
PHYSICAL REVIEW B 85, 155311 (2012)

Exact solution for spin and charge correlations in quantum dots: Effect of level fluctuations
and Zeeman splitting
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The inclusion of charging and spin-exchange interactions within the universal Hamiltonian description of
quantum dots is challenging as it leads to a non-Abelian action. Here we present an exact analytical solution to
the problem, in particular, in the vicinity of the Stoner instability. We calculate the tunneling density of states
and the spin susceptibility. We demonstrate that near the Stoner instability the spin susceptibility follows a Curie
law with an effective spin. The latter depends logarithmically on temperature due to the statistical fluctuations
of the single-particle levels. Near the Stoner instability the tunneling density of states exhibits a nonmonotonous
behavior as a function of the tunneling energy, even at temperatures higher than the exchange energy. This is
due to enhanced spin correlations. Our results could be tested in quantum dots made of nearly ferromagnetic
materials.
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I. INTRODUCTION

The study of quantum dots (QDs) is at the cutting edge of
modern condensed matter physics. The introduction1,2 of the
universal Hamiltonian (UH) made it possible under not severe
assumptions to describe a variety of QDs by means of an
effective zero-dimensional Hamiltonian with a few physical
parameters. In particular, the UH allows one to simplify
the intricate electron-electron interactions within a QD in a
controlled way.

Within the framework of the UH electron-electron interac-
tion is represented as the sum of three spatially independent
terms: charging (singlet particle-hole channel), spin-exchange
(triplet particle-hole channel), and interaction in the Cooper
channel. The latter is responsible for superconducting correla-
tions in QDs. In what follows, we shall assume that the Cooper
channel is suppressed, for example, by the orbital effect of a
weak magnetic field. The charging term is responsible for
the well-known phenomenon of the Coulomb blockade.3 It is
broadly known that in the presence of significant ferromagnetic
spin-exchange interaction, bulk systems can undergo a Stoner
transition from para- to ferromagnetic materials. In the case
of QDs physics is richer.2 One distinguishes three regimes
of behavior as a function of the increased strength of the
ferromagnetic exchange interaction (J > 0): (i) paramagnetic
(the total spin in the ground state is zero); (ii) mesoscopic
Stoner regime (finite total spin in the ground state whose
value increases stepwise with the exchange); and (iii) ther-
modynamic ferromagnetic phase (the total spin in the ground
state is proportional to the volume of a QD). The mesoscopic
Stoner regime disappears in the thermodynamic limit: δ → 0,
where δ is the mean spacing between single-particle energy
levels in a QD. The mesoscopic Stoner regime is sensitive to
the statistical fluctuations of single-particle levels2 and to the
presence of the Zeeman splitting.4 The former enhances the
total spin in the ground state whereas the latter suppresses
the mesoscopic Stoner instability. To take both effects into

account simultaneously calls for a full-fledged quantum
mechanical treatment of the problem.

At first glance, the UH with charging and spin-exchange
interaction terms is easy to solve. All its three parts (free
electron term, charging term, and spin-exchange term) com-
mute with each other. It allows one to work in a basis of
states classified by the total number of electrons and the
total spin.5–7 However, this approach requires calculation of
Clebsch-Gordan coefficients which is not an easy task. In this
way Alhassid and Rupp5 have found an exact solution for the
partition function in the absence of Zeeman splitting. Elements
of their analysis were then incorporated into a master equation
analysis of electric5,6 and thermal8 transport through a QD
at low temperatures T � δ. Independently, a study of electron
transport through a QD for the same temperature range, T � δ,
was made by Usaj and Baranger.9 Their analysis, accounting
for the charging and exchange interactions, was based on a
master equation approach as well.

A more traditional way to tackle an interacting problem
is to employ the Hubbard-Stratonovich transformation. The
latter reduces the interacting problem to the problem of
noninteracting electrons in the presence of a dynamical
(time-dependent) external field (see, e.g., Ref. 10). For the
case of the UH with the charging interaction only such a
dynamical external field can be removed by a suitable gauge
transformation of fermionic operators. This method was first
employed by Kamenev and Gefen11 and resulted in the exact
solution of the problem.12,13 The gauge transformation can
also be treated by means of stochastic (Langevin) equations.
A corresponding stochastic bosonization approach based on
construction and solution of Fokker-Plank equations was used
in Ref. 14 to solve exactly the UH with the charging and
Ising-spin-exchange interactions.

In the case of an isotropic spin-exchange interaction the
Hubbard-Stratonovich transformation results in the effective
action which describes electrons with a dynamical time-
dependent magnetic field θ (t) acting on their spins.15 Solving
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this non-Abelian effective action is an intricate problem. One
needs to tackle time-ordered exponents of the form,

T exp

(
i

∫ t

0
dt ′ θ (t ′)s(t ′)

)
, (1)

where s represents an electron spin and T is a time-ordering
operation. To avoid the problem of the time ordering the
UH with anisotropic spin-exchange interaction was consid-
ered, and perturbation expansion around the Ising point was
performed.15

Here we present an exact analytic algorithm to tackle the
challenging problem of the UH with charging and isotropic
spin-exchange interactions in the presence of Zeeman spliting.
To solve the problem of a time-ordered exponent we employ
here a Wei-Norman-Kolokolov (WNK) transformation.16,17

Wei and Norman,16 addressing the problem of a quantum
spin subject to a prescribed classical time-dependent magnetic
field, have elegantly shown that by preforming a nonlinear
transformation from θ to a set of new variables, the time-
ordered exponent (1) can be written as a product of three
ordinary exponents [cf. Eq. (24)]. Even so, that problem could
not be solved in a closed form in general. To find the relation
between new variables and θ one has to solve the Riccati
equation. Although the problem of a dynamical magnetic field
seems to be even more intricate, in fact, as it was shown by
Kolokolov,17 it is simpler. In this case, one needs to know
the Jacobian for the nonlinear transformation only. Then, the
functional integration over new variables can be performed
exactly.

We thus present here exact analytic results for the partition
function [cf. Eq. (57)] and the tunneling density of states [cf.
Eq. (76)] for the UH with charging and isotropic spin exchange
interactions in the presence of Zeeman spliting. We emphasize
that our results are valid for arbitrary parameters of the UH.

In the mesoscopic Stoner regime, near the Stoner instability,
δ − J � δ, our general results can be drastically simplified.
We find that in a wide temperature range δ � T � δJ/(δ − J )
the average zero-field spin susceptibility behaves according to
the Curie law with a large effective spin which depends on
temperature logarithmically [cf. Eq. (107)]. The latter is the
effect of statistical fluctuations of single-particle levels. A tiny
magnetic field B ∼ √

JT (1 − J/δ)/gμB is enough for the
average spin susceptibility to become temperature independent
Fermi-liquidlike [cf. Eq. (111)]. Here g and μB stand for the
g factor and the Bohr magneton, respectively. We find that
enhanced spin correlations resulting in a large total spin in the
ground state of a QD in the mesoscopic Stoner regime near the
Stoner instability, δ − J � δ, can be observed as additional
(to the Coulomb blockade) nonmonotonic behavior in the
tunneling density of states (TDOS) at high temperatures δ �
T � δJ/(δ − J ). Magnetic field suppresses the spin-related
nonmonotonic behavior of the TDOS. We mention that some
of the results were published in a brief form in Ref. 18. Our
main new results concern the effect of Zeeman splitting [cf.
Eqs. (76) and (137)] and of disorder [cf. Eqs. (98), (106), (111),
and (113)].

The physics discussed in the current work can be tested in
QDs made of materials close to the thermodynamic Stoner
instability, for example, Co impurities in a Pd or Pt host,
Fe or Mn dissolved in various transition-metal alloys, Ni

impurities in a Pd host, and Co in Fe grains, as well as
new nearly ferromagnetic rare-earth materials.19–21 Possibly,
the intriguing magnetic behavior observed recently in Pd
nanoparticles capped with different protective systems22 is
related to the physics of mesoscopic Stoner regime.

The outline of the paper is as follows. In Sec. II we
introduce the UH, subsequent imaginary time action, and
partially disentangle charge and spin degrees of freedom in
the problem. In Sec. III we introduce the WNK transformation
to solve the problem of spin dynamics. In Secs. IV and V with
the help of the WNK transformation we derive exact analytic
expressions for the grand canonical partition function and for
the TDOS corresponding to the UH in the presence of Zeeman
splitting and for a given realization of single-particle levels.
The analysis presented in Sec. VI incorporates the effect of
disorder. In Secs. VI A–VI C we present a rigorous analysis
of the effect of level fluctuations on the spin susceptibility.
The latter is modified by disorder in a strong and significant
manner. We refer the less initiate reader to a semiqualitative
derivation of our results for the average spin susceptibility
(Sec. VII). In Sec. VIII we discuss the dependence of the TDOS
on energy, temperature, and magnetic field. The effect of level
fluctuations on the TDOS is semiqualitatively discussed in Sec.
IX. We conclude the paper with summary of the main results,
and brief comments of the amenability of our predictions to
experimental tests (Sec. X).

II. FORMALISM

A. Universal Hamiltonian

We consider a quantum dot of linear size L in the so-called
metallic regime, whose dimensionless conductance gTh =
ETh/δ � 1. Here ETh is the Thouless energy. We account
for the following terms of the universal Hamiltonian2:

H = H0 + HC + HS, H0 =
∑
α,σ

εα,σ a†
α,σ aα,σ . (2)

Here, εα,σ denotes the spin-dependent (σ ) single-particle
levels. In what follows, we shall assume that the magnetic
field B is applied and εα,σ = εα + gμBBσ/2.

The charging interaction,

HC = Ec (n̂ − N0)2 , (3)

accounts for the Coulomb blockade. Here,

n̂ ≡
∑

α

n̂α =
∑
α,σ

a†
α,σ aα,σ (4)

is the particle number operator, and N0 represents the back-
ground charge. The term,

HS = −J S2, (5)

represents spin interactions within the dot. Here,

S =
∑

α

sα = 1

2

∑
ασσ ′

a†
α,σ σ σσ ′aα,σ ′ (6)

denotes the operator of the total spin of electrons on the dot,
with the components of σ comprising the Pauli matrices.
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We stress that we do not consider the interaction in the
Cooper channel in the UH (2). For QDs fabricated in two-
dimensional (2D) electron gas the interaction in the Cooper
channel is typically repulsive and, therefore, renormalizes to
zero.1 In the absence of spin-orbit interaction the parallel
magnetic field does not affect the orbital motion of electrons in
a QD (we neglect the effect due to a finite width of 2D electron
gas). In this case the statistics of single-particle energies εα can
be described either by the orthogonal Wigner-Dyson ensemble
(class AI) or by the unitary Wigner-Dyson ensemble (class
A).23,24 The latter is achieved in a weak perpendicular magnetic
field B⊥ � Bc = �0/(L2√gTh) where �0 denotes the flux
quantum. In the case of three-dimensional (3D) quantum dots
realized as small metallic grains, the interaction in the Cooper
channel can be attractive, giving rise to superconducting
correlations. In this case we assume that there is a weak
magnetic field B � Bc which suppresses the Cooper channel.
Therefore, the level statistics is described by the unitary
Wigner-Dyson ensemble.

The imaginary time action for the system (2) reads

Stot =
∫ β

0
Ldτ =

∫ β

0

[∑
α

	α(∂τ + μ)	α − H

]
dτ, (7)

where μ is the chemical potential, β = 1/T , and we have
introduced the Grassmann variables 	α = (ψ̄α↑,ψ̄α↓)T ,	α =
(ψα↑,ψα↓) to represent electrons on the dot.

Employing the Hubbard-Stratonovich transformation leads
to a bosonized form,

L =
∑

α

	α

[
∂τ − εα − gμBB

2
σz + μ + iφ + σ · �

2

]
	α

+�2

4J
+ φ2

4Ec

− iN0φ, (8)

where φ and � are scalar and vector bosonic fields, re-
spectively. The SU (2) non-Abelian character of the action
poses a serious difficulty. In the presence of the charging
interaction only [Abelian U (1) case] the problem can be
solved by performing a gauge transformation.11–13 For the
case of the charging interaction and spin-exchange interaction
of the Ising type [Abelian U (1) × U (1) case] the problem
also can be solved by a gauge transformation.14,15 In the
non-Abelian U (1) × SU (2) case, we start from performing
a gauge transformation in the charging sector only.

