QD and vice versa preserve the chirality, the
bosonic fields φα,j do not depend on the isospin index.

In the spirit of Ref. [36], we rewrite HC,j , H0,j , and HBS,j

in the bosonic language as follows:

HC,j = EC,j

[
n̂j + 1

π

∑
α

φα,j (0) − Nj (Vg,j )

]2

, (6)

H0,j =
∑

α

vF

2π

∫ ∞

−∞
dx{π2[
α,j (x)]2 + [∂xφα,j (x)]2}, (7)

HBS,j = −�

π

∑
α

|rα| cos[2φα,j (0)], (8)

here � is the bandwidth (ultra-violet energy cutoff), rα =
−iVα(2kF )/vF is the reflection amplitude of the QPC α on
the left side (j = 1) or the right side (j = 2), kF is a Fermi-
momentum. The field φα,j denotes bosonization displacement

operator [18] describing transport through the QPC α,j with
a scatterer at xj = 0, and 
α,j is the conjugated momentum
[φα,j (x),
α′,j (x ′)] = iπ δ(x − x ′)δαα′ [37].

As it was shown in detail in Refs. [28,31,38–40], the FMF
theory modeling the QD-QPC structure with spin can be
mapped onto the two-channel Kondo model as

HK,j =
∑

α

J
α,j

⊥ (ψ†
↑,α,j (0)ψ↓,α,j (0)Ŝ−

j + H.c.) + �Ej Ŝ
z
j ,

where Ŝ±
j = Ŝx

j ± iŜ
y

j , S±
j accounts for adding and subtracting

one electron to the dot j . The Kondo coupling parameter J
α,j

⊥
is proportional to the reflection amplitude rα(x = 0) of the
QPC α and �Ej = EC,j (1 − 2Nj ) is the energy splitting of
the nj = 0 and nj = 1 states of the dot.

The transverse part of the Kondo Hamiltonians HK,1 and
HK,2 are straightforwardly bosonized [40]. For simplicity we
present the bosonized form of HK,1. Similarly, HK,2 is obtained
by replacing indices A → C and B → D and 1 → 2:

HK,1 = �

π

[
J (1)

x cos[
√

2φs,1(0)]Ŝx
1 + J (1)

y sin[
√

2φs,1(0)]Ŝy

1

]
,

in which we (i) keep only the isospin mode φs,1(x) = [φA,1(x)−
φB,1(x)]/

√
2 and at the same time neglect the charge mode

φc,1(x) = [φA,1(x) + φB,1(x)]/
√

2, and (ii) we define the
Kondo coupling parameters as follows: J (1)

x = 2vF√
γEC,1/�‖rA| + |rB‖ cos(πN1) and J (1)

y = 2vF

√
γEC,1/�

‖rA| − |rB‖ sin(πN1) (J (1)
x ∝ J

A,1
⊥ + J

B,1
⊥ , J (1)

y ∝ J
A,1
⊥ −

J
B,1
⊥ ), γ = ec ≈ 1.781, and c ≈ 0.577 is Euler’s constant.

III. THERMOELECTRIC TRANSPORT THROUGH
A WEAK LINK

In order to study the Seebeck effect in the device shown
in Fig. 1, the right QD2-QPCs part (the drain) is prepared at
the reference temperature T . The left QD1-QPC (the source)
is heated by the current heat technique [41] to achieve a small
temperature drop �T across the tunnel barrier separating QD1
and QD2. The temperature drop �T is assumed to be small
compared to the reference temperatureT to guarantee the linear
response operation regime for the device [36].

We sketch the derivation of the charge current and the ther-
moelectric coefficients assuming a weak link (tunnel barrier)
separating two QD-QPC nanodevices (see Fig. 1). The current
Isd in the lowest order in tunneling amplitude t is given by

Isd = −2πe|t |2
∫ ∞

−∞
dε ν1(ε)ν2(ε)[f1(ε) − f2(ε)]. (9)

The tunnel density of states (DoS) in the left [ν1(ε)] and
right [ν2(ε)] QD-QPC devices are expressed in terms of the
Matsubara Green’s function as follows:

νj (ε) = − 1

π
cosh

(
ε

2T

) ∫ ∞

−∞
dτGj

(
1

2T
+ iτ

)
eiετ . (10)

Here, Gj (τ ) (j = 1,2) are exact Green’s functions (GF)
of interacting fermions and f1(ε) = f (ε + e�V,T + �T ),
f2(ε) = f (ε,T ) are corresponding distribution functions.

