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We consider effects of magnetic field on the thermopower and thermoconductance of a single-electron
transistor based on a quantum dot strongly coupled to one of the leads by a single-mode quantum point contact.
We show appearance of two new energy scales: Tmin��r�2EC�B /BC�2 depending on a ratio of magnetic field B
and the field BC corresponding to a full polarization of point contact and Tmax��r�2EC depending on a
reflection amplitude r and charging energy EC. We predict that the behavior of thermoelectric coefficients is
consistent with the Fermi-liquid theory at temperatures T�Tmin while crossover from non-Fermi-liquid regime
associated with a two-channel Kondo effect to Fermi-liquid single-channel Kondo behavior can be seen at
Tmin�T�Tmax.
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The thermoelectric transport through nanostructures is a
subject of extensive experimental1–4 and theoretical5–8 stud-
ies. One of particularly interesting questions is related to the
thermoelectric properties of quantum dots �QDs� in a Cou-
lomb blockade �CB� regime. While the experimental behav-
ior of thermoelectric transport through weakly coupled QD
devices is well described theoretically,5,6 the regime of
strong coupling of the QD to the reservoirs is far from being
understood.

The strong enhancement of thermopower �TP� is impor-
tant for nanotechnology applications.4 It provides a challenge
for both experimental fabrication of devices with high ther-
moconductance and theoretical suggestions for efficient
mechanisms of heat transfer. On one hand, the nanotechnolo-
gies offer fascinating tunability of single electron transport
while most parameters can be changed continuously by ap-
plying gate voltage, external electric and magnetic fields, etc.
On the other hand, the nanodevices efficiently operate in
strong-coupling regime where effects of strong electron cor-
relations can be viewed as a prominent mechanism for the
thermoelectric coefficients enhancement. In particular, the
Kondo effect is known as a tool for strong intensification of
electric transport through single-electron transistor �SET�.
Moreover, by increasing the number of channels one can fine
tune SET to a non-Fermi-liquid �NFL� regime. The NFL be-
havior is however illusive being very sensitive to variation in
external parameters since channel symmetry is generally
unprotected.9 A special case is a situation where the symme-
try of channels follows from one of the basic symmetry, e.g.,
time-reversal symmetry6 and thus the NFL behavior is espe-
cially robust. In this case magnetic field is a relevant pertur-
bation which drives the system to a different universality
class characterized by a restoration of the FL behavior. Such
effects have been discussed in literature10 in connection with
the thermodynamics �capacitance and charge fluctuations� of
a quantum dot. In this Brief Report we present a theory of an
interplay between NFL and FL strong-coupling regimes in
thermoelectric transport through the nanostructures con-
trolled by magnetic field.

Typical experimental setup3 for measuring the ther-
mopower S=−�Vth /�T is shown on Fig. 1�a�. The measure-
ment of the thermovoltage �Vth provides independent infor-
mation on the thermoconductance GT. The temperature

difference across the dot �T is controlled by using a current
heating technique. The differential conductance G is mea-
sured at variable gate voltages Vg. Similar to differential con-
ductance, the thermopower S=GT /G shows the oscillations
as a function of Vg. However, these oscillations are not sinu-
soidal at low temperatures. Moreover, no relation analogous
to Cutler-Mott formula11 S�� ln G /�Vg exists in that limit
underlining importance of strong electron correlations.

Theory of TP of a CB quantum dot has been studied5 in
the framework of sequential tunneling and verified by
experiment.1,2 This theory gives qualitatively correct results
at high temperatures for a weak coupling of the dot to reser-
voirs. However, at low temperatures in the Coulomb block-
ade valleys, the main mechanism of thermotransport is the
interaction-induced cotunneling7,12 ignored in Ref. 5. By in-
creasing the coupling of the SET to one �or both� reservoirs
one reaches the strong-coupling regime where Kondo phys-
ics becomes important.13–15

FIG. 1. �Color online� Top: �a� experimental setup of SET in the
strong-coupling regime �see text for the details�. The arrow along
left lead stands for the electric current controlling the Joule heat.
Almost transparent QPC remaining at the reference temperature T is
denoted by the cross. Bottom: �b� equivalent circuit described by
Hamiltonians �4�–�7�.
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The theory of the TP of the SET designed as a quantum
dot strongly coupled to one of the leads through almost
transparent quantum point contact �QPC� �Ref. 16� and
weakly coupled to a second lead has been developed by An-
dreev and Matveev �AM� in Ref. 6. It is based on the Kondo
physics. However, the role of the impurity spin in the ordi-
nary Kondo problem is played by the orbital degrees of free-
dom: the left/right movers at QPC stand for the impurity
spin-up/down projections in the conventional Kondo prob-
lem while two spin projections of an electron account for the
scattering channels.17 The impurity spin-flip process in the
ordinary Kondo effect is represented in this model by the
reflection in the QPC, with the Kondo coupling determined
by the reflection coefficient. The two limits were considered
in Ref. 6: �i� the electron spins are fully polarized by strong
external magnetic field B �Ref. 18� and �ii� the electrons
spins are unpolarized, B=0. In the first limit, corresponding
to the single channel Kondo �CK� physics, the TP shows
sinusoidal oscillations as a function of the gate voltage Vg
having nodes both in Coulomb valleys �N is integer� and
peaks �N is half integer�

