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We investigate thermoelectric transport through a SU(N ) quantum impurity in the Kondo regime. The strong-
coupling fixed-point theory is described by the local Fermi-liquid paradigm. Using Keldysh technique we analyze
the electric current through the quantum impurity at both finite bias voltage and finite temperature drop across
it. The theory of a steady state at zero current provides a complete description of the Seebeck effect. We find
pronounced nonlinear effects in temperature drop at low temperatures. We illustrate the significance of the
nonlinearities for enhancement of thermopower by two examples of SU(4) symmetric regimes characterized by
a filling factor m: (i) particle-hole symmetric at m = 2 and (ii) particle-hole nonsymmetric at m = 1. We analyze
the effects of potential scattering and coupling asymmetry on the transport coefficients. We discuss connections
between the theory and transport experiments with coupled quantum dots and carbon nanotubes.
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Introduction. Recent progress in the understanding of
thermoelectric phenomena on the nanoscale stimulated exper-
iments [1–3] and the development of theoretical approaches
to this problem (see, e.g., [4] for review). One of the
fundamental properties of the quantum transport through
nanosized objects [quantum dots (QDs), carbon nanotubes
(CNTs), quantum point contacts (QPCs), etc.] is associated
with the charge quantization [5]. It offers a very efficient tool
for the quantum manipulation of the single-electron devices
being building blocks for quantum information processing.
The universality of the heat flows in the quantum regime,
scales of the quantum interference effects, and limits of
the tunability are the central questions of the emergent
field of the quantum heat transport [1–3,6–8]. Besides, the
effects of strong electron correlations and resonance scattering
become very pronounced at low temperatures and can be
measured with high controllability (e.g., external electric
and magnetic fields, geometry, temperature, etc.) of the
semiconductor nanodevices. Therefore, investigation of the
quantum effects and influence of strong correlations and
resonance scattering on the heat transport (both experimentally
and theoretically) is one of the cornerstones of quantum
electronics.

As follows from the Fermi-liquid (FL) theory, the ther-
moelectric power (Seebeck effect) of bulk metals is directly
proportional to the temperature T and inversely proportional
to the Fermi energy εF [9]. The resonance scattering on
a quantum impurity, however, dramatically enhances this
effect due to the emergence of quasiparticle resonances at
the Fermi level described by the Kondo effect [10–12].
The contribution to the Seebeck effect proportional to the
concentration of impurities at low T , as a result, scales as
T/TK [9,12] where TK is a characteristic energy defining
the width of the Kondo resonance, the Kondo temperature
(Fig. 1). The Kondo effect in nanodevices is key for enhancing
the thermoelectric transport coefficients [8]. The tunable
thermotransport through nanodevices controlling the heat flow
is needed for efficient operation of quantum circuits elements:
single-electron transistors, quantum diodes, etc., to perform
controllable heat guiding.

The Kondo effect has been observed in the experiments on
the semiconductor quantum dots and the single wall carbon
nanotubes [13–16]. The effect manifests itself by complete
screening of spin of the quantum impurity and, as a result,
the FL behavior in the strong-coupling (low temperatures)
regime [10,11,17]. Here we use the local FL paradigm
[18–25] which is a powerful tool for the description of
thermodynamic and transport properties of quantum impurity
in the strong-coupling regime. It has also been applied recently
for explanation of “0.7 anomaly” in QPCs [26,27]. The
s = 1/2 SU(2) Kondo impurity physics arises at the half-filled
particle-hole (PH) symmetric regime. We refer to “electrons”
as quasiparticles above εF and “holes” as the excitations
below εF . The PH symmetry, being responsible for the
enhancement of the electric conductance, suppresses however
the thermoelectric transport: the thermocurrent carried by
electrons is completely compensated by heat current carried
by holes challenging us however to investigate Kondo models
in the regime away from PH symmetry. To achieve appreciable
thermopower, the occupation factor of the quantum impurity
should be integer (Coulomb blockade valleys [5]), while the
particle-hole symmetry should be lifted. Such properties are
generic for the SU(N ) Kondo models with the filling factors
different from 1/2.