Following Matveev and Furusaki [31], we introduce a
counting operator Fj : ψ↑,α,j (−∞) → ψ

(0)
α,j F̂j in order to

account for effects of Coulomb interaction in each QD and
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reflection at QPCs. The operators Fj obey the commutation
relation [F̂j ,n̂j ] = F̂j [34]. We define the GF at the position
of the tunnel barrier as follows:

Gj (τ ) = −
∑

α

〈
Tτψ

(0)
α,j (τ )F̂j (τ )F̂ †

j (0)ψ (0)†
α,j (0)

〉
. (11)

Since the operators ψ
(0)
α,j and F̂j are decoupled, the GFs

are factorized as Gj (τ ) = G0,j (τ )Kj (τ ), where G0,j (τ ) =
−ν0,jπT / sin(πT τ ) being a free fermion’s GF, and ν0,j is
the DoS in the dot computed in the absence of renormaliza-
tion effects associated with electron-electron interaction [42].
Therefore all effects of interaction and scattering are accounted
for by the correlator Kj (τ ) = 〈Tτ F̂j (τ )F̂ †

j (0)〉 [36].
The current is calculated in the linear response regime. We

neglect the resistance of the metallic QDs and assume that
the voltage difference �Vth arises across the tunnel barrier
between two QDs. The transport coefficients, namely, the
electric conductance G and the thermoelectric coefficient GT

(measured independently) define the Seebeck effect quantified
in terms of the thermoelectric power (TP) S:

GT = ∂Isd

∂�T
, G = ∂Isd

∂V , S = −�Vth

�T

∣∣∣∣
Isd=0

= GT

G
.

Plugging the DoS ν1(ε) and ν2(ε) in (9), we express the electric
conductance as follows:

G = π

2
GCT

∫ ∞

−∞
dτ

K1
(

1
2T

+ iτ
)
K2

(
1

2T
− iτ

)
cosh2(πT τ )

. (12)

The thermoelectric coefficient GT is given by

GT = iGC

8e

∫ ∞

−∞
dτ

W
[
K1

(
1

2T
+ iτ

)
,K2

(
1

2T
− iτ

)]
cosh2(πT τ )

. (13)

Both quantities are expressed in terms of the correlators Kj

analytically continued to real time. Here we introduce a short-
hand notation

GC = 2πe2ν01ν02|t |2 (14)

for the conductance of the tunnel (central) area between two
QD-QPC devices. The Wronski determinant W is defined as
follows:

W

[
K1

(
1

2T
+ iτ

)
,K2

(
1

2T
− iτ

)]

=
∣∣∣∣∣

K1
(

1
2T

+ iτ
)

K2
(

1
2T

− iτ
)

d
dτ

K1
(

1
2T

+ iτ
)

d
dτ

K2
(

1
2T

− iτ
)
∣∣∣∣∣. (15)

Notice that the Wronski determinant (wronskian) is zero when
two functions are linearly dependent. By integrating by parts
the integral containing the Wronskian, we obtain the equation
for the thermoelectric coefficient GT , which we use in our
calculations (see Sec. IV):

GT = iGC

8e

∫ ∞

−∞
dτ

[
−2πT

sinh(πT τ )

cosh3(πT τ )
K1

(
1

2T
+ iτ

)

×K2

(
1

2T
− iτ

)
+ 2

cosh2(πT τ )
K1

(
1

2T
+ iτ

)

×
{

d

dτ
K2

(
1

2T
− iτ

)}]
. (16)

Comparison of transport coefficient calculated by Eqs. (12)–
(13) with Matveev-Andreev limiting cases in which either K2

or K1 are τ independent [36] can be straightforwardly done
with a help of Eq. (15).

IV. MAIN RESULTS

Using the general formalism sketched in the previous
section, we proceed straightforwardly to calculation of the
thermoelectric coefficients and discussion of our main results.
The setup (Fig. 1) allows to engineer various (Fermi- and
non-Fermi-liquid) states connected through the weak link. We
label and discuss three important limiting cases one by one in
the sections below. We assume in all calculations that the strong
coupling condition T � min[EC,1,EC,2] is fulfilled [36].