B. Partial disentanglement of spin and charge

Our aim is to compute the grand partition function Z =
Tr exp(−βH + μβn̂) and Green’s function in the Matsubara
time domain,

Gα,σ1,σ2 (τ1,τ2) = −Tτ

Traα,σ1 (τ1)a†
α,σ2

(τ2)e−βH+μβn̂

Tre−βH+μβn̂
. (9)

Here, Tτ denotes a time-ordering operation along Matsubara
time. In the Lagrangian formalism, the Green’s function can
be written as

Gα(τ1,τ2) = − 1

Z
Tτ

∫
D[	,	,φ,�]	α(τ1)	α(τ2)e−Stot ,

Z =
∫

D[	,	,φ,�] e−Stot . (10)

Let us split the field φ(τ ) as

φ(τ ) = φ̃(τ ) + 2πmT + φ0,

∫ β

0
dτ φ̃(τ ) = 0, (11)

where the static component of φ(τ ) obeys inequality |φ0| �
πT . Then the part φ̃(τ ) + 2πmT of φ(τ ) can be gauged away
(see Refs. 11–15 for details). The Green’s function becomes

Gα(τ12) =
∫ πT

−πT

dφ0

2πT

Z(φ0)

Z
D(τ12,φ0)Gα(τ12,φ0), (12)

Z =
∫ πT

−πT

dφ0

2πT
D(0,φ0)Z(φ0), (13)

where τ12 ≡ τ1 − τ2. The so-called Coulomb-boson propaga-
tor reads

D(τ,φ0) = e−Ec |τ |(1−|τ |/β)
∑
k∈Z

eiφ0(βk+τ )e−βEc(k−N0+τ/β)2
.

(14)

The Green’s function Gα(τ12,φ0) on the right-hand side of
Eq. (12) is defined as

Gα(τ12,φ0) = −Tτ

∫ D[	,	,φ,�]

Z(φ0)
	α(τ1)	α(τ2)e−S ,

(15)
Z(φ0) =

∫
D[	,	,φ,�] e−S .

Here the action,

S =
∫ β

0
dτ
∑

α

	α

[
∂τ − εα + μ + iφ0 + σ · �

2

]
	α

+ 1

4J

∫ β

0
dτ �2. (16)

It can be formally rewritten as

S =
∫ β

0

[∑
α

	α∂τ	α − H
]

dτ, H = H0 + HS, (17)

where H0 is given by H0 [Eq. (2)] in which εα,σ is replaced by
ε̃α,σ = εα,σ − μ + iφ0:

H0 =
∑
α,σ

ε̃α,σ a†
α,σ aα,σ . (18)

Remarkably, the charge and spin degrees of freedom are almost
disentangled in the action S. The latter involves only the
exchange interaction HS . The remnant traces of the charging
interaction HC are encoded in the variable φ0, leading to a
small imaginary shift of the chemical potential.

III. WEI-NORMAN-KOLOKOLOV TRANSFORMATION

The evaluation of the Green’s function Gα(τ12) is more
convenient to perform in the Hamiltonian formalism. Then it
can be written as

Gασ1σ2 (τ ) = 1

Z

{−Kασ1σ2 (−iτ, − iτ + iβ), τ > 0,

Kασ1σ2 (−iτ − iβ, − iτ ), τ � 0.
(19)

Here Z = Tr exp(−βH) and we introduce

Kασ1σ2 (t+,t−) = Tre−it+Ha†
α,σ2

eit−Haα,σ1 . (20)
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Next, using the following set of transformations for the
evolution operator (we recall that H0 and HS commute), we
write

e∓itJ S2 = lim
N→∞

N∏
n=1

e∓itJ S2/N

= lim
N→∞

N∏
n=1

∫
dθn e± i

4J
tθ2

n/N
∏
α

eitθnsα/N

=
∫

D[θ] e± i
4J

∫ t

0 dt ′ θ2
∏
α

T ei
∫ t

0 dt ′ θ sα , (21)

and obtain

Kασ1σ2 (t+,t−)

=
∏
p=±

∫
D[θp]e− ip

4J

∫ tp

0 dt ′ θ2
p

× Tr

[
e−it+H0

∏
γ

A(+)
γ a†

α,σ2
eit−H0

∏
η

A(−)
η aα,σ1

]
. (22)

Here we have introduced the bosonic fields θp, p = ±, and

A(p)
α = T exp

(
i

∫ tp

0
dt ′ θpsα

)
. (23)

In Eq. (21) we have missed the correct normalization
factor (depending on J ) because in the Hubbard-Stratonovich
decoupling we were not pedantic enough concerning the
normalization factor. For the computation of the Green’s
function it is irrelevant due to the cancellation of normalization
factors. For the partition function we restore it later on by
comparison with known limiting cases. Note that while H
is time independent, the factors A(p)

α involve time order-
ing (T ). This is due to the noncommutativity of the spin
operators sα .

In order to overcome the intricacy of time ordering we apply
the WNK transformation16,17 of variables in the functional
integral (22) (see Appendix A for details):

θz
p = ρp − 2κp

p κ−p
p ,

θx
p − ipθ

y
p

2
= κ−p

p ,

(24)
θx
p + ipθ

y
p

2
= −ipκ̇p

p + ρpκp
p − (

κp
p

)2
κ−p

p .

Here new variables ρ+,κ+
+ ,κ−

+ correspond to θ+ whereas new
variables ρ−,κ−

− ,κ+
− are introduced instead of θ−.

The WNK transformation recasts the time-ordered expo-
nent as a product of simple Abelian ones:

A(p)
γ = exp

[
pŝ−p

γ κp
p (tp)

]
exp

[
iŝz

γ

∫ tp

0
dt ′ρp(t ′)

]
× exp

[
iŝp

γ

∫ tp

0
dt ′κ−p

p (t ′)e−ip
∫ t ′

0 dτρp(τ )dt ′
]
. (25)

Here s±
γ = sx

γ ± is
y
γ , and we employ the initial condition

κ
p
p (0) = 0 (the origin of this initial condition is discussed

in Appendix A). We stress that Eqs. (24) and (25) are valid
for a general spin operator. Originally, the field variables θp

were real, but before the change of variables (24) we have

rotated the contour of integration in the complex plane. This
procedure does not interfere with convergence of the Gaussian
integrals. In order to preserve the number of field variables
(three) we impose the following constraints on the otherwise
arbitrary new complex variables: ρp = −ρ∗

p and κ+
p = (κ−

p )∗.
The Jacobian of the Wei-Norman-Kolokolov transformation
(24) is given as (see Appendix A)

J =
∏
p=±

exp

(
ip

2

∫ tp

0
dt ρp(t)

)
. (26)

In terms of new variables the quantity Kασ1σ2 (t+,t−) can be
then rewritten as

Kασ1σ2 (t+,t−)

=
∏
p=±

∫
D
[
ρp,κ±p

p

]
e

p

4iJ

∫ tp

0 dt(ρ2
p−4ipκ̇

p
p κ

−p
p )

× e
ip

2

∫ tp

0 dtρp(t)Cασ1σ2 (t+,t−)
∏
γ �=α

Bγ (t+,t−), (27)

with Cασ1σ2 and Bγ given in terms of single-particle traces:

Cασ1σ2 = Tr
[
e−iĥα t+A(+)

α (t+)a†
α,σ2

eiĥα t−A(−)
α (t−)aα,σ1

]
,

(28)
Bγ = Tr

[
e−iĥγ t+A(+)

γ (t+)eiĥγ t−A(−)
γ (t−)

]
.

Here ĥα = ∑
σ ε̃α,σ n̂α,σ . The expression forZ can be obtained

from Eq. (27) by the substitution of Bα for Cασ1σ2 :

Z =
∏
p=±

∫
D
[
ρp,κ±p

p

]
e

p

4iJ

∫ tp

0 dt(ρ2
p−4ipκ̇

p
p κ

−p
p )

× e
ip

2

∫ tp

0 dtρp(t)
∏
γ

Bγ (t+,t−). (29)

Simplifying expression (25) with the help of identity
(ŝp

γ )2 = 0 (valid for spin 1/2) and evaluating the single-particle
traces, we find the following result:

Bγ = 1 + e−2iε̃γ (t+−t−)

+ 2e−iε̃γ (t+−t−) cos

[
1

2

∑
p=±

∫ tp

0
dtρ̃p(t)

]

+
∏
p=±

e−ipε̃γ tp exp

[
ip

2

∫ tp

0
dtρ̃p(t)

]

×
[
pκ̃p

p (tp) + i

∫ t−p

0
dt κ̃

p
−p(t)eip

∫ t

0 dt ′ρ̃−p(t ′)
]
. (30)

Here the presence of Zeeman splitting is taken into account by
means of the variables (b = gμBB):

ρ̃p(t) = ρp(t) − pb, κ̃
p
±p(t) = κ

p
±p(t)e±ibt . (31)

The evaluation of the single-particle traces yields the following
nontrivial matrix structure of Cα in the spin space:

Cα↑↑ = e−2iε̃α t+
∑
p=±

eiε̃α tp e
ip

2

∫ tp

0 dtρ̃p(t),

Cα↑↓ = e−2iε̃α t+

[
ieiε̃α t+e

i
2

∫ t+
0 dtρ̃+(t)

∫ t+

0
dt ′κ̃−

+ (t ′)

× e−i
∫ t ′

0 dτ ρ̃+(τ ) + eiε̃α t− κ̃−
− (t ′)e− i

2

∫ t−
0 dtρ̃−(t)

]
,
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Cα↓↑ = e−2iε̃α t+

[
− ieiε̃α t−e− i

2

∫ t−
0 dtρ̃−(t)

∫ t−

0
dt ′κ̃+

− (t ′)

× ei
∫ t ′

0 dτ ρ̃−(τ ) + eiε̃α t+ κ̃+
+ (t ′)e

i
2

∫ t+
0 dtρ̃+(t)

]
,

Cα↓↓ = e−2iε̃α t+
∑
p=±

eiε̃α tp e− ip

2

∫ tp

0 dtρ̃p(t)

[
1 + ipκ̃p

p (tp)

× eip
∫ tp

0 dtρ̃p(t)
∫ tp

0
dt ′κ̃−p

p (t ′)e−ip
∫ t ′

0 dτ ρ̃p(τ )

]
. (32)

We emphasize that the WNK transformation explicitly breaks
the symmetry Sz → −Sz together with b → −b. For example,
Cα↓↓ cannot be obtained from Cα↑↑ by reversing the sign
of magnetic field b. We shall see below how the symmetry
restores.

IV. EXACT EXPRESSION FOR THE
PARTITION FUNCTION

The partition function Z is given by Eq. (29). We start from
integration over the fields κ

p
p and κ

p
−p. The expression (30) for

Bγ is the bilinear form of the fields κ
p
p and κ

p
−p. By using the

following identity,

x = −
∮

|z|=1

dz

2πi

e−zx

z2
, (33)

we rewrite Eq. (29) as

Z =
∏
p=±

∫
D
[
ρp,κ±p

p

]
e− ip

4J

∫ tp

0 dt(ρ2
p−4ipκ̇

p
p κ

−p
p −2Jρp(t))

×
(∏

γ

∮
|zγ |=1

idzγ

2πz2
γ

)
exp

(
−
∑

γ

zγBγ (t+,t−)

)
.

(34)

Then the functional integral over the fields κ
±p
p becomes

Gaussian. As shown in Appendix B, due to the specific form
of the initial conditions, they have simple dynamics and can
be integrated out exactly. The result is

Z = J 2

(∏
p=±

∫
D[ρp]e− ip

4J

∫ tp

0 dtρ2
p+ ip

2

∫ tp

0 dtρp(t)

)

×
(∏

γ

∮
|zγ |=1

idzγ

2πz2
γ

)
e−w−2v cos[ 1

2

∑
p=±

∫ tp

0 dtρ̃p(t)]

×
∫ ∞

0
dy exp

[
−y − iJy

( ∏
p=±

e
ip

2

∫ tp

0 dtρp

)

×
(

v
∑
p=±

pe
ipb

2 (t+−t−)
∫ tp

0
dt e−ip

∫ t

0 dt ′ρp(t ′)
)]

, (35)

where

w =
∑

γ

zγ [1 + e−2iε̃γ (t+−t−)],

(36)
v =

∑
γ

zγ e−iε̃γ (t+−t−).

To transform Eq. (35) to more standard form, let us
introduce new variables:

ξp(t) = ip

∫ t

0
dt ′ρp(t ′) + ξp(0). (37)

Here ξp(0) is an arbitrary constant. Then the partition function
Z can be written as

Z = J 2

(∏
γ

∮
|zγ |=1

idzγ

2πz2
γ

)∫ ∞

0
dy e−y−w

[ ∏
p=±

∫
D[ξp]

× exp

(
ip

∫ tp

0
dt Lp + ξp(tp) − ξp(0)

2

)]

× exp

{
−2v cosh

(∑
p=±

p

2
[ξp(tp) − ξp(0) − ibtp]

)}
.