The SU(N ) Kondo physics with N = 4 is experimentally
realized in CNTs [28–31] and double QDs [32]. The SU(N )
Kondo model has also been proposed to investigate in ultracold
gases experiments [33,34]. There are several theoretical
suggestions for realization of SU(N ) Kondo physics with
N = 3 [34,35], N = 6 [36], and N = 12 reported in [37].
While the electron transport through SU(N ) Kondo impurity
is well understood theoretically [21,38–40], the thermoelectric
transport in the Kondo regime remains challenging [41–45].

In this Rapid Communication we present a full-fledged
theory for the Seebeck effect of the SU(N ) Kondo model
for the strong-coupling regime T � TK . Our approach is
based on real time out-of-equilibrium Keldysh calculations.
We used the local Fermi-liquid paradigm for constructing
a perturbative expansion for the electric current around the
strong-coupling fixed point of the model. We illustrate the

2469-9950/2017/96(12)/121403(6) 121403-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.121403


RAPID COMMUNICATIONS

D. B. KARKI AND MIKHAIL N. KISELEV PHYSICAL REVIEW B 96, 121403(R) (2017)

L R

tL tR

TK

G12ΔT GΔV

L R

TL TR
μRμL

FIG. 1. Left panel: Cartoon for the tunneling tL/R through the
SU(N ) quantum impurity (see the main text). Right panel: Fermi
distribution functions of the left (hot) and right (cold) leads at
temperatures TL/R and chemical potential μL/R . The thermovoltage
�V = |μR − μL|/e is applied to achieve the steady state with zero
net current across the impurity. Left (red)/right (blue) arrows show
directions of thermo- and electric currents. Resonance Kondo peak
of width TK in density of states is shown by the green color.

thermoelectric properties of the SU(N ) Kondo model on two
particular examples, namely, N = 4 with the filling factors 1/4
and 1/2. We compute the thermoelectric power for arbitrary
temperature drop between the electron reservoirs and discuss
the significance of nonlinear effects in temperature drop.

Setup. We consider an SU(N ) quantum impurity (such as a
CNT or coupled QDs) sandwiched between two leads (Fig. 1).
The model geometry resembles the experimental setup [8].
The temperature of the drain electrode (R) is taken as the
reference temperature of the system. The temperature of the
source electrode (L) is controlled by the Joule heat released
due to the finite current flowing along the lead [8]. Thus, the
temperature drop �T is fixed for all measurements. The bias
voltage �V is applied between the source and the drain in
order to stop the thermocurrent (Fig. 1, right panel):

I = 0 = G(T )�V + G12(T )�T. (1)

The differential thermoelectric power is defined at the total
current across the impurity tuned to zero:

S(T ) = − lim
�T →0

�V

�T

∣∣∣∣
I=0

= G12(T )

G(T )
, (2)

G = ∂I/∂�V |�T =0 is the electric conductance, and G12 =
∂I/∂�T |�V =0 is the thermoelectric coefficient.

Model. The tunneling of electrons through the SU(N )
quantum impurity (Fig. 1, left panel) is described by the
Anderson model [21]:

H =
∑
kαr

εkc
†
αkrcαkr +

∑
r

ε0d
†
r dr

+
∑
r<r ′

Ud†
r drd

†
r ′dr ′ +

∑
kαr

tαd†
r cαkr + H.c. (3)

Here dr annihilates an electron in the dot level ε0 with orbitals
r = 1,2, . . . N , cαkr annihilates a conduction electron with the
momentum k and orbital r in the leads α = L,R and U is the
Coulomb repulsion (charging) energy in the dot, tα is lead-
dot tunneling, and εk = εk − εF is the linearized conductance
electron’s dispersion. We assume that the charging energy U

is the largest energy scale of the model and therefore take
into account only the “last” occupied state. We project out the
charge states by applying the Schrieffer-Wolff transformation
[46]. As a result we obtain the effective SU(N ) Kondo model

describing the physics at the weak-coupling T � TK limit:

HK = J
αβ

K (c†αλμcβ)(d†	μd), (4)

where c†=(c†1, . . . ,c
†
N ) is a row vector of the electron states

in the leads and d† = (d†
1, . . . ,d

†
N ) represents the local states

in the dot. The SU(N ) generators λμ and 	μ for μ =
1,2, . . . N2 − 1 are traceless N×N Hermitian matrices of
the fundamental representation, satisfying the commutation
relations [λμ,λν] = if μνρλρ where f μνρ is the set of fully
antisymmetric structure factors. As a last step we diagonalize
the matrix J

αβ

K ∼ |tαtβ |/U in the subspace of two leads
α,β = L,R performing the Glazman-Raikh rotation [47–49].
Similarly to the SU(2) Kondo model, the antisymmetric
combination of the electron states in the leads a† = (c†L − c

†
R)/√

2 is fully decoupled from the Hamiltonian while the symmet-
ric combinations b† = (c†L + c

†
R)/

√
2 remain coupled to the

quantum impurity [50] (without loss of generality we present
here the results for symmetric tL = tR dot-lead coupling;
general equations for arbitrary coupling are presented in the
Supplemental Material [51]).