A. Fermi liquid versus Fermi liquid

The first (trivial) case corresponds to turning off one of the
QPCs on both left and right QD-QPC devices. We assume for
illustration purposes that the QPC B and QPC C are turned off.
As a result, the electric circuit consists of QPC A-QD1–QD2-
QPC D. Both left and right devices are tuned to FL regime
separated by the weak link. Each of the FL states originates
from a single channel Kondo strong coupling fixed point [36].

The correlators Kj (τ ) are obtained by using a perturbation
theory in |rj | [36] and are given by

Kj (τ ) =
(

π2T

γEC,j

)2 1

sin2(πT τ )

[
1 − 2γ ξ |rj | cos(2πNj )

+ 4π2ξγ |rj | T

EC,j

sin(2πNj ) cot(πT τ )

]
, (17)

where ξ = 1.59 is a numerical constant [36], |r1| = |rA| and
|r2| = |rD|. Substituting Kj (τ ) into Eqs. (12) and (13), we get
the linear response equations for the differential conductance
and the thermoelectric coefficient:

G = 8π8GC

15γ 4

T 4

E2
C,1E

2
C,2

, (18)

GT = −32π10ξGC

35eγ 3

T 5

E2
C,1E

2
C,2

∑
j=1,2

|rj | sin(2πNj )

EC,j

. (19)

The resulting thermopower (Seebeck coefficient) is obeying
the FL equation:

S = −12

7

π2γ ξ

e

∑
j=1,2

|rj | T

EC,j

sin(2πNj ). (20)

The thermoelectric transport regime of two weakly coupled
Fermi liquids can be used for benchmarking and calibration
necessary for quantifying the deviations from the FL transport
properties.

B. Fermi liquid versus non-Fermi liquid

The second important case describes the FL one-channel
Kondo state in the left device (QPC A is switched on and QPC
B is switched off) weakly connected to the non-Fermi-liquid
state corresponding to the two-channel Kondo effect when both
QPC C and QPC D of the right device are turned on. In addi-
tion, we assume that the reflection amplitudes in both QPCs
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(C and D) are fine-tuned to the symmetric regime |rC | = |rD|
necessary for protection of the NFL state. In reality, small de-
tuning of the reflection amplitudes suppresses the NFL state at
sufficiently low temperatureT R

min determined by the asymmetry
of r’s (T R

min ∝ ||rC | − |rD||2EC,2 with ||rC | − |rD|| → 0) [37].
To avoid a collapse to FL ground state, we assume that the
measurement’s temperature T is higher than T R

min.
We use the same FL equation forK1 (which depends linearly

on |r1| = |rA|) as in the previous section. The perturbative

expansion for K2 in terms of small |r2| = |rC | = |rD|, however,
starts with the second-order term. The reason is that the
fluctuations of the isospin mode in the right device are not
suppressed at low energies by the charging energy. In contrast
to it, the isospin projection is fixed in the left device and
its fluctuations are completely frozen. We point out that the
left-right symmetry is explicitly violated in this setup by the
construction. Following Matveev-Andreev calculations (see
Ref. [36] for details) we use the following equation for K2:

K2(τ ) = π2T

2γEC,2

1

| sin(πT τ )|
[

1 − 8γ

π2
|r2|2 sin(2πN2) ln

(
EC,2

T

)
ln tan

(
πT τ

2

)]
. (21)

Plugging Eq. (21) in Eqs. (12) and (13), we get the transport coefficients:

G = 3π7GC

32γ 3

T 3

E2
C,1EC,2

, (22)

GT = −π4GC

eγ 2

T 3

E2
C,1EC,2

[
π5ξ

16

T

EC,1
|r1| sin(2πN1) + 16

25
ln

(
EC,2

T

)
|r2|2 sin(2πN2)

]
. (23)

The thermopower in the lowest order of |rj | contains two competing terms:

S = − 32γ

3eπ3

[
π5ξ

16

T

EC,1
|r1| sin(2πN1) + 16

25
ln

(
EC,2

T

)
|r2|2 sin(2πN2)

]
. (24)

The crossover line separating the dominant FL contribution
to the TP from the dominant NFL contribution is defined as
follows:

256

25ξπ5
ln

(
EC,2

T ∗

)
EC,1

T ∗ = |r1|
|r2|2 . (25)

If T � T ∗, pronounced NFL behavior of the Seebeck effect is
predicted. In the opposite limit, T � T ∗, the FL regime with
the weak NFL corrections is expected.