(38)

The functional integral over fields ξp in Eq. (38) is of the
Feynman-Kac type. The quantity,

Lp = 1

4J
ξ̇ 2
p − Jyv

(∏
q=±

e
ξq (tq )+pqξq (0)+ipbqtq

2

)
e−ξp , (39)

plays a role of Lagrangian. It is convenient to perform a shift
of variables ξp and introduce new variables,

ξ̃p(t) = ξp(t) − 1

2

∑
q=±

[ξq(tq) + pqξq(0) + ipbqtq]. (40)

Then the expression for the partition function Z acquires
exactly the same form as given in Eq. (38) with the follow-
ing substitutions: ξp(tp) → ξ̃p(tp), ξp(0) → ξ̃p(0), Lp → L̃p,
where

L̃p = 1

4J
˙̃ξ

2

p − J

4
e−ξ̃p . (41)

We mention that the new variables ξ̃p are, in fact, independent
of the values of ξp(0). They obey the following constraints:∑

p=±
ξ̃p(tp) + 2 ln 4yv = 0, (42)∑

p=±
p[ξ̃p(0) + ibtp] = 0. (43)

In what follows we shall omit the tilde signs on the variables
ξ̃p. At this point it is convenient to express Eq. (38) in terms of
matrix elements for the one-dimensional quantum mechanics
with the Hamiltonian,

HJ = −J
∂2

∂ξ 2
+ J

4
e−ξ . (44)

Then the partition function Z becomes

Z =
(∏

γ

∮
|zγ |=1

idzγ

2πz2
γ

)∫ ∞

0

J 2dy

4yv
e−y−w

( ∏
p=±

∫
dξpdξ ′

p

× e−ξ ′
p/2

)
δ

(∑
p=±

ξp + 2 ln 4yv

)
δ

(∑
p=±

p[ξ ′
p + ibtp]

)
× e−2v cosh[(ξ+−ξ−)/2]〈ξ+|e−iHJ t+|ξ ′

+〉〈ξ ′
−|eiHJ t−|ξ−〉. (45)
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The Hamiltonian HJ of the one-dimensional quantum me-
chanics is exactly solvable. Its eigenfunctions are spanned by
modified Bessel functions K2iν :

〈ν|ξ 〉 = 2

π

√
ν sinh(2πν)K2iν(e−ξ/2), (46)

where ν is a real parameter. The corresponding eigenvalues of
HJ are equal to Jν2: HJ |ν〉 = Jν2|ν〉.

Next we perform integration over y in Eq. (45). Then with
the help of the following identity (see formula 6.794.11 on
p. 794 of Ref. 25):∫ ∞

0
dν ν sinh(2πν)K2iν(e−ξ+/2)K2iν(e−ξ−/2)K2iν(2v)

= π2

16
exp

(
− 1

4v
e− ξ++ξ−

2 − 2v cosh
ξ+ − ξ−

2

)
, (47)

we integrate over ξp and obtain

Z = 2J 2

π2

(∏
γ

∮
|zγ |=1

idzγ

2πz2
γ

)
e−w

v

∫ ∞

0
dν ν sinh(2πν)

×K2iν(2v)

(∏
p=±

∫
dξ ′

p e−ξ ′
p/2K2iν(e−ξ ′

p/2)

)

× δ

(∑
p=±

p[ξ ′
p + ibtp]

)
e−iJ ν2(t+−t−). (48)

Next, using the identity (see formula 6.521.3 on p. 658 of
Ref. 25),∫ ∞

0
dx xKν(ax)Kν(bx) = π (ab)−ν(a2ν − b2ν)

2 sin(πν)(a2 − b2)
, (49)

we perform integration over ξ ′
+ and ξ ′

−. With the help of
the well-known integral representation of the modified Bessel
function,

K2iν(2d) = 1

2

∫ ∞

−∞
dh e−2d cosh h+2iνh, (50)

we integrate over the variable ν. Finally, integration over zγ

can be performed, and we find

Z =
√

J 3

2
√

πβ
e−βb2/4J

∫ ∞

−∞
dh sinh(h)

sinh(bh/J )

sinh(βb/2)

× e−h2/βJ
∏
γ,σ

(1 + e−βε̃γ −hσ ). (51)

During the set of transformations we omitted normalization
factors which depend on the parameter J . In order to restore
them, one can compute the partition function Z for single-
and two-level cases. Then one finds that the following
transformation is necessary:

Z → 2

J 2
e−βJ/4Z. (52)

Hence, we obtain the following result for the partition function
corresponding to the Hamiltonian H:

Z = 1√
πβJ

e−β(b2+J 2)/4J

∫ ∞

−∞
dh sinh(h)

sinh(bh/J )

sinh(βb/2)

× e−h2/βJ
∏
γ,σ

(1 + e−βε̃γ −hσ ). (53)

With the help of Eq. (13), the grand canonical partition
function for the full Hamiltonian (2) can be written as

Z =
√

β√
πJ

e−β(b2+J 2)/4J
∑
n∈Z

e−βEc(n−N0)2
∫ π/β

−π/β

dφ0

2π

× eiβφ0n

∫ ∞

−∞
dh sinh(h)

sinh(bh/J )

sinh(βb/2)
e−h2/βJ

×
∏
σ

e−β�0(μ−iφ0+hσ/β). (54)

To integrate over the variables φ0 and h we can use the
following identity for the grand partition function of free
electrons:

e−β�0(μ) =
∏
γ

(1 + e−β(εγ −μ)) =
∞∑

N=0

ZNeβμN, (55)

where the canonical partition function of N noninteracting
spinless electrons is given by the Darwin-Fowler integral:

ZN ≡
∫ 2π

0

dθ

2π
e−iθN

∏
γ

(1 + eiθ−βεγ ). (56)

Hence we find another representation of the grand canonical
partition function for the Hamiltonian (2):

Z =
∑

n↑,n↓∈Z

sinh βb(2m+1)
2

sinh βb

2

Zn↑Zn↓e
−βEc(n−N0)2+βμneβJm(m+1)].

(57)

Here n↑(n↓) represents the number of spin-up (spin-down)
electrons, the total number of electrons n = n↑ + n↓, and m =
(n↑ − n↓)/2. Note that for m � 0 (m < 0) the total spin S = m

(S = −m − 1), respectively. Different terms in Eq. (57) have
clear physical meaning. The quantity Ec(n − N0)2 − Jm(m +
1) is the interaction energy of the state with n↑ and n↓ electrons.
The factors Zn↑ and Zn↓ take into account the contributions
from the single-particle energies. The b-dependent factor,

sinh

[
βb(2m + 1)

2

]/
sinh

[
βb

2

]
≡

m∑
Sz=−m

exp(βbSz), (58)

represents the partition function for spin S = m in the presence
of Zeeman splitting. Finally, we mention that Eq. (57)
coincides with the result obtained in Refs. 5,26 by another
approach.

V. EXACT EXPRESSION FOR THE TUNNELING DENSITY
OF STATES

To derive an expression for the TDOS we begin from
evaluation of the correlation function Kασ1σ2 which is given by
Eq. (27). As in the previous section, we start from integration
over the fields κ

±p
p . The quantities Cα↑↓ and Cα↓↑ are first

order in κ
±p
p . Therefore, the correlation functions Kα↑↓ and

Kα↓↑ vanish after integration over the fields κ
±p
p . There is a

difference between Cα↑↑ and Cα↓↓. The former is independent
of the fields κ

±p
p whereas the latter does. Such an asymmetry

is due to our choice in parametrization of the time-ordered
exponents [see Eq. (25)]. In what follows, we shall evaluate
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the correlation function Kα↑↑. Then integration over the fields
κ

±p
p can be done in exactly the same way as in the previous

section for Z , since the quantity Cα↑↑ is independent of the
variables κ

±p
p . We thus obtain

Kα↑↑ = J 2

(∏
p=±

∫
D[ρp]e− ip

4J

∫ tp

0 dtρ2
p+ ip

2

∫ tp

0 dtρp(t)

)

×
⎛⎝∏

γ �=α

∮
|zγ |=1

idzγ

2πz2
γ

⎞⎠ e−wα−2vα cos[ 1
2

∑
p=±

∫ tp

0 dtρ̃p(t)]

×
∫ ∞

0
dy e−y exp

[
− iJy

(∏
p=±

e
ip

2

∫ tp

0 dtρp

)

×
(

v
∑
p=±

pe
ipb

2 (t+−t−)
∫ tp

0
dt e−ip

∫ t

0 dt ′ρp(t ′)

)]

× e−2iε̃α t+
∑
p=±

eiε̃α tp e
ip

2

∫ tp

0 dtρ̃p(t), (59)

where

wα =
∑
γ �=α

zγ (1 + e−2iε̃γ (t+−t−)),

(60)
vα =

∑
γ �=α

zγ e−iε̃γ (t+−t−).

As in the previous section we perform a transformation of
variables from ρp to ξ̃p and write the result in the Hamiltonian
formalism (omitting tilde signs):

Kα↑↑ =
⎛⎝∏

γ �=α

∮
|zγ |=1

idzγ

2πz2
γ

⎞⎠∫ ∞

0

J 2dy

4yvα

e−y−wα−2iε̃α t+

×
( ∏

p=±

∫
dξpdξ ′

pe−ξ ′
p/2

)(∑
p=±

eiε̃α tp e− ibtp

2 e
ξp−ξ ′

p

2

)

× δ

(∑
p=±

ξp + 2 ln 4yvα

)
δ

(∑
p=±

p[ξ ′
p + ibtp]

)
× e−2vα cosh[(ξ+−ξ−)/2]〈ξ+|e−iHJ t+|ξ ′

+〉〈ξ ′
−|eiHJ t−|ξ−〉.

(61)

Next we perform integration over y in Eq. (61). With the help
of the identity (47) we obtain the following result:

Kα↑↑ = e−2iε̃α t+

⎛⎝∏
γ �=α

∮
|zγ |=1

idzγ

2πz2
γ

⎞⎠ J 2

2vα

e−wα

∫ ∞

0
dν

×K2iν(2vα)
∑
p=±

[
eiε̃α↓tp eipJν2t−p

∫
dν1e

−ipJν2
1 tp

×〈ν|eξ/2|ν1〉Qνν1

(
e

ipb(t+−t−)
4

)]
, (62)

where

Qνν1 (z) = 8z

π2
[νν1 sinh(2πν) sinh(2πν1)]1/2

×
∫ ∞

0
dη η2K2iν(η/z)K2iν1 (zη). (63)

Using the identity (see formula 6.576.4 on p. 676 of Ref. 25),
we find

Qνν1 (z) = 1

2
z−2−4iν

[ ∏
σ,σ ′=±

�

(
3

2
+ iσν + iσ ′ν1

)]

× 2F1

(
3

2
+ iν + iν1,

3

2
+ iν − iν1,3; 1 − z−4

)
,

(64)

where �(x) and 2F1(a,b,c; x) stand for the Gamma and
hypergeometric functions, respectively. With the help of the
following relation between the modified Bessel functions,

1

η
K2iν(η) = 1

4iν
[K2iν+1(η) − K2iν−1(η)] , (65)

we evaluate the matrix element as

〈ν|eξ/2|ν1〉 = 1

4

⎡⎣ 〈ν − i/2|ν1〉√
ν
(
ν − i

2

) + 〈ν + i/2|ν1〉√
ν
(
ν + i

2

)
⎤⎦ . (66)

Combining Eqs. (63)–(66), we obtain

Kα↑↑ = e−2iε̃α↑t+eβb/2

√
J 3

2
√

πβ

∫ ∞

−∞
dh sinh(h)

×
∑
p=±

eipJ tp/4eipε̃α↑tpW(2h + ipJ tp,pβb/2,βJ )

×
∏
γ �=α

∏
σ=±

(1 + e−βε̃γ −σh). (67)

Here we use the fact that t+ − t− = −iβ. The function W is
defined as

W(x,y,z) = 1

4 sinh y

[∑
σ=±

σ
√

πz

sinh y
erfi

(
x − 2σy

2
√

z

)

+ 4e−y exp

(
x − 2y

2
√

z

)]
, (68)

where erfi(z) = (2/
√

π )
∫ z

0 dt exp(t2) is the error function
of an imaginary argument. The expression for Kα↓↓ can be
obtained from Eq. (67) by transforming b → −b.