The FL Hamiltonian describing the strong-coupling
T � TK regime is obtained by applying the standard point-
splitting procedure to : (b†λμb) · (b†λμb) : (see [17] for the
details), HFL = H0 + Hα + Hφ [52]:

H0 = ν
∑

r

∫
ε

ε[a†
εraεr + b†εrbεr ],

Hα = −
∑

r

∫
ε1−2

[
α1

2π
(ε1 + ε2) + α2

4π
(ε1 + ε2)2

]
b†ε1r

bε2r ,

Hφ =
∑
r<r ′

∫
ε1−4

[
φ1

πν
+ φ2

4πν

(
4∑

i=1

εi

)]
: b†ε1r

bε2rb
†
ε3r ′bε4r ′ :.

(5)

The Kondo floating paradigm [10,11,17–25] leads to the fol-
lowing FL identities: α1 = (N − 1)φ1 and α2 = (N − 1)φ2/4,
ν is the density of states at εF . The connection between α1 and
α2 is given by the Bethe ansatz [21]. We use α1 = 1/TK as the
definition of the Kondo temperature [49].

Charge current. The current operator at position x is
expressed in terms of first-quantized operators ψ attributed to
the linear combinations of the Fermi operators in both leads,

Î (x) = h̄e

2mi

∑
r

[ψ†
r (x)∂xψr (x) − ∂xψ

†
r (x)ψr (x)]. (6)

For the expansion of Eq. (6), we choose the basis of scattering
states that includes completely elastic and Hartree terms [21]
to get it in compact form:

Î = e

2νh

∑
r

[a†
r (x)br (x) − a†

r (−x)Sbr (−x) + H.c.], (7)

where ar (x) = ∑
k akre

ikx , br (x) = ∑
k bkre

ikx , Sbr (x) =∑
k Skbkre

ikx , and the N×N S matrix is expressed in terms of
a phase shift δ(εk) as Sk = e2iδ(εk ).

Elastic current. Calculation of the expectation value of (7)
in the absence of interactions is equivalent to using the
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Landauer-Büttiker formalism [5]:

Iel = Ne

h

∫ ∞

−∞
dεT (ε)�f (ε), (8)

where �f (ε) = fL(ε) − fR(ε), fL/R are Fermi distribution
functions of L/R leads; μL − μR = e�V � TK are the
chemical potentials, TR = T is the reference temperature, and
TL = T + �T (Fig. 1 right panel). The energy dependent
transmission T (ε) = sin2 [δ(ε)]. Following Ref. [21], we
Taylor-expand the phase shift for all flavors r in the presence
of voltage bias e�V and temperature drop �T as δr (ε) =
δ0 + α1ε + α2(ε2 − A), whereA = [ (e�V )2

4 + (πT )2

3 + π2T �T
3 ]

and δ0 = πm/N for the quantum impurity’s occupation m =
1, . . . ,N − 1. The zero energy transmission is given by T0 =
sin2 δ0. Using the above equation for the phase shift δr we
expand the current up to the second order in T/TK � 1 to get
the elastic contribution. The linear response result is

Iel

Ne/h
=

[
sin2 δ0 + α2

1

3
(πT )2 cos 2δ0

]
e�V

−
[

α1

3T
(πT )2 sin 2δ0

]
�T. (9)

Inelastic current. The inelastic contribution to the current is
computed using the nonequilibrium Keldysh formalism [53]:

δIin = 〈T
C
Î (t)e−i

∫
dt ′Hφ (t ′)〉, (10)

where C denotes the double side η = ± Keldysh contour [53].
Here TC is the time ordering operator on a contour and the
average is performed with the Hamiltonian H0 whereas the
contribution from Hα is already accounted in Iel . As discussed
in detail in Ref. [22], the second-order interaction correction
to the current is expressed in terms of the self-energies,

