
PHYSICAL REVIEW B 92, 045125 (2015)

Protection of a non-Fermi liquid by spin-orbit interaction
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We show that a thermoelectric transport through a quantum dot–single-mode quantum point contact nanodevice
demonstrating pronounced fingerprints of nonFermi liquid (NFL) behavior in the absence of external magnetic
field is protected from magnetic field NFL destruction by strong spin-orbit interaction (SOI). The mechanism of
protection is associated with the appearance of additional scattering processes due to lack of spin conservation
in the presence of both SOI and small Zeeman field. The interplay between in-plane magnetic field �B and SOI is
controlled by the angle between �B and �BSOI. We predict strong dependence of the thermoelectric coefficients on
the orientation of the magnetic field and discuss a window of parameters for experimental observation of NFL
effects.
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I. INTRODUCTION

The paradigm of Landau Fermi liquid (FL) [1] is one of
the cornerstones of modern condensed matter theory. Based
on the concepts of quasiparticles—well-defined excitations
whose energy in the long-wave limit is greater than their
decay rate—the FL theory successfully explains the behavior
of normal and superconducting metals giving universal pre-
dictions for thermodynamic and transport properties [2]. The
FL phenomenology is justified in many microscopic models
describing interacting fermions in and out of equilibrium.
However, there are several cases where a violation of the FL
picture is observed experimentally (e.g., in strongly correlated
electron systems such as heavy fermion compounds [3],
unconventional superconductors [2], and quantum transport
through nanostructures [4,5]). The pronounced non-Fermi
liquid (NFL) behavior of these systems is attributed to a
breakdown the quasiparticle concept: The decay rate of low-
energy excitations becomes greater than the energy of the
excitations itself.

While the fingerprints of NFL physics in thermodynamics
of strongly correlated systems and quantum transport had been
seen experimentally [3,5], it is also generally accepted that the
NFL picture is extremely sensitive to variation of external
parameters being unstable against the FL ground state. Thus,
the stability of the NFL domain and the possibility to observe
strong deviations from the Landau FL paradigm poses major
challenges including the development of theoretical models
and predictions for the stabilization of NFL states. Important
questions are as follows: Is it possible at all to protect unstable
NFLs? What are the physical observables which demonstrate
the most pronounced manifestation of the NFL physics?

In this paper we present an example based on a window of
parameters within which the observation of strong deviation
from the FL picture can be protected and extended by effects of
strong spin-orbit interaction (SOI). The physical observables
we consider in this work are thermoelectric coefficients of
a nanodevice (Fig. 1). Our theoretical model justifying NFL
behavior is a two-channel Kondo (2CK) model [6–8]. While
the scattering of single orbital channel electrons on a resonance
quantum impurity itself leads to strong modification of the
thermoelectric transport properties within the Landau FL

paradigm through strong renormalization of the FL energy
scale [9–11], the detour from the FL picture is predicted to
change completely both electric [12–15] and thermoelectric
transports [16,17]. For example, one of the manifestations of
the NFL behavior in quantum transport is associated with the
logarithmic enhancement of the thermoelectric power [16] in
the situation when the 2CK model originates from the charge
Kondo effect in a single mode quantum point contact (QPC)–
quantum dot (QD) setup tuned by gate voltages to the Coulomb
blockade (CB) peak regime [12–16]. In that case two channels
are the electron spin degrees of freedom while the almost
transparent QPC (weak back-scatterer) works as a quantum
impurity. The 2CK physics is known to be unstable with
respect to any effects which can potentially break (statically
or dynamically) the symmetry between the channels [5,17]. In
particular, it has been shown that the effects associated with
time-reversal symmetry breaking (TRS) due to an external
magnetic field restore the FL properties at temperatures below
Teff tunable by the field [17]. The universality class of the
unstable 2CK model than changes to a single channel Kondo
problem (1CK). Fully screened 1CK is characterized by stable
local FL properties. Therefore, while being very attractive
from the theoretical point of view, the 2CK physics suffers
from serious experimental obstacles [4,5,18] impeding a direct
observation of NFL behavior.

The paper is organized as follows: We describe possible
experimental setup for observing the NFL transport in Sec. II.
A theoretical model accounting for the interplay between SOI,
external magnetic field, and effects of Coulomb blockade in
quantum dot is presented in Sec. III. We discuss the solution
of the one-dimensional (1D) quantum-mechanical scattering
problem in the presence of strong SOI in Sec. IV. An effective
model describing a low-energy physics of the problem and its
exact solution is presented in Sec. V. The transport coefficients
computed with the help of the exact solutions are discussed
in Sec. VI. Section VII is devoted to discussion of the key
results of the paper including estimation for the parameters
and definition of the conditions necessary for experimental
observations of the NFL physics. Summary and Conclusions
are given in Sec. VIII. Details of derivation of the effective
model are presented in Appendix.
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FIG. 1. (Color online) Typical setup for thermoelectric measure-
ments: “cold” contact (light orange area) at reference temperature T ,
quantum dot–quantum point contact electrostatically defined by gates
(blue boxes), separated by a tunnel barrier from a “hot” (deep orange)
contact at temperature T + �T . The voltage V is applied across the
device for zero current measurements (see text for the details).

II. PROPOSED EXPERIMENTAL SETUP

We consider a two-terminal nanodevice (see Fig. 1) de-
signed to be used for thermoelectric measurements [19,20].
The QD–QPC contains 2-d electron gas (2DEG) confined in
the z direction (light orange area on the Fig. 1). The open
QPC connects it to the drain at the reference temperature
T . We assume that the Rashba SOI [21,22] (caused by
the gradient of the confining potential in the z direction)
leads to appreciable effects which we will discuss in this
paper. The source is separated from the QD by a tunnel
barrier with low transparency |t | � 1. The temperature of the
source (deep orange) is adjusted by the Joule heat controlled
by the current IJ flowing along the lead (black arrow).
The temperature difference �T across the tunnel barrier is
assumed to be small compared to the reference temperature
T to guarantee the linear response operation regime for the
device. The QD is electrostatically controlled by two plunger
gates (blue rectangles) to adjust the size of the electron
island. The device is operated in the steady state of zero
source-drain current Isd = 0 = G�Vth + GT �T , controlled
by applying a thermo-voltage �Vth between the source and
the drain. The QPC (denoted by the cross in the light orange
area) is tuned to the single mode regime characterized by a
controllable small reflectivity |r| � 1. Under this assumption
and neglecting the resistance of the “metallic” QD we assume
that the voltage difference �Vth arises across the tunnel barrier
between the source and QD. The transport coefficients, electric
conductance G and thermoelectric coefficient GT (measured
independently), define the thermoelectric power (TP) S:

GT = ∂Isd

∂�T
, G = ∂Isd

∂V
, S = − �Vth

�T

∣∣∣∣
Isd=0

= GT

G
.