Finally, from Eqs. (12) and (14) for τ > 0 we obtain

Gα↑↑(τ ) = − 1

Z

√
β√

πJ
e−Jτ/4eβb/2

∑
n∈Z

e−βEc(n−N0)2

× e−Ec(2n−2N0+1)τ
∫ π/β

π/β

dφ0

2π
eiβφ0ne−(εα↑−μ)τ

×
∫ ∞

−∞
dh sinh(h)

∏
σ=±

e−β�0(μ−iφ0+hσ/β)

1 + e−β(εα−μ+iφ0)+hσ

×{eJ (2τ−β)/4W(2h + Jτ,βb/2,βJ )

+ e−β(εα↑−μ+iφ0)W(2h + J (β−τ ),−βb/2,βJ )}.
(69)

The integration over φ0 in Eq. (69) can be performed with
the help of the identity,∏

γ �=α

(1 + e−β(εγ −μ)) =
∞∑

N=0

ZN (εα)eβμN, (70)
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where ZN (εα) is the canonical partition function of a system
of N noninteracting spinless electrons under the constraint
that level α is not occupied. It is given by the Darwin-Fowler
integral,

ZN (εα) ≡
∫ 2π

0

dθ

2π
e−iθN

∏
γ �=α

(1 + eiθ−βεγ ), (71)

and obeys the following identity:

ZN = ZN (εα) + e−βεαZN−1(εα). (72)

Performing integration over φ0 and h in Eq. (69), we obtain
(for τ > 0)

Gα↑↑(τ ) = − 1

2Z

∑
n↑,↓∈Z

e−βEc(n−N0)2+βμn+βJm(m+1)]

× e−[εα↑−μ+Ec(2n−2N0+1)+J (m+1/4)]τ {eβb/2

×ϒ(βb,2m + 1)[Zn↑ (εα)Zn↓ − Zn↑+1Zn↓−1(εα)]

−ϒ(−βb, − 2m)[Zn↑Zn↓ (εα) − Zn↑ (εα)Zn↓]},
(73)

where

ϒ(z,x) = e(x−1)z/2

sinh(z/2)
− sinh(xz/2)

x sinh2(z/2)
. (74)

We notice that Y (z → 0,x) = x − 1. The expression for
Gα↓↓(τ ) can be found from Eq. (73) by reversing the sign
of the magnetic field b.

Employing the general expression for the TDOS,27

νσ (ε) = − 1

π
cosh

βε

2

∫ ∞

−∞
dt eiεt

∑
α

Gασσ

(
it + β

2

)
, (75)

finally, we find the following exact expression for the tunneling
density of states for the UH (2):

νσ (ε) = 1 + e−βε

2Z

∑
n↑,n↓

sinh βb(2m+1)
2

sinh βb

2

Zn↑Zn↓e
βJm(m+1)

× e−βEc(n−N0)2+βμn
∑

α

{[
Zn↑ (εα)

Zn↑
+ Zn↑ (εα)

(2m + 1)Zn↑

]
× [1 − B−m−1 (σ (m + 1)βb)]

× δ(ε−εασ+μ−Ec(2n − 2N0 + 1)+J (m + 3/4))

+
[
Zn↓ (εα)

Zn↓
− Zn↑ (εα)

(2m + 1)Zn↑

]
[1 + Bm (σmβb)]

× δ(ε − εασ + μ − Ec(2n − 2N0 + 1)

− J (m + 1/4))
}
. (76)

Here,

Bm(x) = 2m + 1

2m
coth

(
2m + 1

2m
x

)
− 1

2m
coth

x

2m
(77)

denotes the Brillouin function. Equation (76) constitutes the
main result of the present paper. It allows one to compute
the TDOS for a given realization of single-particle levels. As
expected, according to Eq. (76), the TDOS represents a sum
of delta functions corresponding to all possible processes of
tunneling of an electron with energy ε and spin σ into (or from)

a single-particle level with energy εασ . The factors Zn(εα)/Zn

describe the probability that the single-particle level α is
empty.

By using the identity
∑

α[Zn − Zn(εα)]/Zn = n, one can
check that the result (76) satisfies the sum rule:∫ ∞

−∞
dε

νσ (ε)

1 + exp(ε/T )
= −σT

∂ ln Z

∂b
+ T

2

∂ ln Z

∂μ
. (78)

In the case b = J = 0 and for spinless electrons the result
(76) coincides with the expression for the TDOS found in
Ref. [ 13].

VI. STATIC SPIN SUSCEPTIBILITY: THE EFFECT OF
LEVEL FLUCTUATIONS AND ZEEMAN SPLITTING

In this section we consider the thermodynamics of the
quantum dot at relatively low temperatures, δ � T � Ec,ETh.
The quantity of main interest is the static spin susceptibility
averaged over realizations of single-particle levels in the
presence of Zeeman splitting. As is well established, its
divergence indicates the Stoner instability. In general, the static
spin susceptibility is defined as

χ (T ,b) = T
∂2 ln Z

∂b2
. (79)

In order to compute it one needs to perform integration over φ0

and h in Eq. (54). At temperatures T � δ, the integration over
φ0 can be performed in the saddle-point approximation.11,12

Then, the partition function becomes

Z = ZCZS, (80)

with

ZC =
√

β�

4π

∑
n∈Z

e−βEc(n−N0)2+βμ0n−2β�0(μ̃), (81)

ZS = 1√
πβJ

e−β(J 2+b2)/4J

∫ ∞

−∞
dh sinh(h)e−h2/βJ

× sinh(bh/J )

sinh(βb/2)

∏
σ

eβ[�0(μ̃)−�0(μ̃+hσ/β)]. (82)

Here μ̃ = μ + μ0 with μ0 being the solution of the saddle-
point equation:

N0 = −2
∂�0(μ + μ0)

∂μ
. (83)

This means that at T � δ the charging and the spin part
of the problem are decoupled from each other. The partition
function in the absence of the exchange interaction and
magnetic field is given by ZC . The factor ZS in Eq. (80)
describes the effect of the exchange interaction and magnetic
field: ZS = 1 at J = b = 0. Next,

� = −
[
∂2�0(μ̃)

∂μ̃2

]−1

(84)

stands for the inverse thermodynamic density of states at
the Fermi level for a given realization of the single-particle
spectrum. Since ZC is independent of the magnetic field
and exchange interaction it does not affect the spin sus-
ceptibility. Therefore, in what follows we will discuss ZS
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only. In the absence of exchange interaction ln ZS equals to
β
∑

σ [�0(μ̃) − �0(μ̃ + bσ/2)] as it should.
The function β

∑
σ [�0(μ̃) − �0(μ̃ + hσ/β)] that ap-

pears in Eq. (82) is a random function of the variable
h due to fluctuations in the single-particle density of
states ν0(E) = ∑

α δ(E + μ̃ − εα). Provided h2 � exp(βμ̃),
we find

β
∑

σ

[�0(μ̃) − �0(μ̃ + hσ/β)] = h2

βδ
− V (h), (85)

where

V (h) = −
∫ ∞

−∞
dE δν0(E) ln

[
1 + sinh2(h/2)

cosh2(E/2T )

]
(86)

is a random function. Here δν0(E) stands for the deviation
of the single-particle density of states ν0(E) from its average
value:

1/δ ≡ 1/�. (87)

With the help of Eq. (85) we rewrite Eq. (82) as

ZS = 1√
πJβ

�(b/J,βJ�)

sinh(βb/2)
exp

(
−β

J 2 + b2

4J

)
,

(88)

�(x,y) =
∫ ∞

−∞
dh sinh(xh)eh−h2/y−V (h).

Here

J� ≡ Jδ

δ − J
(89)

denotes the renormalized exchange energy. We emphasize that
near the Stoner instability, δ − J � δ, the value of spin in
the ground state is of the order of δ/[2(δ − J )],2 and the
renormalized exchange energy is much larger than the bare
exchange, J� � J . In what follows, we consider this most
interesting regime.

Let us neglect V (h) in Eq. (88) for a moment. Then,
the typical value of h in the integral of Eq. (88) is of
the order of max{√y,y,yx}. Therefore, Eq. (85) is valid if
the following condition holds: βJ� max{1,1/

√
βJ�,b/J } �

exp(βμ̃). It is satisfied for large enough values of the chemical
potential.

Although the single-particle density of states ν0(E) has non-
Gaussian statistics, for max{|h|,T } � δ the function V (h) is
a Gaussian random variable.28 Its statistics is fully determined
by the pair correlation function,

C(h1,h2) = V (h1)V (h2). (90)

The following exact relation holds (see Appendix C):

C(h1,h2) = L(h1 + h2) + L(h1 − h2) − 2L(h1) − 2L(h2).

(91)

At T � δ the behavior of the correlation function L depends
strongly on the value of |h|:

L(h) = h2

π2β

{
c1h

2/24, |h| � 1,

ln(|h|/2) + c2 − 3/2, |h| � 1.
(92)

Here we introduce the parameter β such that β = 2 for the
unitary Wigner-Dyson ensemble (class A) and β = 1 for the
orthogonal Wigner-Dyson ensemble (class AI). The numerical
constants are

c1 =
∫ ∞

0

dω

ω2

{
1

3
− ω coth ω − 1

sinh2 ω

}
≈ 0.37, (93)

c2 = −
∫ 1

0

dω

ω2
[1 − ω coth ω] +

∫ ∞

1

dω ln ω

sinh2 ω
≈ 0.43. (94)

In spite of the fact that V (h) is a Gaussian random variable
exact evaluation of ln �(x,y) for arbitrary values of x and y is a
complicated problem (see, e.g., Ref. [ 29]). In what follows, we
compute ln �(x,y) to the first order in the correlation function
C. We expand expression (88) for �(x,y) to the second order
in V and perform averaging of ln �(x,y) with the help of
Eq. (91). Then, we find

ln �(x,y)

= ln �0(x,y) + 1

4

∑
σ

∫ ∞

−∞

du√
π

e−u2

×
{[

σ coth
xy

2
+ 1

]
[L(y(1 + xσ ) + 2u

√
y)

−L(y(1 + xσ ) + u
√

2y)] − L(u
√

2y)

− 1

2 sinh2(xy/2)
[L(y(1 + xσ ) + u

√
2y)

−L(y + u
√

2y) − L(yxσ + u
√

2y) + L(u
√

2y)]

}
,

(95)

where

�0(x,y) = √
πy ey(1+x2)/4 sinh

xy

2
. (96)

Exact integration over u in Eq. (95) is complicated since only
asymptotic expressions (92) for L are known. To make further
analytical progress it is useful to consider separately regions
in which arguments of the functions L involved in Eq. (95)
are either large or small. This way one finds several regions
shown in Fig. 1; in each of those the behavior of ln �(x,y) is
different.

A. Region I: J� max{1,b/J} � T

In region I, max{y,xy} � 1, the arguments in all functions
L in the right-hand side of Eq. (95) are much smaller than
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FIG. 1. Different regions for behavior of the spin susceptibility
in the plane of dimensional parameters b/J and J�/T . Note that in
our analysis T � δ.

unity. Therefore, in order to evaluate integrals over u we can
use the asymptote of L(h) for |h| � 1 [see Eq. (92)]. Then,
we obtain

ln �(x,y) = ln �0(x,y) + c1

96βπ2
[30y2 + 12y3

+ 12x2y3(1 + y/2) − x4y6/6]. (97)

Hence, using Eqs. (79) and (88), we find the average spin
susceptibility in the region I (J� max{1,b/J } � T ):

χ (T ,b) = J�

2Jδ

{
1 + J�

6T
+ c

β

J 2
�

T 2

[
1 + J�

2T

]
− J 3

� b2

120T 3J 2

[
1 + 10c

β

J 2
�

T 2

]}
. (98)

Here the numerical constant c = c1/2π2 ≈ 0.02.
It is instructive to derive Eq. (98) in a more transparent

way. In region I the typical value of h in the integral in
Eq. (88) is much smaller than unity. Therefore, we can expand
the random function V (h) as a series in h. We thus find

V (h) ≈
(

1

�
− 1

δ

)
T h2, |h| � 1. (99)

Next, performing integration over h in Eq. (88), we obtain

ZS =
√
J√
J

sinh[J b/(2JT )]

sinh(b/2T )
e(J−J )(J 2+b2)/4J 2T , (100)

where 1/J = 1/J − 1/� stands for the renormalized ex-
change interaction for a given realization of single-particle
spectrum. All information about level statistics is contained in
fluctuations of �. At T � δ the fluctuations of � are small
and Gaussian with (see Appendix C)

(� − δ)2 = c

β

δ4

T 2
. (101)

To avoid the Stoner instability the renormalized exchange
energy J should be positive for a given realization of

single-particle spectrum. Since we are interested in the regime
J� � δ � J , in order to fulfill the condition J > 0 the level
fluctuations should be such that(

1

�
− 1

δ

)2

�
(

1

J

)2

. (102)

Using Eq. (101), we find that Eq. (102) is equivalent to the
condition T � J�. Provided the latter is satisfied (i.e., in region
I) the level fluctuations are small enough and cannot drive the
system to be Stoner unstable.

Expanding Eq. (100) to the fourth order in b and performing
averaging over level fluctuations by means of the expression
J n = J n

� [1 + n(n + 1)cJ 2
� /(2βT 2)] we obtain Eq. (98). The

expression (98) underlining the divergence at the Stoner
instability point represents exchange-enhanced Pauli spin
susceptibility (J�/2Jδ) with small corrections depending on
temperature and magnetic field. The corrections due to level
fluctuations are small.