δIin = S
∫ ∞

−∞

dε

2π
[�−+(ε) − �+−(ε)]iπν�f (ε); (11)

we used the notation S = N(N−1)eπ
h

cos 2δ0. The self-
energies in Eq. (11) are defined in terms of the Green’s

functions as �η1,η2 (t) = ( φ1

πν2 )
2 ∑

k1,k2,k3
G

η1,η2
bb (k1,t)G

η2,η1
bb

(k2, − t)Gη1,η2
bb (k3,t). The local Green’s functions of aa/bb

fermions and the mixed ab fermions in real time are given by

G±(t) = −πν

2

[
TLe−iμLt

sinh(πTLt)
± TRe−iμRt

sinh(πTRt)

]
, (12)

with G+(t) = G+−
aa/bb(t) and G−(t) = Gba/ab(t) = iπν�f (t).

Computing the integrals in the presence of the finite bias
voltage and finite temperature drop one gets

�−+(ε) − �+−(ε)

= φ2
1

iπν

[
3

4
(e�V )2 + �T

T
(πT )2 + ε2 + (πT )2

]
. (13)

In the limit �T → 0, �f (ε) = −(�T ε/T )∂f/∂ε and the
FL self-energies, being even functions of ε, do not contribute
to the thermocurrent at �V = 0. Therefore, the thermoelectric
coefficient G12 at �T → 0 is fully determined by elastic
processes [54]. The linear-response inelastic contribution to
the current at �T = 0 reads

δIin

Ne/h
=

[
2

3
(πT )2(N − 1)φ2

1 cos 2δ0

]
e�V. (14)
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FIG. 2. Main frame: Thermoelectric coefficient G12 as a function
of the reference temperature T = TR at different values of potential
scattering δP . Inset: differential conductance G as a function of T for
δP = 0.3. The legend is shown in the left panel. Solid lines: numerical
solution obtained from (1) with (S6)-(S7), (S11)-(S12) [51]. Dashed
lines: analytical solution given by (15) and (16). Solid and dashed
lines are almost indistinguishable.

The equation for the total current beyond the linear response
is cumbersome and given in the Supplemental Material
[51]. Finally, the differential conductance G and differential
thermoelectric coefficient G12 are given by

G(T ) = G0

[
sin2 δ0 + α2

1

3

N + 1

N − 1
(πT )2 cos 2δ0

]
, (15)

G12(T ) = −G0

[
α1

3e
π2T sin 2δ0

]
, (16)

where G0 = Ne2/h is the unitary conductance.
Potential scattering. As is seen from (16), the G12 at given

reference temperature T in linear response is proportional to
sin 2δ0. For the particle-hole symmetric (PHS) case in the
absence of potential scattering m = N/2 (we assume N even),
δ0 = π/2 and both G12 and the thermoelectric power are
zero—the particle thermocurrent exactly compensates the hole
thermocurrent (Fig. 2 right panel, blue curve). The potential
scattering explicitly breaks the PH symmetry. It can be
accounted for by replacement of δ0 by δ̃0 = δ0 + δP , δP � δ0.
As a result, the finite G12 and thermopower arises. The results
of calculations obtained from the zero-current conditions for
SU(4) quantum impurity are illustrated in Fig. 2. First, for the
case of singly occupied quantum impurity m = 1 (Fig. 2, left
panel), δ0 = π/4 and the PH symmetry is explicitly broken.
At zero potential scattering inelastic effects associated with
the finite bias voltage vanish and the thermoelectric power is
completely defined by elastic processes. The effect of potential
scattering is twofold: (i) it detunes G12 from its maximal value
and (ii) it results in finite-temperature inelastic corrections
to the conductance (see Fig. 2, inset). For the PHS case
of double occupation m = 2 (Fig. 2, right panel) δ0 = π/2.
Therefore the finite potential scattering results in finite G12

and differential thermopower S is proportional to sin 2δP .
Crossover between m = 2 SU(4) and m = 1 SU(2) has been
studied recently experimentally [55]. Note that the current
across the dot symmetrically coupled to the leads contains
only odd powers of the voltage both for the PHS m = 2 and
the PH-nonsymmetric (PHN) m = 1 cases [56].
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FIG. 3. Main frame: Thermoelectric power S as a function of
the reference temperature T = TR; blue dashed curve: differential S

given by (2) with (15) and (16); solid curves correspond to S defined
under zero-current condition by (1) with (S6)-(S7), (S11)-(S12) [51]
at different values of �T (see the legend); δP = 0.3. Inset: evolution
of the zero current steady state as a function of the temperatures of
L-R leads at finite voltage e�V/TK = 0.02.