We assume that the magnetic field (blue arrow) is applied
parallel to the plane of 2DEG to avoid orbital effects.

III. THEORETICAL MODEL

The theoretical description of setup (see Fig. 1) is formu-
lated in terms of the Hamiltonian:

H = Hs + Hd + Htun + Hz. (1)

Here Hs and Hd are the Hamiltonians of the source (“hot”
contact) and the drain (“cold” contact), respectively. Htun

describes tunneling between the source and the drain and Hz

accounts for the Zeeman effect in both contacts. We assume
that the source can be described by a standard FL approach,

Hs =
∑
k,σ

εkσ c
†
kσ ckσ , (2)

where c† and c are creation/annihilation operators of quasi-
particles (we adopt a system of units � = kB = 1). The
drain Hd = Hc + HQPC includes the Coulomb blockaded QD
described by charging Hamiltonian Hc and QPC represented
by

HQPC = H0 + HSOI + HBS. (3)

We assume that the charge Q̂ = e(n̂s + n̂d ) in the QD is weakly
quantized (mesoscopic CB regime [27]) and controlled by the
gate voltage Vg:

Hc = Ec[n̂s + n̂d − N (Vg)]2, (4)

where n̂s and n̂d are the operators of the number of electrons
that entered the dot through the source and the drain,
respectively, and Ec ∼ e2/LQD is the charging energy of QD
with geometric size LQD. Below we ignore effects associated
with finite mean-level spacing in the dot. While charge is
only weakly quantized in the mesoscopic CB regime, the
spin remains a good quantum number in the absence of SOI.
However, when the SOI is present, two spin sub-bands are split
horizontally in k space and while spin is no more conserved,
the sub-band index characterizes quantized states instead. The
single mode QPC being a short quantum wire can be viewed as
a 1D electron system in the presence of Rashba SOI [23–26]
HSOI = αR[�k × �nz] · �σ :

H0 = −ivF

∑
λσ

λ

∫ ∞

−∞
dy�

†
λ,σ (y)∂y�λ,σ (y), (5)

HSOI = αRkF

∑
λσ

λ

∫ ∞

−∞
dy[�†

λ,↑�λ,↓ + �
†
λ,↓�λ,↑]. (6)

We denote here by �λ,σ the left (λ = −) and right (λ = +)
movers with spin σ = ↑,↓. The constant αR characterizes
Rashba SOI strength. The kF and vF = kF /m∗ correspond
to the Fermi momentum and Fermi velocity (here m∗ is
a fermion’s mass). The 1D electron transport through the
QPC is along the y axis (see Fig. 1). The Rashba SOI
HSOI = αRkyσx is associated with the electric field gradient
along the z axis and can be characterized by the effective
SOI field gμB

�BSOI/2 = αRkF �ex perpendicular to the direction
of electron transport (g is the Lande factor; μB is the Bohr
magneton). Notice that the SOI field alone does not lead to the
TRS breaking.

The backscattering (BS) Hamiltonian describes a scattering
of electrons with momentum transfer 2kF on a nonmagnetic
quantum impurity located at the origin and characterized by a
short-range potential V (y):

HBS =
∑
λ,σ

∫
dy�

†
λ,σ (y)V (y)�λ̄,σ (y)e−2iλkF y . (7)
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The Hamiltonian Htun represents the weak tunneling |tk| =
|t | � 1 of the electrons from the left contact to QD:

Htun =
∑
kλσ

[tkc
†
kσ�λσ (−∞) + H.c.]. (8)

The Zeeman Hamiltonian Hz describes the effects of the
external magnetic field Hz = −gμB

�B(�ss + �sd ), where �ss and
�sd are the spin densities of electrons in the source and
drain, respectively. We consider a situation when both sizes
of the QD (LQD) and QPC (LQPC) are small compared to
the SOI length scale LQD ∼ LQPC � lSOI = 1/(m∗αR). Since
the effective energy scale determining the behavior of the
transport coefficients of the model (2)–(8) which will be
referred to below as the Kondo temperature TK is [14] ∼ Ec

(see Appendix), the condition lSOI 	 LQD is equivalent to
gμBBSOI � TK (see a discussion about interplay between the
Kondo effect and SOI in Ref. [28]). We also assume that the
SOI effects in the QD are already taken into account by using
the approach developed in Ref. [29].

IV. SCATTERING IN THE PRESENCE OF SOI AND
MAGNETIC FIELD

We consider the 1D scattering problem in the presence of
SOI [21] and Zeeman field applied parallel to the plane of
2DEG. The Hamiltonian is given by

H = H0 + V (y) = k2

2m∗ + αRσxk − γ �σ · �B + V (y). (9)

The short-range potential V (y) describes a nonmagnetic
impurity located at the origin [24,25]. The electron’s transport
is along the y direction, k = ky . Angle ϕ characterizes the
orientation of magnetic field �B with respect to the y axis (see
Fig. 2, left bottom panel insert).