As it was discussed in Ref. [31], the non-Fermi-liquid
behavior is manifested in the T dependence of both electric
conductance G and thermoelectric coefficient GT . The ∝T 3

behavior of the conductance is originating from the ∝T 2 FL
behavior [31] and ∝T NFL behavior arises from the Anderson
orthogonality catastrophe [43–45]. The orthogonality related
to the change of the boundary condition in QD results in
an appearance of a resonance scattering phase δ = π/2 [31]
and leads to a power-law suppression of the density of states
ν2(ε) ∝ ε. The same density of states effects in thermoelectric
coefficient justify the log-T behavior of the thermopower.

C. Non-Fermi liquid versus non-Fermi liquid

The third important case describes two non-Fermi-liquid
states connected by the weak link. This case can be engineered
by turning on all four QPCs in the left and right devices
with a simultaneous fine-tuning of the reflection amplitudes
as |r1| = |rA| = |rB | and |r2| = |rC | = |rD|. As it has been
explained above, the small detuning of each pair of the
reflection amplitudes in the left and right devices results in an
emergence of two characteristic temperature scales T L

min and
T R

min [37]. We discuss therefore the thermoelectric transport at
T � max[T L

min,T
R

min].

Substituting the non-Fermi-liquid correlators for Kj (τ )
[Eq. (21)] into general equations for the transport coefficients,
we get

G = π4GC

6γ 2

T 2

EC,1EC,2
, (26)

GT = −3π3GC

32eγ

T 2

EC,1EC,2

×
∑
j=1,2

|rj |2 ln

(
EC,j

T

)
sin(2πNj ). (27)

We emphasize that the isospin fluctuations in both devices,
being not suppressed by the charging energy, play crucial role
and determine the NFL behavior of the thermopower:

S = − 9γ

16eπ

∑
j=1,2

|rj |2 ln

(
EC,j

T

)
sin(2πNj ). (28)

Actually, pronounced non-Fermi liquid behavior of ther-
mopower is associated with two orthogonality catastrophes
[43–45] emerging simultaneously in the left and the right
quantum devices ν1(ε) ∼ ν2(ε) ∝ ε. As a result, both densities
of states are suppressed due to change of the boundary
conditions and emergence of two resonance scattering phases
δ = π/2.

V. DISCUSSION

The summary of the qualitative and quantitative behaviors
of the TP in three important Fermi-liquid and non-Fermi-liquid
regimes is illustrated in Fig. 2.
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FIG. 2. (Left) Plots of thermopower eS as a function of N =
N1 = N2 and temperature T/EC (EC1 = EC2 = EC) with |r1| =√

0.001, |r2| = √
0.1 (a) for the FL-FL regime (top). (b) For the FL-

NFL regime (middle). (c) For the NFL-NFL regime (bottom). (Right)
Plots of the minimum of thermopower eS as a function of tempera-
ture T/EC for different left/right asymmetries |r1/r2| = 0.01 (black
curve), |r1/r2| = 0.3 (red curve), and |r1/r2| = 0.6 (blue curve) with
|r2| = √

0.1 for the regimes of the left panels correspondingly.

A. Fermi-liquid to non-Fermi-liquid crossover

The 3D plots (left panels of Fig. 2) show the thermopower
dependence on the gate voltage N = N1 = N2 and the temper-
ature T . There is a significant difference between three differ-
ent regimes. (i) The upper plot (left panel) shows a minimum
of TP at N = 1/4 with a depth increasing with increasing
temperature. The behavior Smin ∝ T is characteristic for the
FL regime (see the right panel of the upper plot where the
temperature dependence of Smin is shown); the black/red/blue
curves describe the evolution ofS with decreasing transparency
of the left device (see Fig. 2 and figure caption for detail).
(ii) The central part of Fig. 2 describes the Seebeck effect
on a weak link between Fermi and non-Fermi liquids. There
is visible competition between two minima: one minimum is
associated with the FL properties (linear in T dependence of
Smin), while the second minimum is characterized by the log-T
scaling arising at low temperatures. The FL-NFL competition
manifests itself in a nonmonotonous temperature dependence
of Smin [cf. the right panel of the central part of the Fig. 2 where
one sees the Smin ∝ ln(T ∗/T ) at T � T ∗ and Smin ∝ T/T ∗ at
T � T ∗ in accordance with Eq. (25)]. (iii) The lower panel of
Fig. 2 shows the TP behavior at the weak link between two NFL
regimes. Since in both NFL states of two-channel Kondo origin
there exist strong fluctuations of the isospin, the characteristic
behavior of TP shows pronounced NFL log-T scaling. The Smin