It is worthwhile to mention that the spin susceptibility at
b = 0 has been studied by Kurland et al.2 In our notations,
their result at T � J� can be written as [see Eqs. (4.8), (4.13b),
(4.15) of Ref. 2]:

χKAA(T ,0) = J�

2Jδ

[
2

3
+

√
π

6

√
J�√
T

+ cKAA

J�

T

]
,

(103)

cKAA = 4 − π

6
+ 1

6β

(
8 ln 2

π2
− 0.3712

)
.

The result (103) of Ref. 2 disagrees with our result (98).30

B. Region II: δ � T � J� and b � J

In region II, y � 1 and x � 1, the arguments of all
functions L in Eq. (95) are typically much larger than
unity. However, the behavior of some contributions to the
integral over u in Eq. (95) are different for x2y � 1 and
x2y � 1. Therefore, it is convenient to split region II into two
regimes.

1. Region IIa: δ � T � J� and b2/J2 � T/J�

Let us first consider the regime of weak magnetic fields:
x2 � 1/y � 1 (region IIa). In this case, we perform integra-
tion over u in Eq. (95) either by expansion of L to second
order in u or with the help of the following asymptotic result
at z � 1:∫ ∞

−∞

du√
π

e−u2
L(zu) ≈ z2

2βπ2

[
ln

z

4
+ c2 − 1 + γ

2

]
. (104)

Here and below, γ ≈ 0.577 . . . stands for the Euler’s constant,
and constant c2 is defined in Eq. (94). We obtain

ln �(x,y) = ln �0(x,y) + 1

2βπ2

[
xy coth

xy

2

− x2y2

4 sinh2(xy/2)
(ln 2y + γ )

]
. (105)
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Using Eqs. (88) and (105), we find the average spin
susceptibility [defined in Eq. (79)] in region IIa (b2/J 2 �
T/J� � 1):

χ (T ,b) = T

b2

[
1 − J 2

� b2

4J 2T 2 sinh2(J�b/2JT )

]
+ T

2βπ2

∂2

∂b2

[
J�b

JT
coth

J�b

2T J

− J 2
� b2

(
ln(2J�/T ) + γ

)
4J 2T 2 sinh2(J�b/2JT )

]
. (106)

In the limit of very weak magnetic fields b � JT /J� we can
neglect tiny dependence of the average spin susceptibility on
magnetic field. Then, from Eq. (106) we obtain the following
result for the zero-field average spin susceptibility:

χ (T ,0) = (J�/J )2

12T

{
1 + 1

βπ2

[
ln

2J∗
T

+ γ + 2

]}
. (107)

The result (107) is valid provided the expansion of ln �(x,y) in
powers of the correlation function (90) is justified. As one can
demonstrate (see Appendix D), the latter is controlled by the
small parameter J∗/(βπ2T ) � 1. Therefore, strictly speaking,
the result (107) holds at 1 � J�/T � βπ2. However, the more
detailed analysis of χ (T ,0) presented in Appendix D, together
with the qualitative arguments of Sec. VII below, allow us to
speculate that the result (107) has a much broader range of
applicability.

We expect that the zero-field average spin susceptibility at
J� � T � δ can be written as

χ (T ,0) = (J�/J )2

12T

{
1 + 1

βπ2

[
ln

J∗
T

+ f

(
J∗

βπ2T

)]}
,

(108)

where f (x) is the constant of the order unity in both limiting
cases of small (x � 1) and large (x � 1) values of its
argument. In particular, Eq. (107) implies that f (x) = γ +
2 + ln 2 + · · · at x � 1.

Therefore, near the Stoner instability, δ − J � δ, there is
enhancement of the average spin susceptibility [Eq. (107)] due
to fluctuations of single-particle levels in a wide temperature
range δ � T � J�.

In the regime of larger magnetic fields JT /J� � b �√
JT /J� from Eq. (106) we find the following result for the

average spin susceptibility:

χ (T ,b) = T

b2

[
1 − J 2

� b2

J 2T 2

(
1 + 1

2βπ2

J 2
� b2

J 2T 2

)
e−J�b/JT

]
.

(109)

The spin susceptibility is suppressed as compared to the
zero-field result (107). It is given mainly by the T/b2 term
whereas the level fluctuations contribute to the terms which
are exponentially small, ∝ exp(−J�b/JT ).

2. Region IIb: δ � T � J� and J�/T � b2/J2 � 1

Let us now consider the regime of intermediate magnetic
fields: 1/y � x2 � 1 (region IIb). Performing integration over
u in Eq. (95), as in the previous section, either by expansion of

L to the second order in u or using the asymptotic result (104)
we obtain

ln �(x,y) = ln �0(x,y) + x2y2

βπ2

(
ln x − 3

2

)
e−xy. (110)

With the help of Eqs. (88) and (110), we find that the average
spin susceptibility in region IIb (T/J� � b2/J 2 � 1) is given
as

χ (T ,b) = J�

2Jδ

{
1 − 2J�

T
e−J�b/JT

+ 2J�

βπ2T

(
ln

b

J
− 3

2

)
e−J�b/JT

}
. (111)

We note that a small magnetic field b ∼ (J/J�)T � J,T

destroys the phenomenon of mesoscopic Stoner instability
(i.e., the existence of the ground state of a quantum dot with
a finite nonzero spin). It renders the spin susceptibility of the
Fermi-liquid type. Since J�/J is a factor responsible for the
enhancement of a g factor in the Fermi liquid, the energy
scale J�b/J determines the effective Zeeman splitting. As
usual, comparison of the latter with temperature allows us
to distinguish between weak and strong magnetic fields.

C. Region III: δ � T � bJ�/J and J � b

Similarly to region II, in region III (y � 1/x and x � 1)
the arguments of all functions L in Eq. (95) are typically
much larger than unity. However, in region III for evaluation
of the integral in Eq. (95) one can expand all functions L to the
second order in u except L(u

√
2y). The latter can be integrated

by means of Eq. (104). Then, we obtain

ln �(x,y) = ln �0(x,y) + y

2βπ2

(
ln

xy

2
+ c2

)
. (112)

Hence, using Eq. (88), we find the average spin susceptibility
[defined in Eq. (79)] in region III (T/J� � b/J and J � b):

χ (T ,b) = J�

2Jδ

(
1 − 1

βπ2

J 2

b2

)
. (113)

We recall that in the course of the derivation of Eq. (113)
we have neglected terms exponentially small in b. The spin
susceptibility (113) is exchange-enhanced Pauli susceptibility,
with correction due to fluctuations of single-particle levels. The
latter is small in the regime considered. It suggests that taking
the lowest order expansion in V (h) for evaluating ln �(x,y)
is well justified in the whole region III. We mention that our
result (113) for the spin susceptibility is an extension of the
zero-temperature result of Ref. 4 with account for the effect of
level fluctuations.

It is instructive to summarize here the results of the above
analysis of the average spin susceptibility. In region I (see
Fig. 1), the mesoscopic Stoner instability is manifested through
small temperature and magnetic field-dependent corrections to
the Fermi-liquid result. The effect of level statistics is weak.
In regions IIb and III, the mesoscopic Stoner instability is
suppressed by the magnetic field. The corrections to the Fermi-
liquid result due to fluctuations of the single-particle levels are
small. In region IIa , the average spin susceptibility behaves in
accordance with the Curie law. The latter is a manifestation
of the mesoscopic Stoner instability at nonzero temperature.
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Fluctuations of single-particle levels lead to logarithmic-in-
temperature corrections to the Curie term in the average spin
susceptibility.

Here we do not study fluctuations of spin susceptibility due
to statistical fluctuations of single-particle levels. However,
we expect that in all regions except region IIa they are small.
In region IIa , we estimate (χ2 − (χ)2)/(χ)2 to be of the
order of (ln J�/T )/(βπ2). This result indicates that in region
IIa fluctuations of the spin susceptibility can be large and,
therefore, it is challenging to study the whole distribution
function for the spin susceptibility.

VII. SEMIQUALITATIVE ANALYSIS OF THE EFFECT
OF THE LEVEL FLUCTUATIONS ON THE SPIN

SUSCEPTIBILITY AT T = 0

A. Spin susceptibility at zero magnetic field

The origin of the logarithm in the result (107) has simple
physical explanation. Although the result (107) was derived
for T � δ, let us consider the limiting case of vanishing
temperature, T = 0. Then, the transition between the ground
states with the spin S and S + 1 occurs if

ES+1 − ES = J (2S + 2), (114)

where ES stands for the single-particle contribution to the
ground-state energy (“kinetic energy”) for a given realization
of single-particle levels. It can be estimated as

ES+1 − ES = δ(2S + 1) + �E2S. (115)

Here �E2S is a fluctuation of the energy strip in which there
are 2S levels in average. We can estimate it as

�E2S = δ �n2S, (116)

where �n2S is a fluctuation of the number of levels in the
energy strip �E2S . Near the Stoner instability, we find

S = δ

2(δ − J )
[1 − �n2S]. (117)

Hence, the average spin susceptibility at low temperatures can
be estimated as

χ (T ,0) = S(S + 1)

3T
∼ J 2

�

12T J 2

[
1 + (�nJ�/J )2

]
. (118)

From random matrix theory it is well known that28

(�n2S)2 = 2

βπ2
[ln 2S + const]. (119)

Hence we find the following estimate for the spin susceptibility
at T � δ:

χ (T ,0) ∼ J 2
∗

12T J 2

[
1 + 2

βπ2

(
ln

J∗
J

+ const
)]

. (120)

The estimate (120) derived from qualitative arguments for
T � δ resembles the result (107) which is valid at higher
temperatures T � δ. There is a discrepancy in a factor of
2 in front of the logarithm between the estimate (120) and
the rigorous result (107). The reason for this discrepancy
is the following. The qualitative arguments presented above
correspond to evaluating the integral over h in Eq. (88) in the

� �
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FIG. 2. (Color online) Comparison between the average spin
susceptibility at zero temperature and zero magnetic field estimated
from the theoretical result (107) with T = δ (solid curve for β = 2
and dashed curve for β = 1) and results of numerical simulations of
Ref. 2 (circles for β = 2 and squares for β = 1).

saddle-point approximation. In such a procedure one misses
the contributions of the type L(u

√
2y) in Eq. (95).

In Fig. 2 we present the comparison between the average
spin susceptibility at zero temperature and zero magnetic field
estimated from Eq. (107) with T ∼ δ and results of numerical
simulations of Ref. 2.

B. Spin susceptibility at a strong magnetic field, b � J

The result (113) can be illustrated by simple physical
argumentation. As above, we consider the limiting case of
vanishing temperature, T = 0. Then, the difference between
the single-particle contributions to the ground-state energy in
Eq. (114) can be estimated as

ES+1 − ES = δ(2S + 1) − b + �E2S. (121)

Near the Stoner instability, we find

S = 1

2(δ − J )
[b − δ �n2S]. (122)

Hence, the average spin susceptibility at low temperatures can
be estimated as

χ (T ,b) ∼ ∂S

∂b
= J�

2Jδ

[
1 + J 2

�

2δ2

d2(�nz)2

dz2

]∣∣∣∣
z=J�b/J δ

.

(123)

Using Eq. (119), one exactly recovers the result (113).
Since our result (113) can be obtained from zero-temperature
considerations presented above, we expect Eq. (113) to be
valid at T = 0 provided b � J,δ.

VIII. TUNNELING DENSITY OF STATES IN
MAGNETIC FIELD IN THE ABSENCE

OF LEVEL FLUCTUATIONS

In this section we analyze the TDOS at sufficiently low
temperatures δ � T � Ec,ETh. As it was demonstrated in

155311-12



EXACT SOLUTION FOR SPIN AND CHARGE . . . PHYSICAL REVIEW B 85, 155311 (2012)

the previous section the effect of exchange interaction is most
pronounced in the vicinity of the Stoner instability, δ − J � δ.
Therefore, we shall consider the regime J� � J below. As
was indicated in our above analysis of the spin susceptibility,
here, too, there are the same three regions with different
dependence of the TDOS on temperature and magnetic field
(see Fig. 1). The fluctuations of single-particle levels are
important in region IIa only. Most of our discussion below
excludes the effect of level fluctuations. We eventually present
semiqualitative arguments to account for the effect of the latter.

We start from rewriting Eq. (69) as

G↑↑(τ )

= 1

2Z

√
β√

πJ
e−Jτ/4e(β−τ )b/2

∑
n∈Z

e−βEc(n−N0)2

× e−Ec(2n−2N0+1)τ+iφ0τ

∫ π/β

π/β

dφ0

2π
eiβφ0n

∫ ∞

−∞
dh

×
[∏

σ=±
e−β�0(μ−iφ0+hσ/β)

]
G0(τ,μ − iφ0 + h/β)

×
{
eJ (2τ−β)/4e(1−τ/β)h

∑
p=±

pW(2ph + Jτ,βb/2,βJ )

− e−βb/2e−hτ/β
∑
p=±

pW(2ph + J (β − τ ), − βb/2,βJ )

}
.