The kinetic energy term of (9) is given by

H0 =
(

k2

2m∗ αRk + iγBeiϕ

αRk − iγBe−iϕ k2

2m∗

)
. (10)

The Hamiltonian H0 is promptly diagonalized in k space.
The eigenvalues (spectra) describe two sub-bands (ν = + and
ν = −) split both horizontally due to the SOI and vertically
due to the Zeeman effect (Fig. 2):

E±(k) = k2

2m∗ ±
√

(αRk)2 + (γB)2 − 2αRγ kB sin ϕ. (11)

(We use the short-hand notation γ = gμB/2.) In the presence
of both fields there are two sub-bands while the spin polariza-
tion changes continuously as one moves from one Fermi point
to the other along each sub-band. We assume that magnetic
field is applied parallel to the plane of the 2DEG to decouple
it from the orbital degrees of freedom and concentrate on the
Zeeman effect only. The angle ϕ characterizes the orientation
of �B with respect to the axis of 1D transport (y). The spectra for
ϕ = 0, perpendicular orientation of �B and �BSOI, describe the
situation when magnetic field �B is oriented along the direction
of the transport. If B is larger than BSOI, the most important
effects on thermoelectric transport are due to the Zeeman
splitting of two sub-bands (Fig. 2, upper left panel) [17]. In
that limit the effects of B are associated with breaking of the

B/BSOIB/Bc

r↑
r↓

r± = r∓
r+

r−

E
(k

)

F

r+
r−

r∓
r±

k kk

B/BSOI

B ⊥ BSOI

B<B B<B

−π/2<ϕ<π/2

BSOI

B

x

y
ϕ

FIG. 2. (Color online) (Top panels) Two sub-band spectra: (left)
Zeeman splitting in the absence of SOI; (center) �B ⊥ �BSOI, angle
between magnetic field and y direction ϕ = 0; (right) arbitrary angle
−π/2 < ϕ < π/2. (Bottom panels) Magnetic field dependence of
reflection amplitudes |rμν | for the spectra shown in top panels. For
illustration we performed all calculations with model barrier V (y) =
V0 exp(−|y|/LQPC), k0F LQPC = 3.6, and height of the barrier V0 is
tuned to get r2

0 = 0.1 (see details in the text). Insert shows relative
orientation of �B and �BSOI.

channel symmetry, |r↑| �= |r↓| (Fig. 2, lower left panel) which
is crucial for the fate of NFL [17]. For the case B < BSOI we
distinguish two cases: (i) ϕ = 0 (Fig. 2, central panel) and (ii)
−π/2 < ϕ < π/2, ϕ �= 0 (Fig. 2, right panel). Since the orbital
effects are negligible for small magnetic fields if B < BSOI, the
case (i) ϕ = 0 (Fig. 2, central panel) can also be realized when
magnetic field is perpendicular to the plane of 2DEG. Besides,
the theory discussed in the paper is also applicable when both
Rashba and Dresselhaus SOI [21,22] are present. The transport
coefficients for the generic situation of the in-plane B field are
fully determined by the angle  = ϕ0 − ϕ between �B and
�BSOI, where ϕ0 (ϕ) are the angles between �BSOI ( �B) and axis
of 1D motion, respectively.

The eigenfunctions of H1d are momentum-dependent
spinors �ν(y) = eik·yχν(k),

χ±(k) = 1√
2

(±ie−iϑ(k)

1

)
, (12)

where

ϑ(k) = arctan

(
αRk − γB sin ϕ

γB cos ϕ

)
. (13)

The four reflection amplitudes in the first order of the
backscattering potential are determined by 2kF momentum
transfer and given by the matrix elements of V (y) in spinor
basis �ν . The diagonal matrix elements,

|rμμ| =
∣∣∣∣V

(
k

μ

F+ − k
μ

F−
)

v0F

cos

(
ϑ

(
k

μ

F+
) − ϑ

(
k

μ

F−
)

2

)∣∣∣∣ (14)

characterize the intraband scattering (we shall use the short-
hand notations |rμμ| ≡ |rμ| below). Here k

μ

F+ > 0 and k
μ

F− <

0 stand for the right and left Fermi points of a sub-band μ,
respectively, v0F ∼ (m∗a)−1 originates from the high energy
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cutoff, and a is a lattice constant. The off-diagonal matrix
elements (|r+−| ≡ |r±| and |r−+| ≡ |r∓|):

|rμν | =
∣∣∣∣V

(
k

μ

F+ − kν
F−

)
v0F

sin

(
ϑ

(
k

μ

F+
) − ϑ

(
kν
F−

)
2

)∣∣∣∣ (15)

describe the interband scattering.
The backscattering Hamiltonian (7) in the basis of eigen-

functions (12) casts the following form:

HBS = vF

∑
λμν

|rμν |[�†
λ,μ(0)�λ̄,ν(0) + H.c.]. (16)

Let us analyze various limits of the backscattering correspond-
ing to different orientation of the in-plane magnetic field �B in
the regime of strong interplay with the effects of SOI.

For the most generic case of interplay between SOI and
Zeeman magnetic field there exist four independent scattering
processes resulting in four different reflection amplitudes
(Fig. 2, right lower panel). The reflection amplitudes for
the intraband scattering |r+| and |r−| (black and red dashed
arrow on Fig. 2, right upper panel) in the first order of the
backscattering potential are proportional to the amplitude of
B [25],

|r+/−| = r0

[
k0F

k0F ∓ δ

](
B

BSOI

)
cos ϕ, (17)

where k0F is the Fermi momentum at zero splitting (δ =
0), δ = m∗αR , r0 ∝ |V (2k0F )m∗a| � 1 is a coefficient char-
acterizing the transparency of the barrier. The intraband
scattering completely suppresses for ϕ = π/2 since the angle
ϑ(kF±) = ±π/2 and the eigenfunctions do not depend on
B. The intraband reflection amplitudes |r+| = |r−| = 0 while
interband (|r±|,|r∓|) �= 0. Thus, for ϕ = π/2 we have only
two nonzero reflection amplitudes |r±| and |r∓| and therefore
the thermoelectric transport can be described by equations of
Ref. [17] if replacing |r↑| → |r±| and |r↓| → |r∓|.

The interband scattering amplitudes (blue dashed arrows on
central upper panel of Fig. 2) for the case −π/2 < ϕ < π/2
are given by

|r±/∓| = r0

[
1 ∓ b

(
B sin ϕ

BSOI

)
− c(ϕ)

(
B

BSOI

)2]
. (18)

Here coefficients (b,c(ϕ)) ∼ 1 depend on the geometry of the
QPC. One can see that for ϕ = 0, the scattering term linear in
B (linear Zeeman effect) disappears and additional symmetry
|r±| = |r∓| emerges (Fig. 2, central panel). The reflection
amplitudes depend on magnetic field quadratically (quadratic
Zeeman effect). Thus, the scattering Hamiltonian in that case
contains three independent scattering parameters.