S �
1

e
�r�

T

EC
sin�2�N�Vg�� . �1�

Here N�Vg� is a dimensionless parameter which is propor-
tional to Vg. The TP is a linear function of both reflection
amplitude �r� and temperature. We refer to the linear-T de-
pendence of TP as the FL regime. However, in contrast to TP
in bulk metals S�T /�F, the charging energy EC in the de-
nominator of Eq. �1� is much smaller19 than the Fermi energy
�F �cf. Ref. 20� thus making the TP strongly enhanced.

There are two important regimes for thermoelectric coef-
ficients in the limit of unpolarized electrons. First, at tem-
peratures EC�r�2�T�EC the TP is sinusoidal in N�Vg� and
quadratic in the reflection amplitude �r�,

S �
1

e
�r�2 ln�EC

T
�sin�2�N�Vg�� . �2�

Second, at smaller temperatures T�EC�r�2, the TP oscilla-
tions are nonsinusoidal

S �
1

e
�r�2

T

�
ln� EC

T + �
�sin�2�N�Vg��f	T

�

 , �3�

where �=��Vg��EC�r�2cos2��N�Vg�� and f�x� is defined in
Ref. 21. The maximum value of S scales as
Smax�e−1�r��T /EC ln�EC /T�. Thus, the TP is strongly en-
hanced by the electron’s correlations. We refer to �T ln T
behavior of Smax as the NFL regime. Such scaling of the TP
at T�EC is attributed to the two-CK �2CK� effect.22,23 How-
ever, as it is known,22 the 2CK strong-coupling fixed point is
unstable if not protected by the basic symmetry. This leads,
in particular, to smearing of Coulomb staircase steps due to
magnetic field driven asymmetry of reflection amplitudes.10

In this Brief Report we show that the effect of magnetic
field on thermopower is much more pronounced: instead of a
divergent at zero temperature Smax /T�1 /�T for B=0, at a
finite B there is a region of low temperatures T�Tmin�B2,
where Smax saturates �see Fig. 2, right panel�. Below we

present an explicit expression for this crossover for different
parameters of the problem.

The Hamiltonian describing the quantum dot coupled
weakly to the left contact and strongly to the right contact
�Fig. 1�b�� has the form H=H0+HL+HR+HC, where

H0 = �
k,�

�k,�ck,�
† ck,� + �

�

��d�
†d�

+ �
�

vF,�

2�


−�

�

��	��x��2 + ��x
��x��2�dx �4�

describes a noninteracting part, c denotes the electrons in the
left lead, and d stands for the electrons in the dot. Here
�= ↑ ,↓, 
� is a bosonization displacement operator
describing transport through the QPC with a scatterer at x
=0, and 	� is the conjugated momentum �
��x� ,	���x���
= i���x−x������. Note that the operator d�=���−�� can be
expressed through the fermionic operator ���x��ei
��x� in
the one-dimensional channel describing the QPC �Fig. 1�b��.

The Hamiltonian HL describes the tunneling from the left
�hot� lead to the dot �tk,� is a tunnel amplitude�

HL = �
k,�

�tk,�ck,�
† d� + H.c.� . �5�

The Hamiltonian HR accounts for the backward scattering in
the QPC, r�, are reflection amplitudes for ↑ ,↓

HR = −
D

�
�
�

�r��cos�2
��0�� , �6�

D is a bandwidth.
The Hamiltonian HC describes the Coulomb interaction in

the dot

FIG. 2. �Color online� Left panel: −d�eSmax� /dx as a function of
x=B /BC for T�Tmax=��0� �solid line� and T�Tmax �dashed line�.
Maximum corresponds to Tmin�B�=�� 1

2 ��T. Inset: �r↑� and �r↓� as
function of B /BC. Right panel: eSmax / �T /EC� as a function of T /EC.
Circles and squares indicate positions of Tmin and Tmax correspond-
ingly. Inset: � as a function of Vg at zero and finite B’s. Lines
correspond to the same set of parameters as on the main frame,
�r0�2=0.05 for all curves.
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HC = EC�n̂ +
1

�
�
�


��0� − N�Vg��2

. �7�

Here the fluctuating charge �in units of e� in the dot area
�corresponding to x�0 in the equivalent circuit in Fig. 1�b��
is equal24 to an integer n̂+N minus �0

�����
†�x����x�dx

=�−1��
��0�, where n̂ takes values 0, 1 and the c-number N
is absorbed in N�Vg�.