(124)

Here the Green’s function of noninteracting electrons in
imaginary time is given by

G0(τ,μ) = −
∫

dE
ν0(E)

2 cosh(βE/2)
eE(τ−β/2). (125)

Provided the condition δ � T � μ holds, the Green’s func-
tion (125) can be simplified to

G0(τ,μ) = −(πT/δ)/ sin(πT τ ). (126)

Integration over φ0 and h in Eq. (124) can be performed
in the same way as it was done in the previous section
for derivation of the spin susceptibility. We remind one
that integration over h was done under the assumption that
βJ� max{1,1/

√
βJ�,b/J } � exp(βμ̃). Then, using Eq. (80),

we obtain

G↑↑(τ ) = − π/(βδ)

sin(πτ/β)

∑
n∈Z e−βEc(n−N0+τ/β)2∑

n∈Z e−βEc(n−N0)2 eEcτ (τ/β−1)

×
{

1 +
√

πβJe(β−2τ )b/4e−βJ�b
2/4J 2

e−βJ�/4

8
√

J� cosh(βb/4) sinh(J�βb/2J )

×
∑
σ=±

σ [erfi(
√

βJ�(σb − J )/2J )

− erfi(
√

βJ�(σb + J (1 − 2τ/β))/2J )]

}
. (127)

The Green’s function G↑↑(τ ) determines the TDOS in accor-
dance with Eq. (75). Performing integration over t with the
help of the following identity:∫ ∞

−∞
dt

eizt

cosh(πt)
= 1

cosh(z/2)
, (128)

we find

νσ (ε)

ν0
=
∑
n∈Z

e−βEc(n−N0)2
∑
p=±

{
fF

(
pε − 2p�−p

n

)
+

√
πβJeσβb/4e−βJ�b

2/4J 2
e−βJ�/4

8
√

J� cosh(βb/4) sinh(J�βb/2J )

∑
s=±

s

×
[

erfi

(√
βJ�(sb − J )

2J

)
fF

(
pε − 2p�−p

n + σb

2

)
−F (β(pε − 2p�−p

n + σb/2),sb/2J,
√

βJ�)

]}

×
[∑

n∈Z
e−βEc(n−N0)2

]−1

. (129)

Here ν0 ≡ 1/δ denotes the average density of states of
noninteracting electrons for single spin projection, �

p
n =

Ec(n − N0 + p/2), fF (ε) = [1 + exp(ε/T )]−1 stands for the
Fermi function, and the function,

F (x,y,z) = 1

2
e−x/2

∫ ∞

−∞
dt

eixt

cosh(πt)
erfi(z(y − it)). (130)

Equation (129) describes dependence of the tunneling density
of states on energy, temperature, and magnetic field. It
is valid under the following conditions: δ � T � μ and
βJ� max{1,1/

√
βJ�,b/J } � exp(βμ̃), and near the Stoner

instability, J� � J . We remind one that fluctuations of
the single-particle levels are not taken into account in
Eq. (129).

As follows from Eq. (129), at small magnetic fields, b � J ,
the dependence of the TDOS on magnetic field is very weak.
The TDOS for b � J almost coincides with the result for
b = 0. Therefore, below we consider in detail the cases of
zero (b = 0) and large magnetic fields (b � J ) only.

A. TDOS in zero magnetic field, b = 0

Expanding the expression in square brackets in the right-
hand side of Eq. (129) to first order on b, we find the following
result for the TDOS in zero magnetic field:18

νσ (ε)

ν0
=
∑

n,p=±
e−βEc(n−N0)2

[(
1 + J

2J�

)
fF

(
pε − 2p�−p

n

)
− J

2J�

F
(

pε − 2p�
p
n

J�

,βJ�

)]/∑
n

e−βEc(n−N0)2
.

(131)

Here the function F(x,y) is defined as

F(x,y) = 1

2
e−y/4eyx/2

∫ ∞

−∞
dt

eiyxt−yt2

cosh(πt)
. (132)

Using the following asymptotic expression at y � 1 for
F(x,y):

F(x,y) = fF (−yx)

[
1 − y

2 cosh2(yx/2)

]
, (133)
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we obtain the TDOS at T � J�:

νσ (ε)

ν0
=
∑

n,p=±
e−βEc(n−N0)2

fF

(
pε − 2p�−p

n

)
×
{

1 + βJ

4 cosh2
(

p

2 ε − p�
−p
n

)}/∑
n

e−βEc(n−N0)2
.

(134)

It is instructive to compare (134) with the result of Ref. [ 13]
for the TDOS in the absence of exchange interaction. As
expected, in this high-temperature regime, the exchange
interaction affects the tunneling density of states only slightly.
It is worthwhile to mention that the correction to the tunneling
density of states due to exchange interaction is of the order of
J/T rather than what one may expect from above results on
the spin susceptibility [see Eq. (98)], namely, J�/T .

In the regime of intermediate temperatures δ � T � J�, it
is convenient to use the following result for the behavior of
F(x,y) in the limit y � 1 (see Appendix E):

F(x,y) = 1

2
sgn

(
cos

πx

2

)
e
− y

4 (x−1)2+ y

π2 cos2 πx
2

×
[

1 − erf

(√
y

π

∣∣∣cos
πx

2

∣∣∣)]+ e
y

2 (x−|x|)

×
∑
m�0

(−1)me−y|x|m+ym(m+1)θ (|x| − 2m − 1).

(135)

Here θ (x) is the Heaviside step function (θ (0) ≡ 0), and the
error function erf(z) = (2/

√
π )
∫ z

0 exp(−t2)dt .
As x is varied for a fixed y, Eq. (135) suggests that F(x,y)

exhibits damped oscillations with a period 4 (equivalent to
an energy scale 4J�). However, it is not the case. At y � 1
the function F(x,y) is monotonous and close to the function
1/{1 + exp[−y(x − 1)]}. The linear combination of two Fermi
functions (standard one and one shifted in energy on J�) in
Eq. (131) leads to the appearance of a maximum in the TDOS.
The height of the maximum can be approximately estimated
as [νσ (ε)/ν0]max − 1 ∼ J/J�. This additional structure in the
TDOS reflects enhanced electron correlations due to the
exchange interaction.

In the case of temperatures T � Ec we illustrate the non-
monotonic behavior in the TDOS due to exchange interaction
in Figs. 3 and 4 for the Coulomb valley (N0 is the integer) and
for the Coulomb peak (N0 is the half-integer).

B. TDOS at a strong magnetic field, b � J

Now let us consider the case of a strong magnetic field,
b � J . As above we consider the regime δ � T � J� near
the Stoner instability, J � J�, in which the most interesting
behavior of the TDOS takes place. To simplify the expression
(129) for the tunneling density of states, we use the following
asymptotic result,

F (x,y,z) ≈ 1

zy
√

π
ez2(y−1/2)2F(2y − x/z2,z2), (136)

which is valid for z � 1 and y � 1. It is worthwhile to mention
that Eq. (136) works well already for y � 2. With the help of

1 20.95

1

1.05

�2 0 2 4

� � Ec

J�

0.5

1

ΝΣ ����Ν0

FIG. 3. The tunneling density of states in the Coulomb valley.
The solid (dashed) line corresponds to J/δ = 0.92, δ/T = 0.35,
and J�/T = 3.95 (J/δ = 0.92, δ/T = 0.95, and J�/T = 10.70). The
inset depicts the nonmonotonic behavior.

Eq. (136), we obtain from Eq. (129) the following expression
for the TDOS:

νσ (ε)

ν0
=
∑
n∈Z

e−βEc(n−N0)2
∑
p=±

{
fF

(
pε − 2p�−p

n

)
+ J 2

2J�(b − J )

eσβb/4

cosh(βb/4)

[
fF

(
pε − 2p�−p

n + σb/2
)

−F
((

pε − 2p�p
n − J�b/J

)
/J�,βJ�

)]}

×
[∑

n∈Z
e−βEc(n−N0)2

]−1

. (137)

As follows from Eq. (137), the nonmonotonic behavior of the
TDOS due to exchange interaction survives in the presence of
the magnetic field. In Fig. 5 the dependence of the total TDOS
ν(ε) = ν↑(ε) + ν↓(ε) on energy at different magnetic fields is
shown for the Coulomb valley. The role of the magnetic field is
of two kinds. At first, it suppresses the height of the maximum:
[ν(ε)/2ν0]max − 1 ∼ Jδ/(J�b). Secondly, the width of the

1 2

� �Ec

J�0.95

1

1.05

�1 1

�

J�0.45

0.5

0.55

�2 0 2

�

Ec

0.5

1

ΝΣ ����Ν0

FIG. 4. The tunneling density of states at the Coulomb peak.
The parameters are the same as in Fig. 3. The insets depict the
nonmonotonic behavior.
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1 2 3 40.95

1

1.05

�2 0 2 4

� � Ec

J�

0.5

1

Ν ����2Ν0

FIG. 5. The total tunneling density of states ν(ε) = ν↑(ε) + ν↓(ε)
in the Coulomb valley for the magnetic field b = 0 (solid line),
b = 2.75J (dashed line), and b = 3.25J (dotted line). The other
parameters are J/δ = 0.92, δ/T = 0.95, and J�/T = 10.7. The inset
depicts the nonmonotonic behavior.

maximum increases linearly (∼ J�b/J ) with the magnetic
field. Finally, we note that the difference ν↑(ε) − ν↓(ε) is small.

IX. THE EFFECT OF LEVEL FLUCTUATIONS ON THE
TDOS IN ZERO AND STRONG MAGNETIC FIELDS

In order to develop a qualitative explanation of the max-
imum in the TDOS and in order to qualitatively understand
the effect of level fluctuations, it is instructive to consider
a Coulomb valley at T = 0. We start from the case of zero
magnetic field. Let us consider tunneling of an electron with
spin up to the ground state (with spin S) of a quantum dot
in a Coulomb valley (see Fig. 6). The tunneling is possible
only if the electron energy ε exceeds E1 = ES+1/2 − ES −
J (S + 3/4). Here we recall that ES denotes the single-particle
contribution to the energy of the ground state with spin S.
An electron with spin down can tunnel provided its energy
is larger than E2 = ES−1/2 − ES + J (S + 1/4). Therefore,

FIG. 6. (Color online) Tunneling of an electron with spin up (left)
and spin down (right) into a quantum dot with a finite value of spin
in the ground state (see text).

	J�2J�

�1 �2 �3

�0

1
2

1

ΝΣ ����Ν0

FIG. 7. Sketch of dependence of the tunneling density of states
on energy at zero temperature. Shaded areas are equal (see text).

only tunneling of spin-up electrons is allowed in the energy
interval E1 < ε < E2. At very large electron energies the
tunneling is insensitive to the spin of electron. It is natural
to denote the energy E3 = ES+1/2 − ES + J (S + 1/4) as the
characteristic energy above which there is no difference in
tunneling for electrons with spin up and down. With the
help of Eq. (115), one finds E2 − E1 ≈ J − �E2S−1 and
E3 − E2 ≈ 2JS + �E2S−1. To sketch the tunneling density of
states we employ the sum rule (78). In the Coulomb valley
and at zero temperature it renders the integral

∫
dενσ (ε)

independent of J . The TDOS at T = 0 is shown schematically
in Fig. 7. The relative height of the maximum in the TDOS
can be estimated as (E2 − E1)/(2(E3 − E2)) ≈ 1/(4S). Near the
Stoner instability, J� � J , the relative height becomes of the
order of J/(2J�) if one neglects the effect of level fluctuations.
This estimate is in accordance with the result (131) derived
for δ � T � J�. In this temperature regime, the feature in
the TDOS in the energy interval E1 < ε < E2 (see Fig. 7) is
smeared, as expected, since E2 − E1 � T .

Our qualitative arguments can be justified by direct evalua-
tion of the TDOS at zero temperature in a Coulomb valley. For
the ground state of a quantum dot with spin S we find from
Eq. (76) at zero magnetic field:

νσ (ε) = 1

2

∑
εα>ε N0

2 −S

δ(ε − εα + μ − Ec − J (S + 1/4))

− 1

4S + 2

∑
εα>ε N0

2 +S

δ(ε − εα + μ − Ec − J (S + 1/4))

+ S + 1

2S + 1

∑
εα>ε N0

2 +S

δ(ε − εα + μ − Ec + J (S + 3/4)).