V. EFFECTIVE MODEL

We recapitulate briefly the main steps of the derivation
of transport coefficients (for details see Appendix): (i) we
bosonize the 1D Hamiltonian (5)–(7) using a standard ap-
proach [31,32]. The effective bosonic Hamiltonian gives
us a boundary sine-Gordon (BSG) model [32] with four
different backscattering amplitudes. The high-T results are
obtained by perturbative expansion (in reflection amplitudes)
around the strong-coupling fixed point of the model. (ii) The

nonperturbative results in the low-T regime are obtained by the
re-fermionization procedure through mapping the BSG model
onto the effective Anderson model [12,15–17]. (iii) The effects
of the Zeeman field at the QPC resulting in TRS breaking
caused by the asymmetry of reflection amplitudes [17] are
accounted by a magnetic-field-dependent resonance width
� at the CB peaks [17]. The resonance width � in the
presence of the Zeeman field remains finite for a whole
range of the gate voltages, cuts the temperature-dependent
logarithm, and therefore restores FL properties. The width �

(Refs. [12,14,32]) is attributed to a single local Majorana mode
interacting with a single mode of chiral fermions [12,16] in the
theory containing only two (intraband) scattering processes.
The scattering on quantum impurity in the presence of SOI
and Zeeman fields involves four “2kF ” processes which can
be accounted for by two local Majorana modes interacting
with four modes of two species of the chiral fermions. As
a result, two different resonance widths enter the transport
coefficients. The interplay between two widths associated with
inter- and intraband processes leads to remarkable effects in
thermoelectric transport.

The effective Anderson model which describes a hybridiza-
tion of two local Majorana fermions η1 and η2 with two species
of chiral fermions (see Appendix) is a direct generalization
of [12,14,16,17] for a case of interplay between Zeeman and
SOI fields:

Hτ (t) =
∫ ∞

−∞
dk

[ ∑
α=1,2

(k · vF )c†α,kcα,k

−
√

2(ωsτ (t)η1(c1,k − c
†
1,k) − iωaτ (t)η1(c1,k + c

†
1,k)

+ωmsτ (t)η2(c2,k − c
†
2,k) − iωmaτ (t)η2(c2,k+c

†
2,k))

]
,

(19)

where following Ref. [16] we define

ωs/a τ (t) = �s/afs/a τ (t),
(20)

ωms/ma τ (t) = �ms/mafs/a, τ (t),

with

�s/a =
√

vF EceC

2π3
||r+| ± |r−||,

(21)

�ms/ma =
√

vF EceC

2π3
||r±| ± |r∓||,

and the time-dependent functions,

fs/a τ = (−1)nτ (t)Re/Im[exp{i(δχτ (t) − πN )}]. (22)

Function δχτ (t) describes the deviation of the phase of the
charge mode mean value from πnτ (t) (Ref. [16]):

δχτ (t) ≈ π2T

2Ec

(cot[πT (t − τ )] − cot[πT t]), (23)

where N is a function of a gate voltage Vg: N is integer in the
Coulomb blockade valleys and half-integer in the Coulomb
blockade peaks, nτ (t) = θ (t)θ (τ − t) (θ (t) is a step function),
and C ≈ 0.577 is the Euler’s constant.

045125-4



PROTECTION OF A NON-FERMI LIQUID BY SPIN- . . . PHYSICAL REVIEW B 92, 045125 (2015)

The original Matveev model [12] corresponds to the
case �a = �ma = �ms = 0 and describes a single Majo-
rana fermion η1 coupled to the odd combination of cre-
ation/annihilation operators of chiral fermions. In contrast
to the conventional Anderson model which preserves U (1)
symmetry, the model [12,14] is characterized by Z2 symmetry
instead. As a result, the NFL properties associated with the
two-channel Kondo physics emerge. The NFL behavior of the
two-channel Kondo model are attributed to the overscreened
regime realized when the number of orbital channels N
exceeds twice the spin of a quantum impurity. As it was shown
in Ref. [17], the Zeeman in-plane magnetic field restores
the U (1) symmetry through appearance of nonzero �a and
therefore leads to the restoration of the FL behavior char-
acteristic for the single-channel fully screened Kondo model
in both thermodynamic [15] and transport [17] coefficients.
The Kondo temperature TK is of the order of the charging
energy Ec (see Appendix). The effective Hamiltonian (19)
describing scattering in the presence of both Zeeman and SOI
fields has a structure of two copies of the two-channel Kondo
model where coupling constants ωiτ depend on the magnetic
field. Thus, when all reflection amplitudes are different, the
model (19) is characterized by generic FL properties. However,
if accidental degeneracy fine-tuned by the orientation of the
in-plane magnetic field appears, one of the nonidentical copies
of the two-channel Kondo model preserves the NFL properties.

The effects of interplay between the backscattering at
the QPC and Coulomb interaction in the QD can be ac-
counted by the correlator K(τ ) = 〈TτF (τ )F †(0)〉 (see details
in Refs. [16,17]). The operator F (τ ) accounts for the weak
charge quantization in the mesoscopically Coulomb blockaded
QD. Following Ref. [16] we define the charge of QD Q̂ =
e(n̂τ + n̂d ), where n̂τ is an integer valued operator which
commutes with the annihilation operator of the electron in the
dot at the position of the source Ref. [14]. Since by definition
[F (τ ),n̂τ ] = F (τ ), the role of operator F (τ ) is to account
for the effects of interaction in QD: �λ(τ ) = F (τ )�0λ(τ )
where �λ and �0λ correspond to interacting and nonin-
teracting left/right fermions, respectively. Thus, the dressed
Green’s function (GF) G(τ ) = −〈Tτ�λ(τ )�†

λ(0)〉 and free
fermionic Green’s function G0(τ ) = −〈Tτ�0λ(τ )�†

0λ(0)〉 =
−πν0T/ sin(πT τ ) are connected [16] by the simple relation
G(τ ) = K(τ )G0(τ ) (here ν0 is a density of states in QD).
The transport coefficients of the model are determined by the
Green’s function G (see next section).

In order to compute the Green’s functionG (or, equivalently,
compute the correlator K) we define the operator Uτ =
(−1)d

†d where d = (η1 + iη2)/
√

2 and d† = (η1 − iη2)/
√

2.
We keep notations of the Matveev and Andreev work Ref. [16]
for Uτ = 2iη2η1. Notice that the “spin” and charge are
completely disentangled in the correlator K(τ ) = Kc(τ )Ks(τ ).