temperature dependence is monotonic Smin ∝ ln T providing
an evidence of the NFL thermotransport behavior [46].

Summing up, we have demonstrated that engineering
two weakly coupled nanodevices allows full control on the
crossover between Fermi- and non-Fermi-liquid thermoelec-
tric transport with three spectacular regimes: Fermi liquid,
competing Fermi and non-Fermi liquids, and pronounced non-
Fermi liquid.

B. Prospectives: from weak link through strong coupling to
multichannel and multi-impurity Kondo physics

The simplicity of the model discussed in our paper is based
on a trivial assumption: both the temperature and voltage drops
are occurring across the weak link (tunnel barrier). As a result,
we can characterize each of two quantum systems (to the left
and to the right from the tunnel barrier) by the temperature and
chemical potential assuming that each system is at equilibrium.
Besides, the zero-current steady-state condition implemented
for the Seebeck effect measurements gives a direct access to the
off-diagonal transport coefficient GT by avoiding a necessity
to compute the heat current. A field-theoretical calculation of
the thermal conductance is challenging and can be done using
Luttinger gravitational field analogy [48,49]. However, even
the linear response calculations based on the combination of
the Kubo approach [48] and the bosonization technique [18]
require construction of a full-fledged theory complementary to
Matveev-Furusaki [31] and Matveev-Andreev [36] formalism.
Consistent and at the same time controllable calculations of the
heat current would allow to address experimentally relevant
question of the figure of merit and investigate mechanisms
of the Wiedemann-Franz law violation [41]. Going beyond
the linear response theory requires putting the theory of
thermoelectric transport through the quantum dots onto the
Keldysh contour [50].

A straightforward generalization of the model considered
above could be achieved by adding to a setup a central island
connected to the left and right devices by two tunnel barriers
(see Fig. 3). The central island (metallic quantum dot with
a continuous spectrum) is artificially heated to guarantee a
temperature drop across two tunnel barriers. The hot electrons
therefore can be emitted to the left and right devices the same

(a) (d)

(c)(b)

FIG. 3. Sketch of “Bell test” thermoelectric experiment: central
red circle denotes “hot” QD weakly coupled by left and right tunnel
barriers (blue dashed lines) to the “cold” QD-QPC devices. All other
notations are identical to those used in Fig. 1.
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(a)

(b) (c)

(d)

L

x

FIG. 4. Schematic representation of a hybrid metal-
semiconductor device engineering a strong coupling of two
quantum dots. A peanut-shape 2DEG area is formed by opening a
conducting channel between dots (central quantum point contact at
x = 0) by the split gate (light green boxes). All other notations are
the same as in Fig. 1. The hybrid device can be fine tuned to different
multichannel (1 → 4 channel) Kondo regimes of a single quantum
impurity (fully transparent central QPC) and different regimes of
multichannel (1 → 2 channel) double quantum impurity setups (see
detailed discussion in Sec. V). Fine tuning the split gates at positions
A-B (at x = −L) and/or C-D (at x = L) to a weak (tunnel) regime
and heating one of the peripheral contacts allows to measure a
thermoelectric transport on a weak link between one-to-three channel
Kondo regimes.

way as photons are emitted in famous Bell test experiments
[51,52]. It opens a possibility to measure the current-current
correlation functions in two- and four-terminal geometries. In
addition, the device shown in Fig. 3 is suitable for investigation
of a heat quantization [53] and heat Coulomb blockade [54],
universality of thermoconductance fluctuations [55] and heat
entanglement.