(138)

Using the fact that εN0
2 +S+1 = ES+1/2 − ES and εN0

2 −S+1 =
ES−1/2 − ES , we find∫ E2

E1

dε
νσ (ε)

ν0
= 1

2

(
1 + 1

2S + 1

)
(E2 − E1),

(139)∫ E3

E2

dε
νσ (ε)

ν0
=
(

1 + 1

4S + 2

)
(E3 − E2),

in accordance with the sketch of Fig. 7.
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We can estimate the effect of level fluctuations on the
TDOS from the qualitative arguments presented above. As
we have already demonstrated, at zero temperature the height
of the maximum in the TDOS is given by 1/(4S) for a
given realization of single-particle levels. Their statistical
fluctuations lead to averaging of this estimated result, that is,
the height of the maximum in the average TDOS is given by
1/(4S) ≈ [1 + (�n2S)2]J/(2J�) [see Eq. (117)]. Taking into
account Eq. (119) and the discussion after Eq. (120), we expect
that the height of the maximum in the average TDOS is of
the order of [1 + (1/βπ2) ln(J�/T )]J/(2J�). Similarly to the
zero-field average spin susceptibility the statistical fluctuations
of single-particle levels result in logarithmic dependence with
temperature of the height of the maximum in the TDOS.

In the presence of a strong magnetic field, b � J , and with
neglect of level fluctuations, the typical spin S is of the order
of J�b/J δ. Therefore, the width of the maximum in the TDOS
can be now estimated as JS ∼ J�b/δ. The relative height of
the maximum becomes 1/4S ∼ Jδ/J�b. Both estimates are in
agreement with the results of Sec. VIII B.

As was demonstrated in Sec. VI C, a magnetic field, b �
J , strongly suppresses the effect of level fluctuations on the
spin susceptibility. The same holds for the TDOS. The level
fluctuations result in relative corrections to the TDOS (137) of
the order of (δ/b) ln(J�b/J δ) � 1.

X. CONCLUSIONS

We have addressed here the interplay of charging and
spin-exchange interactions of electrons in a quantum dot.
Even within the simple UH framework, this problem becomes
nontrivial due to the underlying non-Abelian action that
necessarily requires the evaluation of time-ordered integrals.
To overcome this obstacle we have employed here a technique
based on the WNK transformation. It allows us to obtain
exact analytic results which describe the partition function
[Eq. (57)] and the tunneling density of states [Eq. (76)] for
an arbitrary single-particle spectrum, temperature, Zeeman
splitting, charging, and exchange energies. Our solution (57)
for the partition function reproduces the result obtained
previously by means of another approach in Refs. 5,26. We
believe that the approach employed in this paper is more
manageable for analytic calculations and extensions. Our
result (76) for the TDOS is a generalization of the result derived
in Ref. 13 to the case of finite spin-exchange interaction and
Zeeman splitting.

In the mesoscopic Stoner regime, near the Stoner instability,
δ − J � δ, we have analyzed our general results (57) and (76)
in detail. In particular, we have found that in a wide temper-
ature range δ � T � δJ/(δ − J ), the average zero-field spin
susceptibility behaves according to the Curie law with a large
effective spin which depends on temperature logarithmically
[see Eq. (107)]. This dependence results from statistical
fluctuations of single-particle levels in QDs. We have demon-
strated that a tiny magnetic field B ∼ √

JT (1 − J/δ)/gμB is
sufficient to suppress temperature dependence of the average
spin susceptibility, as well as to diminish a role of statistical
fluctuations. We have found that enhanced spin correlations,
resulting in a large total spin in the ground state of a QD (in
the mesoscopic Stoner regime, δ − J � δ), become apparent

as additional (to Coulomb blockade) nonmonotonic behavior
in the TDOS [at high temperatures, δ � T � δJ/(δ − J )].
Similarly to the case of the spin susceptibility, we have found
that magnetic field suppresses the spin-related nonmonotonic
behavior of the TDOS.

To test our results one needs to explore QDs made of
materials close to the thermodynamic Stoner instability. The
long list of such materials includes Co impurities in a Pd
or Pt host, Fe or Mn dissolved in various transition-metal
alloys, Ni impurities in a Pd host, and Co in Fe grains, as
well as new, nearly ferromagnetic rare-earth materials.19–21

For the closest material to the Stoner instability we are
aware of, YFe2Zn20, the parameter J/(δ − J ) is approximately
equal to 16, leading to the spin in the ground state of
the order of 10. Our results for the spin susceptibility can
be checked by measuring the total magnetization and the
electronic spin resonance signal. Although, as is well known
(see, e.g., Ref. [ 31]), a single Fe impurity in a nearly
ferromagnetic material typically acquires an effective spin,
Simp, of the order of 10, the temperature behavior of the
impurity’s contribution to the spin susceptibility is different:
χimp ∼ S2

imp/(T ln T/T0), where the temperature T0 is set by
the interactions between the electron spins and the impurity.32

We speculate that the intriguing magnetic behavior observed
recently in Pd nanoparticles capped with different protective
systems22 can be related to the physics of mesoscopic Stoner
regime. Our predictions for the TDOS can be manifested in
the nonlinear current-voltage characteristics of QDs, measured
in the sequential tunneling regime at temperatures lower than
the bias voltage. The expected spin-related nonmonotonicities
may exceed 7%–15% and should be sensitive to the applied
magnetic field.

The approach used here for analytic computation of the spin
susceptibility and the TDOS in the UH with isotropic spin-
exchange interaction can be applied for other problems. For
example, it can be used for the study of transport through a QD
described by the UH in the co-tunneling regime that requires
calculation of two-particle Green’s functions of electrons in
QD. One more example is provided by the UH with anisotropic
(XXZ) spin-exchange interaction.33 This model is of interest
since it describes a crossover from the case of isotropic
spin-exchange interaction with mesoscopic Stoner instability
and trivial dynamical spin susceptibility to the case of Ising
spin-exchange interaction without mesoscopic Stoner regime
but with interesting dynamical spin susceptibility. Also our
approach can be fruitful for investigation of the same crossover
from isotropic to Ising spin-exchange interaction realized in
QDs with spin-orbit interaction.7,34,35 Yet another example
is given by the competition between superconductivity and
ferromagnetism in the UH with an attractive interaction in the
Cooper channel.36 The method used in the present paper can
be generalized to study this interplay as well.
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APPENDIX A: WEI-NORMAN-KOLOKOLOV
TRANSFORMATION

In this appendix we demonstrate relation of the nonlinear
transformation (24) with the general method by Wei and
Norman16 and calculate the Jacobian (26) of Wei-Norman-
Kolokolov transformation.17

The equation for the time evolution operator for the time-
dependent Hamiltonian H (t),

i
dU

dt
= H (t)U (t), (A1)

with initial condition U (0) = 1 can be represented by a
finite product of k exponential operators.16 The index k is
a dimension of the Lie algebra generated by H (t) where
the Hamiltonian is assumed to be linearly dependent on the
group generators. The general formalism of the time evolution
operator construction is known as the Wei-Norman method.16

Consider a time-evolution operator for the system with
linear realization of dynamical SU (2) symmetry described by
the Hamiltonian,

Ĥ (t) = −θ (t)s. (A2)

Then, matrix U (t) is given by the time-ordering exponent (23).
The solution of (A1) can be parameterized as

U (t) = exp(f−(t)s−) exp(fz(t)s
z) exp(f+(t)s+), (A3)

where s± = sx ± isy and sz are three generators of the SU (2)
group. Functions f−(t), fz(t), and f+(t) satisfy the system of
differential equations:⎧⎪⎨⎪⎩

iḟ− = − 1
2θ+ + θzf− + 1

2θ−f 2
−

iḟz = −θz − θ−f−
iḟ+ = − 1

2θ−e−fz ,

(A4)

with initial condition f−(0) = fz(0) = f+(0) = 0. This sys-
tem of equations can be easily obtained with the help of the
Hausdorf formula.16 The solution of the system (A4) depends
on the solution of the single Riccati equation [the first equation
in (A4)]. Parametrization of (A4) by three new functions
κ±(t),ρ(t) defined as

κ+(t) = f−(t),
(A5)

κ−(t) = −iḟ+(t)efz(t),

ρ(t) = −iḟz(t), (A6)

leads to the Kolokolov representation of the time-evolution
operator:17

U (t) = eκ+(t)s−
eisz

∫ t

0 ρ(t1)dt1

× exp

(
is+

∫ t

0
κ−(t1)e−i

∫ t1
0 ρ(t2)dt2dt1

)
. (A7)

The initial condition f−(0) = 0 is translated to κ+(0) = 0.
The initial conditions fz(0) = f+(0) = 0 are satisfied by
construction of the functions κ−(t) and ρ(t). Therefore, the
variables κ−(t) and ρ(t) are not constrained by the initial
conditions.

In order to find the Jacobian of the Wei-Norman-Kolokolov
transformation, we consider its discrete version. Let us split the
interval (0,t) into N → ∞ parts of length � → 0 such that t =
N�. Also we introduce θ j ≡ θ(tj ), κ±

j ≡ κ±(tj ), and ρj ≡
ρ(tj ), where tj = j� with j = 0, . . . ,N . Then, the solution
of Eqs. (A1)–(A2) can be written as U (t) = ∏N

j=0 exp(i�θ j s).
Together with Eq. (A7) it allows us to find the following map
corresponding to the Wei-Norman-Kolokolov transformation
[see Eq. (24) with p = +]:

θ−
j = κ−

j ,

θ+
j = −i

κ+
j − κ+

j−1

�
+ ρj

κ+
j + κ+

j−1

2
− κ+

j−1κ
−
j κ+

j , (A8)

θz
j = ρj − κ−

j (κ+
j + κ+

j−1).

The map (A8) is supplemented by the initial condition κ+
0 = 0.

The Jacobian of the map (A8) is given as

JN =
N∏

j=1

(
− i

�
+ ρj + (κ+

j − κ+
j−1)κ−

j

2

)
. (A9)

Finally, taking the limit N → ∞ and � → 0, we obtain17

J = (i�)−N exp

(
i

2

∫ t

0
dt ′ρ(t ′)

)
, (A10)

in agreement with Eq. (26).

APPENDIX B: INTEGRATION OVER κ
± p
p IN EQ. (34)

In this appendix we demonstrate how integration in
Eq. (34) over fields κ

±p
p can be performed. We need to evaluate

the following functional integral:[∏
p=±

∫
D
[
κ±p

p

]
e− ∫ tp

0 dtκ̇
p
p κ

−p
p /J

]
exp

{
v
∏
p=±

e
ip

2

∫ tp

0 dtρ̃p(t)

×[ipκ̃p
p (tp) −

∫ t−p

0
dt κ̃

p
−p(t)eip

∫ t

0 dt ′ρ̃−p(t ′)]}. (B1)

Let us start from computation of the two-point correlation
function:〈

κp
p (tp)κ−p

p (t)
〉
0 ≡

∫
D
[
κ

±p
p

]
κ

p
p (tp)κ−p

p (t)e− ∫ tp

0 dtκ̇
p
p κ

−p
p /J∫

D
[
κ

±p
p

]
e− ∫ tp

0 dtκ̇
p
p κ

−p
p /J

.

(B2)

In order to evaluate the functional integral, we split the interval
(0,tp) into N parts of length � → 0 such that tp = N�.

155311-17



I. S. BURMISTROV, YUVAL GEFEN, AND M. N. KISELEV PHYSICAL REVIEW B 85, 155311 (2012)

We define κ
±p

p,j ≡ κ
±p
p (tj ), where tj = j� with j = 0, . . . ,N .

Then, the two-point correlation function (B2) can be written
as (t = n�):

〈
κ

p

p,Nκ−p
p,n

〉
0 =

(∏N
j=1

∫
dκ

p

p,j dκ
−p

p,j

])
κ

p

p,Nκ
−p
p,ne

−κ
p
p	−1κ

−p
p(∏N

j=1

∫
dκ

p

p,j dκ
−p

p,j

])
e−κ

p
p	−1κ

−p
p

.

(B3)

Here κ
±p
p = (κ±p

p,0, . . . ,κ
±p

p,N ) and

	 = J

⎛⎜⎜⎜⎝
1 1 1 . . . 1

0 1 1 . . . 1

. . . . . . . . . . . . . . .

0 0 0 . . . 1

.

⎞⎟⎟⎟⎠ (B4)

We remind one that κ
p
p satisfies the initial condition κ

p

p,0 = 0.
Hence, we find〈

κp
p (tp)κ−p

p (t)
〉
0 = Jθ (tp − t), (B5)

where the Heaviside step function is defined as θ (0) = 1.
For obvious reasons, the other two-point correlation functions
vanish. Next, we can find the following set of identities for an
arbitrary function f (t) and non-negative integer k:〈(

κp
p (tp)

∫ tp

0
dt f (t)κ−p

p (t)

)k
〉

0

= k!