While Kc(τ ) = π2T e−C/(2Ec| sin(πT τ )|) (see
Refs. [14,16] for details of calculations), the Ks(τ ) in
zeroth order in Hτ (t) − Hτ=0(t) is defined by the correlator,

K (0)
s (τ ) = 〈TtU (τ )U (0)〉0. (24)

Here 〈...〉0 denotes an averaging with (19) taken at τ = 0.
(Notice obvious correspondence η1 → σx/

√
2, η2 → σy/

√
2,

and 2iη2η1 → σz, where σi are spin s = 1/2 operators (i =
x,y,z). Therefore, K0

s (τ ) = 〈Ttσz(τ )σz(0)〉.)
The first nonvanishing order in Hτ (t) − Hτ=0(t) correction

to the correlator Ks(τ ) is given by

K (1)
s (τ ) = −

∫ 1/T

0
dt〈TtH

′
τ (t)U (τ )U (0)〉0, (25)

where the Hamiltonian H ′
τ (t) has the form,

H ′
τ (t) = −2iδχτ (t)(�s sin(πN )η1ς1 − �a cos(πN )η1ζ1

+�ms sin(πN )η2ς2 − �ma cos(πN )η2ζ2). (26)

Here we define four additional Majorana fermions (α = 1,2)
through a k-Fourier transform of the even/odd combinations
of creation/annihilation operators of two species of chiral
fermions cα,k taken at the position of the quantum impurity
y = 0:

ζα =
∫ ∞

−∞
dkζαk = 1√

2

∫ ∞

−∞
dk(cα,k + c

†
α,k),

(27)

ςα =
∫ ∞

−∞
dkςαk = 1

i
√

2

∫ ∞

−∞
dk(cα,k − c

†
α,k).

In order to compute the correlators (24) and (25) we apply the
Wick’s theorem to the product of an even number of fermions
and express the result in terms of the products of the single-
particle GFs. The imaginary time (Matsubara) GFs form a
6 × 6 matrix with 21 independent components (six diagonal
and 15 off-diagonal):

Gηη
μν(τ ) = −〈Tτημ(τ )ην(0)〉, Gζζ

μν(τ ) = −〈Tτ ζμ(τ )ζν(0)〉,
Gςς

μν (τ ) = −〈Tτςμ(τ )ςν(0)〉, Gζς
μν(τ ) = −〈Tτ ζμ(τ )ςν(0)〉,

Gζη
μν(τ ) = −〈Tτ ζμ(τ )ην(0)〉, Gςη

μν(τ ) = −〈Tτςμ(τ )ην(0)〉.
The GF s of the quadratic Anderson-type Hamiltonian (19)
can be found exactly (e.g., by solving equations of motion for
the Majorana fermions). For computing the correlators (24)
and (25) we need only six GFs, namely, two diagonal local
Majorana’s GF (here R denotes the retarded GFs):

G
ηη

11,R(ε) = 1

ε + i�B

, G
ηη

22,R(ε) = 1

ε + i�A

, (28)

and four off-diagonal hybridized GFs:

G
ζη

11,R(ε) = �a sin(πN )2π/vF

ε + i�B

,

G
ςη

11,R(ε) = �s cos(πN )2π/vF

ε + i�B

,

(29)
G

ζη

22,R(ε) = �ma sin(πN )2π/vF

ε + i�A

,

G
ςη

22,R(ε) = �ms cos(πN )2π/vF

ε + i�A

.

Here we denote the resonance widths associated with the
symmetric and antisymmetric combinations of reflection
amplitudes as

�s/ms = �2
s/ms cos2(πN )4π/vF ,

(30)
�a/ma = �2

a/ma sin2(πN )4π/vF .
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Two resonance Kondo widths entering the transport coeffi-
cients are given by

�A = �ms + �ma, �B = �s + �a. (31)

Notice that 10 GFs, namely Gζζ
μν , Gςς

μν , and Gζς
μν do not

depend on the local Majorana fermions describing the quantum
impurity. These GF renormalize the correlations between the
conduction electrons, but do not enter Eqs. (24) and (25).
Another five GFs allowed by the symmetry of the Hamil-
tonian (19) do not appear in Eqs. (24) and (25) due to
specific form of fermionic correlations in the Hamiltonian
H ′

τ (t).

VI. TRANSPORT COEFFICIENTS

The thermoelectric coefficient GT and electric conductance G,

GT = − iπ2GLT

2e

∫ ∞

−∞

sinh(πT t)

cosh3(πT t)
K

(
1

2T
+ it

)
dt, (32)

G = πGLT

2

∫ ∞

−∞

1

cosh2(πT t)
K

(
1

2T
+ it

)
dt, (33)

are here calculated by accounting for interaction effects in
the QD through the correlator K(τ ) defined in the previous
section. The conductance of the barrier between the source and
QD GL = 2πe2ν0νL|t |2 is expressed through Fermi’s golden
rule as a function of the density of states (DoS) of the source
νL, the DoS of the QD ν0, and the weak tunneling amplitude
|t | (Ref. [30]).

The correlator K (0)
s (1/(2T ) + it) defined by (24) is an even

function of time. This correlator determines the behavior of
the electric conductance G, but does not contribute to GT :

G(0) = GL�A�Be−C

32πT Ec

FG

(
�A

T
,
�B

T

)
. (34)

The equation for the thermoelectric coefficient GT is given
by an odd function K (1)

s (1/(2T ) + it) defined by (25):

G
(1)
T = −GL�A�B sin(2πN )

6eπ2Ec

[ |r+r−|
�B

ln

(
Ec

T + �B

)
F

(
�B

T
,
�A

T

)
+ |r±r∓|

�A

ln

(
Ec

T + �A

)
F

(
�A

T
,
�B

T

)]
. (35)

The ratio of GT and G defines the thermoelectric power:

S = −16eC sin(2πN )T

3eπ

[ |r+r−|
�B

ln

(
Ec

T + �B

)
F

(
�B

T
,�A

T

)
FG

(
�A

T
,�B

T

) + |r±r∓|
�A

ln

(
Ec

T + �A

)
F

(
�A

T
,�B

T

)
FG

(
�A

T
,�B

T

)]
. (36)