Seebeck effect. In the limit T → 0 the differential ther-
mopower is given by [57]

S(T ) = −2eL0T cot δ̃0
∂δ̃(ε)

∂ε

∣∣∣∣
ε=0

= −πγT

e
cot δ̃0, (17)

where L0 = π2/(3e2) is the Lorentz number and γ = 2πα1/

3 ∼ 1/TK in accordance with the FL theory [12].
The thermopower measurements [8] refer however not to

the differential Seebeck effects (see Fig. 1). Since there were
no independent measurements of TL and TR , the temperature
drop was estimated from the Joule heat. It appeared that the
�T was finite and not fulfilling the condition |�T | � TR . To
demonstrate the significance of nonlinear effects associated
with finite temperature drop we show in Fig. 3 the thermopower
of the SU(4) model computed by two different methods: (i)
the dashed blue line stands for the differential thermopower
S(T ) = G12/G where G12 is obtained at zero voltage drop
while G is calculated at equal temperatures of the leads;
(ii) the solid lines correspond to S = −�V/�T resembling
the experimental situation in [8]: the temperature drop is
fixed at �T/TK = 0.05 (red), 0.025 (green), 0.01 (orange),
and the thermovoltage is obtained from the zero current
condition. As one can see, at small reference temperatures
“finite �T ” thermopower always overshoots the differential
S. The effect is more pronounced in the PHS regime [58]. This
observation can explain the thermovoltage offset observed
in the experiment [8] in the Kondo limit of SU(2) quantum
impurity (PHS regime). According to our calculations this
offset is associated with a nonlinear �T dependence of the
current at low reference temperatures (see Fig. 3, insets). We
suggest to check this statement experimentally by performing
Seebeck effect measurements varying the temperature in the
“hot” lead.

Coupling asymmetry. The effect of coupling asymmetry
tL �= tR in (3) manifests itself in the following way: for the
broken PH-symmetry case it results in an asymmetric I−V

curve due to a contribution to the current quadratic in voltage
which, in turn, depends linearly on the coupling asymmetry.
For both PHS and PHN cases the coupling asymmetry results
in (i) renormalization of the elastic contribution to the charge
current [see [51], Eq. (S5)]; (ii) renormalization of the Kondo
temperature due to tunneling rates asymmetry [51]; and (iii)
renormalization of the coefficient in front of the term cubic
in voltage. The magnitude of current is suppressed by the
coupling asymmetry. Besides, it also affects the thermocurrent.
However, this effect is proportional to �V · �T and therefore
beyond the linear-response theory (see the Supplemental
Material [51] for details).

Peltier effect. In order to compute other thermoelectric
coefficients, e.g., the Peltier effect, one needs to define
and compute the heat current. To proceed with full-fledged
Keldysh calculations one can, e.g., deal with the Luttinger
“gravitational potential” approach [59–61]. Such a theory
would access the effects nonlinear in �T [62]. In the linear-
response theory the Peltier coefficient �(T ) can be calculated
using the transport integrals method (see, e.g., [63] for details)
based on calculation of different momenta of the single-
particle lifetime τ (ε,T ) (see the Supplemental Material [51])
and is related to the thermopower by the Onsager’s relation
�(T ) = S(T )T [64].

Summary. The full-fledged theory based on Keldysh out-
of-equilibrium calculations of the electric current is con-
structed for the SU(N ) Kondo quantum impurity subject
to a finite bias voltage and a finite temperature drop.
The transport coefficients, conductance G, thermoelectric
coefficient G12, and thermopower S, are computed under
the condition of zero-current state for the strong-coupling
regime of the quantum impurity. It is shown that pronounced
nonlinear effects in temperature drop influence the transport
coefficients at the low-temperature limit. These effects are
likely sufficient to resolve the experimental puzzle of the
thermotransport through the Kondo impurity at the strong
coupling.

Note added. While completing this work, a paper [65]
appeared where the significance of nonlinear effects in
temperature drop on the temperature-driven current through
SU(2) quantum impurity has been reported.
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