(
J

∫ tp

0
dt f (t)

)k

=
∫

dκpdκ
∗
p e−|κp |2/J (

κp

∫ tp
0 dt f (t)κ∗

p

)k∫
dκpdκ

∗
p e−|κp |2/J . (B6)

We see that the functional integral (B1) can be substituted by
the usual one with complex conjugated variables κp and κ

∗
p

corresponding to κ
p
p and κ

−p
p , respectively. Therefore, Eq. (B1)

becomes[∏
p=±

∫
dκpdκ

∗
p

π
e−|κp |2/J

]
exp

{
v
∏
p=±

e
ip

2

∫ tp

0 dtρ̃p(t)

×
[
ipeibtp

κp − κ
∗
−p

∫ t−p

0
dt eip

∫ t

0 dt ′ρ−p(t ′)
]}

. (B7)

Integrating over variables κp and κ
∗
p, we find that integral (B7)

equals

J 2

[
1 + iJ v

(∏
p=±

e
ip

2

∫ tp

0 dtρp

)(∑
p=±

pe
ipb

2 (t+−t−)

×
∫ tp

0
dt e−ip

∫ t

0 dt ′ρp(t ′)
)]−1

. (B8)

This result yields Eq. (35).

APPENDIX C: CORRELATION FUNCTION C(h1,h2)

In this appendix we present derivation of the results (92) for
the correlation function (91). Also, we derive the result (101).

The single-particle density of states ν0(E) has non-
Gaussian statistics. However, the function V (h) is a Gaussian
random variable28 since it involves a large number of single-
particle levels: max{|h|,T }/δ � 1. We remind one that the

two-point correlation function of the single-particle density of
states is given as28

〈δν0(E)δν0(E + ω)〉 = 1

δ2

[
δ
(ω

δ

)
− RU/O

(πω

δ

)]
, (C1)

where

RU (x) = sin2 x

x2
, (C2)

RO(x) = sin2 x

x2
+
(

d

dx

sin x

x

)∫ ∞

x

sin t

t
dt. (C3)

Using Eqs. (86), (90), and (C1), we obtain

C(h1,h2) = T 2
∫

dEdω

δ2
RU/O

(
πT ω

δ

)
×
{

ln

[
1 + sinh2

(
h1
2

)
cosh2

(
E
2

)] ln

[
1 + sinh2

(
h2
2

)
cosh2

(
E
2

)]

− ln

[
1 + sinh2

(
h1
2

)
cosh2

(
E+ω/2

2

)]

× ln

[
1 + sinh2

(
h2
2

)
cosh2

(
E−ω/2

2

)]}, (C4)

where we used the identity,∫ ∞

−∞
RU/O(x)dx = π. (C5)

Let us introduce the function,

Cnm(h1,h2) = dn+mC(h1,h2)

dnh1dmh2
, (C6)

with integers n,m � 1. Then one can check that the following
exact relation holds

C11(h1,h2) = L2(h1 + h2) − L2(h1 − h2). (C7)

Here, the function L2(h) is given as

L2(h) = 16T 2 sinh2 h

2

∫ ∞

0

dω

δ2
RU/O

(
2πT ω

δ

)
×
[ h

2 coth h
2 − 1

cosh h − 1
−

h
2 coth h

2 − ω coth ω

cosh h − cosh 2ω

]
. (C8)

Using the conditions C(h1,h2) = C(h2,h1) and C(h,0) = 0,
we obtain Eq. (91) in which the function L(h) is related with
L2(h) as

L2(h) = L′′(h). (C9)

To estimate the function L2(h) at T � δ, we can use the
asymptotic expression of the function RU/O at large values of
its argument:

RU/O(x) = 1

βx2
, x � 1. (C10)

Here we recall that β = 1 for the orthogonal ensemble and
β = 2 for the unitary ensemble. Then, at T � δ Eq. (C8)
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becomes

L2(h) = 4 sinh2(h/2)

βπ2

∫ ∞

0

dω

ω2

[
h
2 coth h

2 − 1

cosh h − 1

−
h
2 coth h

2 − ω coth ω

cosh h − cosh 2ω

]
. (C11)

At |h| � 1 we expand the right-hand side of Eq. (C11) and
find

L2(h) = c1h
2

2βπ2
, (C12)

where the numerical constant,

c1 =
∫ ∞

0

dω

ω2

{
1

3
− ω coth ω − 1

sinh2 ω

}
≈ 0.37. (C13)

Hence, using Eq. (C9), we obtain the asymptotic expression
(92).

At |h| � 1, we rewrite Eq. (C11) as

L2(h) = 2 sinh2(h/2)

βπ2

×
{∫ 1

0

dω

ω2

[ |h| − 2

2 sinh2(h/2)
− |h| − 2ω coth ω

cosh(h)

]
+
∫ |h|/2

1

dω

ω2

[ |h| − 2

2 sinh2(h/2)
− 2

|h| − 2ω coth ω

e|h| − e2ω

]
+
∫ ∞

|h|/2

dω

ω2

[ |h| − 2

2 sinh2(h/2)
− 2

|h| − 2ω

e|h| − e2ω

]}
≈ 2

βπ2

(
ln

|h|
2

+ c2

)
, (C14)

where

c2 = −
∫ 1

0

dω

ω2
[1 − ω coth ω] +

∫ ∞

1

dω ln ω

sinh2 ω
≈ 0.43.

(C15)

Using Eq. (C9), we obtain the asymptotic expression (92) from
Eq. (C14).

Equation (99) implies that mean-squared fluctuations of the
level spacing � can be written as

(� − δ)2

δ2
= C22(0,0)

δ2

4T 2
. (C16)

As follows from Eqs. (C7) and (C12), C22(0,0) = 2c1/βπ2.
Hence, we obtain Eq. (101) from Eq. (C16).

APPENDIX D: EVALUATION OF χ (T,0) IN REGION IIa

In this appendix we perform evaluation of the averaged
zero-field spin susceptibility in the leading logarithmic ap-
proximation: In each order of expansion of χ (T ,0) in powers
of 1/(βπ2) we take into account the term with the highest
power of ln 2J�/T .

Let us define �10(x,y) = ∂�(x,y)/∂x, then at δ � T � J�

(y � 1),

χ (T ,0) = (J�/J )2

3T

d

dy
ln �10(0,y). (D1)

In order to evaluate ln �10(0,y) we use the replica trick. For
non-negative integer values of n we obtain that

[�10(0,y)]n =
n∏

j=1

[
y3/2ey/4

∫
duj

2
e−u2

j

(
1 + 2uj√

y

)]

× exp

⎡⎣1

2

n∑
j,k=1

C

(
y

2
+ √

yuj ,
y

2
+ √

yuk

)⎤⎦ .

(D2)

Provided the dominant contribution to the integral (D2) comes
from regions with |uj | � √

y, we can expand the two-point
correlation function (91) in powers of uj and uk to the second
order wherever it is possible. We thus find

C

(
y

2
+ √

yuj ,
y

2
+ √

yuk

)
≈ y2 ln 2

βπ2
+ 1 − a

n

(
u2

j + u2
k

)
+ 2bujuk + c

n
(uj + uk)

+ y

2βπ2
(uj − uk)2 ln(uj − uk)2, (D3)

where we introduce the following parameters for convenience:

a = 1 + ny

2βπ2

(
ln

y

16
+ 3

)
,

b = y

2βπ2
(ln y + 3), (D4)

c = 2ny3/2

βπ2
ln 2.

The last term in the right-hand side of Eq. (D3) can be
described as the contribution from independent Gaussian
variable v(u) = v(−u) with the correlation function,

v(uj )v(uk) = y

2βπ2
(uj − uk)2 ln(uj − uk)2. (D5)

Then, we find

[�10(0,y)]n =
n∏

j=1

[
y3/2ey/4

∫
duj

2
e−au2

j +cuj

(
1 + 2uj√

y

)]

× exp

⎡⎢⎣n2y2 ln 2

2βπ2
+ b

⎛⎝ n∑
j=1

uj

⎞⎠2
⎤⎥⎦ n∏

j=1

ev(uj ).

(D6)

Here we should still perform averaging over v(u) with the
help of Eq. (D5). Introducing the Gaussian variable z to the
decouple term (

∑n
j=1 uj )2 in the right-hand side of Eq. (D6),

we rewrite it as

[�10(0,y)]n

= y3n/2eny/4 exp

[
n2y2 ln 2

2βπ2

] ∫
dz√
π

e−z2

×
n∏

j=1

[∫
duj

2
e−au2

j +(c+2z
√

b)uj

(
1 + 2uj√

y

)] n∏
j=1

ev(uj ).

(D7)
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We note that the typical values of uj contributing to the
integral in Eq. (D7) is of the order of (c + 2z

√
b)/a. Next we

introduce the variables xj = uj − (c + 2z
√

b)/2a. Provided
typical values of |c + 2z

√
b|/2a � √

y, the limits of integra-
tion over xj are the same as for uj . Taking into account that the
correlation function (D5) is translationally invariant, we thus
find

[�10(0,y)]n = πn/2y3n/2en(y+c2/(a−nb))/4

2na(n−1)/2(a − nb)1/2
e

n2y2 ln 2
2βπ2

×
∫

dz√
π

e−z2

(
1 − 2z

√
b(a − nb) + c

√
a

(a − nb)
√

ay

)n

×
(∫

dx√
π

e−x2+v(x/
√

a)

)n

. (D8)

Here, we used the fact that v(x) is an even function. In the
limit n → 0, we obtain

ln �10(0,y) = y

4

[
1 + 1

βπ2
(ln y + 3)

]
+ lnX

+
∫

dz√
π

e−z2
ln[1 + z

√
2 ln y/(βπ2)],

(D9)

where

X =
∫

du√
π

e−u2+v(u). (D10)

As we discussed above, the integral over z in Eq. (D9) is
constrained by the condition |z|

√
ln y/(βπ2) � 1. In this case,

the typical values of z contributing to the integral are of
the order of unity. Our assumption is thus self-consistent for√

ln y/(βπ2) � 1. Therefore, the integral over z in Eq. (D9)
is proportional to ln y/βπ2 � 1 (i.e., the integral is small
compared to the first term).

Evaluating lnX to the lowest order in y/(βπ2) with the
help of Eq. (D5) we find

lnX = a1
y

βπ2
+ . . . , (D11)

a1 = (ln 2 + γ − 2)/4 ≈ −0.18. (D12)

Substituting this result into Eq. (D9), we reproduce Eq. (107)
with the help of Eq. (D1). To the second order in y/(βπ2) we
find

lnX = a1
y

βπ2
+ a2

(
y

βπ2

)2

+ . . . , (D13)

where

a2 = −3

8

(
ln 2 + γ − 7

3

)2

− 3π2

32
+ 19

24

+
∫ ∞

−∞

dudv

4π
√

3
e−2(u2+uv+v2)/3 u2 ln(u2) v2 ln(v2)

≈ −0.039. (D14)

Equation (D13) demonstrates that the result (107) [obtained by
expansion in powers of the correlation function (90)] is valid
provided the condition y/(βπ2) � 1 holds.

APPENDIX E: ASYMPTOTIC EXPRESSION OF THE
FUNCTION F (x, y) AT y � 1

In this appendix we outline derivation of the asymptotic
expression (135) of the function F(x,y) at y � 1. Provided
(2n + 1) � |x| < (2n + 3) with integer n � 0, the function
F(x,y) can be rewritten as follows:

F(x,y) = 1

2
e−y/4eyx/2e−yx2/4

{
F̃(x,y)

+ 2
n∑

m=0

(−1)m exp

[
y

(|x| − (2m + 1))2

4

]}
. (E1)

Here we introduce the function,

F̃(x,y) =
∫ ∞

−∞
dt e−yt2 cosh(πt) cos(πx/2)

sinh2(πt) + cos2(πx/2)
, (E2)

which obeys

F̃(x + 2k,y) = (−1)|k|F̃(x,y), F̃(2k + 1,y) = (−1)|k|,
(E3)

for integer k. At y � 1 we find

F̃(x,y) = sgn[cos(πx/2)]

y1/4
√

cos(πx/2)
exp

(
y cos2(πx/2)

2π2

)
×W− 1

4 , 1
4

(
y cos2(πx/2)

π2

)
, (E4)

where Wλ,μ(z) denotes the Whittaker function. However, the
Whittaker W−1/4,1/4(z) function is related to the error function:

W− 1
4 , 1

4
(z) = √

πz1/4ez/2[1 − erf(
√

z)]. (E5)

Therefore, for y � 1 we obtain

F̃(x,y) = sgn[cos(πx/2)] exp

(
y cos2(πx/2)

π2

)
×
[

1 − erf

(√
y| cos(πx/2)|

π

)]
. (E6)

Using Eqs. (E1) and (E6), we find Eq. (135).
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