The functions FG and F universally depend on the ratio of the resonance Kondo widths �A, �B and the temperature:

FG(x,y) =
∫ ∞

−∞

∫ ∞

−∞
dzdz′ [(z + z′)2 + π2]

[(z′)2 + x2][z2 + y2]

1

cosh
(

z
2

)
cosh

(
z′
2

)
cosh

(
z+z′

2

) , (37)

F (x,y) =
∫ ∞

−∞

∫ ∞

−∞
dzdz′ z(z + z′)[(z + z′)2 + π2]

[z2 + x2][(z′)2 + y2]

1

cosh
(

z
2

)
cosh

(
z′
2

)
cosh

(
z+z′

2

) . (38)

VII. RESULTS AND DISCUSSION

A. Four main regimes of thermoelectric transport

The nonperturbative equation for the resonance width �

related to the interband scattering (30) and (31) demonstrates
a weak dependence of � on the magnetic field away from the
CB peaks (see Fig. 3, left panel):

�A ∝ �0
[(

1 − �2
A

)
cos2(πN ) + �2

A

]
, (39)

where �0 = r2
0 Ec, �A(B,ϕ) = b(B/BSOI) sin ϕ, and �2

A =
�2

A + 2c(ϕ)(B/BSOI)2.
In contrast, the resonance width � associated with the

intraband scattering (30) and (31) strongly depends on B at all
gate voltages:

�B ∝ �0
[(

1 − �2
B

)
cos2(πN ) + �2

B

](B cos ϕ

BSOI

)2

. (40)

The �min
B ≡ �B(N = 1

2 ) ∝ �0(B cos ϕ/Bc)2 is a minimal reso-
nance width, �B = δ/k0F , and Bc ∼ D, where D ∼ (m∗a2)−1

is the bandwidth. Thus, Bc corresponds to the field strength that
is necessary to reach full spin polarization of the conduction
channel.

Varying the temperature, gate voltage, amplitude, and
direction of the magnetic field one can achieve four different
regimes of thermoelectric transport (Fig. 3, right panel):

(A) (�A,�B) � T , fully perturbative NFL regime. While
�B is gapped and the gap is �min

B ∼ B2, �A could be gapless

B/BSOI

N
(V

g
)

Γ
/E

c

B/B
SOI

N
(V

g
)

FIG. 3. (Color online) (Left panel) Gate voltage and magnetic
field dependence of �α/Ec: red, �A; blue, �B . (Right panel) A
“phase diagram” as follows: Four main regimes of the thermoelectric
transport are inside the green, red, blue, and magenta domains; A,
perturbative NFL, B, weak partial NFL, C, strong partial NFL, D,
nonperturbative FL (see details in Sec. VII). Domain boundaries are
defined by the crossover condition �A(B,N ) = T and �B (B,N ) =
T . For all plots αR = 0.15vF , ϕ = π/4, r2

0 = 0.1, k0F LQPC = 3.6,
T = 0.05Ec.
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if the gate voltage is fine-tuned to the positions of CB peaks
N → 1/2 and ϕ → 0. The TP (34)–(36) demonstrates finger-
prints of weak NFL logarithmic behavior:

S ∝ r2
0 ln

(
Ec

T

)
sin(2πN ). (41)

(B) �B � T � �A, perturbative in �B/T and nonpertur-
bative in �A/T [see (34)–(36)]. This regime can be reached
either by fine-tuning the gate voltage away from the CB peaks
or by tuning the direction of the Zeeman field to be parallel to
SOI in order to suppress the intraband scattering:

S ∝
[
|r+r−| ln

(
Ec

T

)
+ |r±r∓| T

�A

ln

(
Ec

�A

)]
sin(2πN ).

(42)
The weak NFL effects are manifested in the TP log behavior
originated from the intraband scattering. The interband pro-
cesses result in appreciable FL corrections to the TP (34)–(36).
The NFL effects are weak since the amplitude of intraband
scattering is small at B < BSOI.

(C) �A � T � �B , perturbative in �A/T and nonper-
turbative in �B/T [see (34)–(36)]. This regime is achieved
in the vicinity of CB peaks and characterized by strong
NFL effects due to a weak magnetic field dependence of
|r±| and |r∓| protected by SOI. Thus, by fine-tuning the
orientation of magnetic field perpendicular to SOI ϕ = 0 one
can controllably protect the NFL behavior of TP in the regime
B < BSOI. The magnetic field controlled gap associated with
the intraband scattering weakly depends on the gate voltage
and results in small FL corrections to TP (compared to NFL
effects):

S ∝
[
|r+r−| T

�B

ln

(
Ec

�B

)
+ |r±r∓| ln

(
Ec

T

)]
sin(2πN ).

(43)
(D) T � (�A,�B), FL nonperturbative regime. The NFL

logs associated with the intra- and interband scattering pro-
cesses are cut by the corresponding resonance widths (34)–
(36):

S ∝ T

[ |r+r−|
�B

ln

(
EC

�B

)
+ |r±r∓|

�A

ln

(
EC

�A

)]
sin (2πN ).

(44)
The TP is a linear function of the temperature. However, the
coefficient in front of T strongly depends on both gate voltage
and magnetic field.

B. Possible experimental realization and “smoking gun”
predictions

Choice of a material. We suggest using narrow-gap semi-
conductors, e.g., InSb or InAs for the observation of the
NFL fingerprints in the quantum transport. Both materials
are characterized by large bulk g factors, e.g., |g| ∼ 10 in
InAs (see Ref. [34]) and |g| ∼ 50 in InSb (see Ref. [35]).
The domain of parameters favorable for the observation of the
NFL regime is defined as δ0 < T < γBSOI < Ec < εF , where
δ0 ∼ 1/(ν0VQD) is a single-particle mean-level spacing in the
QD of the size LQD and “volume” VQD: δ2D

0 ∼ �
2/(m∗L2

QD)
and δ3D

0 ∼ (kF LQD)−1
�

2/(m∗L2
QD), m∗ is an effective mass of

the carrier in a semiconductor, and other parameters are defined

in the previous sections. The condition LQD < lSOI allows one
to disregard the effects of the SOI in the QD (Ref. [29]),
while the condition LQPC < lmfp defines a ballistic regime of
quantum transport through the QPC (here lmfp is an elastic
mean-free path).