Another interesting model arises if we replace a weak link
between two quantum devices by a strong link engineered, for
example, by an additional QPC [56]. If the central QPC (see
Fig. 4) is widely opened and therefore fully transparent, there
exists a unique edge state which merges a double dot device
into a single peanut-shaped QD. Therefore turning on the QPCs
one-by-one by the split gates provides a possibility to investi-
gate the charge transport through 1-4 channel Kondo devices.
Besides, if one of four QPCs (A-D) is converted to the tunnel
junction with the temperature and voltage drop across it, the
thermoelectric transport to the NFL states associated with two-
channel [27] and three-channel [57] Kondo effects becomes
accessible. While the NFL physics emerging in the vicinity
of the strong coupling fixed point of the two-channel Kondo
is described by Majorana (Z2) fermions, the NFL physics
of the three-channel Kondo is governed by Z3 parafermions
[57]. The Seebeck coefficient (thermoelectric power) provides
information on the change of the Coulomb energy across
the dot associated with voltage drop per fixed temperature
drop and therefore gives some clue about the entropy flux
through the nanodevice [58]. Thus the thermoelectric transport
measurements of the N-channel Kondo devices might shed
some light on the ZN parafermion excitations [59].

Change of the central QPC transparency can be controlled
by the split gate (see Fig. 4). By squeezing the constriction,
the QPC can be fine-tuned to a single-mode low reflection

regime. The peanut-shaped central QD [60,61] is split into two
parts (two QDs with quantized charge) and therefore operates
in the regime described by the generically anysotropic two-
impurity multichannel Kondo model [6]. By construction, two
impurities are attached to several orbital channels modeled by
QPCs A-D. The unstable strong coupling fixed point of the two-
impurity single channel Kondo model can be mapped to the
two-channel Kondo model [62–64] and therefore results in the
NFL properties. Similarly to a single-impurity multichannel
device, by converting one of A-D QPCs to the tunnel junc-
tion regime, one can investigate the thermoelectric transport
through the multi-impurity multichannel Kondo devices. High
tunability of the QPCs will provide an access to various
(Fermi and non-Fermi liquid) fixed points of the quantum
systems.

VI. SUMMARY AND CONCLUSIONS

We propose a theoretical model describing a hybrid quan-
tum device consisting of two quantum systems coupled
through a weak tunnel link. Each of the quantum systems in
turn consists of a quantum dot strongly coupled to several
quantum point contacts. The idea of the setup is based on
existing experimental devices designed for investigation of
multichannel Kondo physics [27,41,57]. Being inspired by
the new measurements of the quantum charge states [27],
we suggest to utilize similar geometry of IQH nanostructures
for measurements of thermoelectric transport. The “weak
link” quantum system suggested in our paper demonstrates
(depending on fine-tuning the external parameters, such as gate
voltages applied to the split gates controlling the QPCs) three
significantly different regimes, such as, weak link between (i)
two Fermi-liquid states, (ii) Fermi and non-Fermi-liquid states,
and (iii) two non-Fermi-liquid states. In order to demonstrate
the signature of the non-Fermi-liquid physics in thermoelectric
transport properties, we calculated the Seebeck coefficient
(TP) perturbatively in QPC reflection amplitudes for all three
generic cases. It was shown that the FL-FL setup can be used
for calibration of the Fermi-liquid behavior of the TP. The
system of weakly coupled FL-NFL demonstrates pronounced
competition between two types of contribution to the Seebeck
coefficient: (i) a linear in T contribution, characteristic for
the FL, and (ii) log-T behavior specific for the NFL. One
can use this setup to determine the crossover temperature,
which separates two different regimes. The benchmark of the
crossover effect is the nonmonotonicity of the TP minimum
located at N1 = N2 = 1/4 as a function of temperature. The
most spectacular illustration of the NFL behavior of the
Seebeck coefficient is demonstrated on the weak link between
two NFL states. It shows the pronounced log-T dependence
of the TP at a sufficiently wide temperature interval. The
central idea of engineering the NFL states is based on the high
tunability of the multi-channel Kondo physics in QD-QPC
nanodevices [27,57]. The challenge of the proposal for new
experiments is to boost efforts for understanding the ther-
moelectric transport in non-Fermi-liquid regimes emerging
due to strong electron correlations and resonance scattering.
The setup then can be used as a controllable playground for
studying the thermoelectric phenomena in nanodevices.
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