According to Ref. [35], the parameters for InSb QD-
QPC are as follows: �αR ∼ 0.1 eV Å ÷ 0.2 eV Å, lSOI =
�/(m∗αR) ∼ 200 nm ÷ 400 nm, |m∗| ∼ 0.015me (me is elec-
tron’s mass), ESOI = m∗α2

R/2 ∼ 50μ eV, the typical charg-
ing energy Ec ∼ 1 meV, and typical Fermi velocities are
�vF ∼ 0.5 eV Å ÷ 1 eV Å, while the mean level spacing
δ0 < 10μ eV for LQD ∼ lSOI. The mean-free path of the
QPC of a width dQPC ∼ 10 nm is lmfp ∼ 300 nm ÷ 1 μm.
Typical parameters for the InAs QD-QPC are not much
different [34]: |m∗| ∼ 0.03me, �αR ∼ 0.05 eV Å ÷ 0.3 eV Å,
lSOI ∼ 200 nm ÷ 1 μm, and lmfp ∼ 300 nm ÷ 1 μm. There-
fore, if we assume that LQD ≈ LQPC ∼ 300 nm ÷ 500 nm, our
predictions could be verified at magnetic fields B < 500 mT
and temperatures T ∼ 100 mK ÷ 300 mK for typical densities
of 2DEG n2DEG ∼ 1011 cm−2 ÷ 1012 cm−2. This estimation
for parameters is taken from available literature (to our best
knowledge), but may vary due to anisotropic character of the
g factor which in turn depends on external magnetic field [34]
and may also be strongly reduced in confined geometries of
the nano-structures.

Testing a Mott-Cutler law. The first important test of the
interplay between effects of the SOI and Zeeman field is to
verify the Mott-Cutler (MC) law [33] at external in-plane
magnetic field. The MC law is a standard benchmark for the FL
properties [16]. The MC law says that the TP is proportional
to a log derivative of the electric conductance with respect to
a position of the chemical potential (gate voltage Vg):

S ∝ T

Ec

∂ ln G

∂N (Vg)
. (45)

In the limit T � (�A,�B) � Ec corresponding to the FL
regime we get

∂ ln G

∂N (Vg)
∝ Ec

[ |r+r−|
�B

+ |r±r∓|
�A

]
sin (2πN ), (46)

while the TP is given by (44). Thus, a strong deviation from
the MC law in the FL regime at finite in-plane magnetic fields
is a pre-cursor for the NFL behavior discussed in the paper.
Notice that break down of the MC law indicates that there
exists no equivalent classic electric circuit consisting of the
resistances connected in parallel or in series and therefore the
effects of both intra- and interband scattering play an important
role in the quantum transport. The violation of MC law in the
thermoelectric transport through a single-electron transistor
have been reported in Ref. [19]. We are not aware of existence
of theoretical explanation of this effect in the framework of
the FL theory.

Thermopower in the presence of the external B field. The
next step is to measure the thermopower of a prototype
nanodevice (Fig. 1). The magnitude and orientation of the
in-plane magnetic field can be controlled in a standard way
by four magnetic coils (not shown in the picture). The TP
maximum eSmax(B) demonstrates a nonmonotonic magnetic
field dependence (strong NFL) which is most pronounced
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B/BSOI
ϕ π/2π/4

N N

eS eS

B/BSOI T/Γmin
B

FIG. 4. (Color online) (Top left) eSmax as a function of B/BSOI

for different angles ϕ at T = 0.001Ec and αR = 0.15vF , from top to
bottom ϕ = π/12, π/6, π/3, 5π/12. (Insert) eS(N ) for ϕ = 5π/12
for B = 0.5BSOI (black), B = BSOI (red), B = 1.5BSOI (green). (Top
right) eSmax as a function of the angle ϕ for different amplitudes
of B/BSOI at αR = 0.15vF and T = 0.001Ec from top to bottom:
B/BSOI = 0.6, 0.8, 1.0, 1.2. (Insert) eS(N ) for ϕ = 5π/12, B =
0.5BSOI, T = 0.001 (black), 0.01 (red), 0.1 (blue). (Bottom left)
eSmax as a function of B/BSOI for different T/Ec at αR = 0.15vF

and ϕ = π/6; T/Ec = 10−1, blue (regime A); 10−2, green (crossover
A → C); 10−3, red (B → D → C); 10−4, black (B → D). (Bottom
right) eSmax as a function of T/�min

B [�min
B = �B (1/2)] with αR =

0.15vF , B = 0.5BSOI, for ϕ = 5π/12 (black), ϕ = π/3 (red), ϕ =
π/6 (green), ϕ = π/12 (blue), (r2

0 = 0.1 and k0F LQPC = 3.6).

when �B is orthogonal to �BSOI (black curve on Fig. 4, top
left and right panels.) This has to be contrasted to almost
monotonic TP maximum behavior (blue curves) characteristic
for weak NFL-FL regimes. The nonmonotonic behavior of
TP maximum as a function of magnetic field is a central
prediction of our paper. The nonmonotonicity indicates that
the NFL regime of TP is protected by SOI contrast to
FL-like behavior demonstrating rapid decrease of TP when
magnetic field increases [17]. Another indication of the NFL
behavior is attributed to the gate voltage dependence (Fig. 4
inserts). According to [16,17] it is characterized by strongly
nonsinusoidal form (Fig. 4 inserts). The TP maximum at
zero field, NFL regime, scales according to [16] as eSmax ∼
r0

√
T/Ec ln(Ec/T ). The TP maximum in the FL regime

scales as eS ∼ T/Teff with Teff/Ec = B/Bc ln−1(Bc/(B|r0|)
(Ref. [17]). The B-field dependence of the TP maximum
measured at different temperatures (Fig. 4, left bottom panel)
allows one to distinguish between four main regimes A–D
discussed in the previous subsection. This measurement can
be used for identification of crossovers between different
domains. The TP maximum depends linearly on T in the
FL regime for T < �min

B = �B(N = 1/2) (Ref. [17]). This
regime holds for ϕ → π/2. In contrast to the FL regime, the
temperature dependence of the TP maximum pronouncedly
departs from the linear behavior (see Fig. 4, right bottom
panel) when ϕ is detuned from π/2. We suggest testing
experimentally this effect as a benchmark for the NFL physics.

VIII. SUMMARY AND CONCLUSIONS

We have demonstrated that the theory describing scattering
of electrons characterized by two orbital degrees of freedom
on a spin s = 1/2 quantum impurity (two channel Kondo
model) is strongly modified in the presence of both appreciable
spin-orbit interaction and Zeeman splitting. It is shown that,
on the one hand, the lack of spin conservation due to SOI
leads to the appearance of new (extra) scattering channels
which potentially enhance the thermoelectric transport. On the
other hand, the Zeeman splitting produces nonzero resonance
width of Majorana modes describing the quantum impurity
and thus suppresses the NFL effects. The interplay between
these two tendencies can be controlled by fine-tuning the angle
between Zeeman and SOI fields. Our calculations predict a
strong dependence of the thermoelectric power on the angle
between �B and �BSOI and thus open the possibility of controling
the scattering mechanism by changing between four, three
or two independent scattering processes. While the cases of
four and two weak back-scattering do favor the FL behavior,
the additional degeneracy in scattering amplitudes appearing
for three scattering models due to SOI effects protects the
NFL behavior for the range of magnetic fields B < BSOI.
We conclude therefore, that SOI can indeed protect the NFL
against the destructive effects associated with breaking of
channel symmetry.

ACKNOWLEDGMENTS

We are grateful to J. C. Egues, V. Fal’ko, L. Glazman,
K. Kikoin, A. Komnik, S. Ludwig, C. Marcus, K. Matveev,
L. W. Molenkamp, and O. Starykh for illuminating discus-
sions. T.K.T.N. acknowledges support through the short-term
visiting program of ICTP. This research in Hanoi is funded
by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under the Grant No. 103.01-
2014.24.

APPENDIX: EFFECTIVE HAMILTONIAN

1. Backscattering: from fermions to bosons

The backscattering Hamiltonian mixes the left- and right-
moving fermions:

HBS = vF

∑
λμν

|rμν |[�†
λ,μ(0)�λ̄,ν(0) + H.c.]. (A1)

The Hamiltonians Eqs. (3) and (4) of the main text and
the Hamiltonian (A1) can be bosonized [31,32] in terms of
dual fields φν(y) and θν(y) satisfying commutation relations
[φν(y),θμ(y ′)] = −iπδνμsgn(y − y ′)/2 (Refs. [31,32]):

�λ,ν(y) = uλ,ν√
2πa

eiλkν
F y exp{i[−λφν(y) + θν(y)]}, (A2)

where uλ,ν are Klein factors [31,32] introduced to ensure
proper anticommutation relations between the right- and
left-moving fermions.

Using a standard procedure [31,32] we introduce
the symmetric (charge) and antisymmetric (“spin”)
dual variables φc,s(y) = [φ+(y) ± φ−(y)]/

√
2 and θc,s(y) =

[θ+(y) ± θ−(y)]/
√

2 satisfying the commutation relations
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[φc/s(y),θc/s(y ′)] = −iπsgn(y − y ′)/2 (notice that we still
refer to the antisymmetric in the band index bosonic field
as “spin”). We rewrite the backscattering Hamiltonian (A1) in
terms of the charge and spin bosonic fields as follows:

HBS = −2D

π
(rs cos[

√
2φc(0)] cos[

√
2φs(0)]

+ ra sin[
√

2φc(0)] sin[
√

2φs(0)]

+ rms cos[
√

2φc(0)] cos[
√

2θs(0)]

+ rma sin[
√

2φc(0)] sin[
√

2θs(0)]), (A3)

where rs = ||r+| + |r−||/2, ra = ||r+| − |r−||/2, rms =
||r±| + |r∓||/2, rma = ||r±| − |r∓||/2.

2. Backscattering: Majorana fermions

As a first step we replace the charge mode by its mean
value averaged over fast charge degrees of freedom using the
functional integral technique developed in Ref. [16] and obtain
the Hamiltonian:

Hτ (t) = vF

2π

∫ ∞

−∞
{[∂yθs(y)]2 + [∂yφs(y)]2}dy

−
√

4D

vF

(ωsτ (t) cos[
√

2φs(0)]+ωaτ (t) sin[
√

2φs(0)]

+ωmsτ (t) cos[
√

2θs(0)] + ωmaτ (t) sin[
√

2θs(0)]),

(A4)

where we use the notations (20) and (21) of the Sec. V.

As a next step we introduce the even and odd combina-
tions of the “spin” (aka sub-band) bosonic fields φe/o(y) =
[φs(y) ± φs(−y)]/

√
2, θe/o(y) = [θs(y) ± θs(−y)]/

√
2. As a

result, we obtain new chiral fields 1/2(y) = θo/e(y) − φe/o(y)
satisfying the commutation relations: [α(y),α′ (y ′)] =
iπδαα′sgn(y − y ′) where α,α′ = 1,2. We define new
fermionic fields �α(y) = (ηα/

√
2πa) exp (−iα(y) with

a help of two local Majorana fermions η1 = (d +
d†)/

√
2 and η2 = (d − d†)/(i

√
2) representing the quantum

impurity [16].
Finally, we integrate out the fluctuations of the spin degree

of freedom with the frequencies exceeding Ec (Ref. [16]). This
procedure is equivalent to the poor man’s scaling approach
originally used for the Kondo problem [36] and leads to
replacement of the bandwidth D by the new bandwidth
TK ∼ Ec. As a result, we derive the effective Anderson
model which describes a hybridization of two local Majorana
fermions η1 and η2 with two species of conduction electrons.
The effective Hamiltonian (19) has a structure of two copies of
the two-channel Kondo model where coupling constants ωiτ

depend on both Zeeman and SOI fields:

Hτ (t) =
∫ ∞

−∞
dk

[ ∑
α=1,2

(kvF )c†α,kcα,k

−
√

2(ωsτ (t)η1(c1,k − c
†
1,k) − iωaτ (t)η1(c1,k + c

†
1,k)

+ωmsτ (t)η2(c2,k − c
†
2,k)−iωmaτ (t)η2(c2,k+c

†
2,k))

]
.

(A5)
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