The electric current and thermocurrent through the dot are
expressed in this approximation in terms of the Matsubara’s
Green’s function �GF�

G�� = − �
�

�Td���d�
†�0��

= − �
�

�T��
�0���F̂��F̂†�0���

�0�†�0�� , �8�

where ��
�0��x ,�=e�ikF,�x��

�0��� are the Fermi operators of
the free left �right� movers in the one-dimensional channel
describing the QPC. We denote by definition �Fig. 1�b��
��

�0���F̂��= d̂���. The operator F̂ obeys the commutation

relation �F̂ , n̂�= F̂ �see Ref. 25� and takes into account effects
of interaction and reflection given by Eqs. �6� and �7�.

Since the operators ��
�0� and F̂ are decoupled, the

GF is factorized into G��=G0��K��, with
G0��=−�0�T /sin��T� being the free electrons GF, �0 is
the density of states in the dot without interaction, and

K��= �TF̂��F̂†�0�� accounts for interaction effects. The
electric conductance14 is given by

G =
GL�T

2


−�

� 1

cosh2��Tt�
K	 1

2T
+ it
dt . �9�

The thermoconductance takes the form6

GT = −
i�2

2

GLT

e


−�

� sinh��Tt�
cosh3��Tt�

K	 1

2T
+ it
dt . �10�

Here GL�e2 /h denotes the tunnel conductance of the left
barrier calculated ignoring influence of the dot.

In order to calculate the thermoelectric coefficients for the
models �Eqs. �4�–�7�� we generalize AM theory for the case
of finite magnetic field. The detailed calculations will be
published elsewhere.26 New effects reported in the present
Brief Report and missing in AM theory appear due to asym-
metry of the point-contact reflection amplitudes �cf. Ref. 10�.
This asymmetry, in turn, leads to the asymmetry of the chan-
nels in 2CK. Besides, the magnetic field lifts out the spin-
charge separation characteristic for the unpolarized models.27

However, the spin-charge separation survives if the effect of
magnetic field reduces only to changing the reflection ampli-
tudes r↑ and r↓ due to different Fermi momenta of ↑ and ↓
electrons caused by Zeeman splitting. As the reflection coef-
ficients determine the coupling constants in the equivalent
Kondo problem the effect of magnetic field induced asym-
metry of �r�’s is likely to be the major effect of magnetic field
at weak scattering. Moreover, we will show below �see Fig.
2� that the significant effect of magnetic field at low tempera-
tures occurs at B�BC, where BC is the field corresponding to

full polarization of the QPC, which makes the principle re-
sults of this study model independent.

In the spirit of AM theory6 we first calculate the leading in
the reflection amplitudes r� corrections to the thermoconduc-
tance GT and the thermopower S. Thus, all perturbative cor-
rections are powers of a symmetric s= �r↑�+ �r↓��2�r0� and
antisymmetric a= ��r↓�− �r↑����r0B /BC� combinations of the
reflection amplitudes. Here �r0� stands for the reflection am-
plitude at B=0. In the leading order we reproduce Eq. �2�
with �r0�2 replaced by �r↑r↓�. At large enough magnetic fields
B�B� when the channel ↓ becomes almost completely re-
flecting and �r↓��1, one obtains �r↑r↓���r↑� which explains
the crossover from ��r�2 for small B �Eq. �2�� to ��r� for
B�B� �Eq. �1�� in TP. Proceeding with the higher order
��r�4 perturbative corrections to thermoconductance and TP
we notice existence of a new energy scale � see Eq. �11�
depending on external magnetic field.26

More efficient way to prove emergence of new energy
scale is to map the model �Eqs. �4�–�7�� onto effective
Anderson model.13 This mapping, being nonperturbative in s
and a accounts for low-frequency dynamics of the spin
modes. The channel asymmetry a leads to a nontrivial con-
tribution to the Kondo-resonance width � in the vicinity of
Coulomb peaks

��N� =
2�EC

�2 �s2 cos2��N� + a2 sin2��N�� . �11�

As it is shown in the right inset of Fig. 2, at B�0 the width
� acquires a gap Tmin=�� 1

2 ��a2EC�EC�B /BC�2�Tmax
=��0�. The thermal and electric conductances take the form

GT = −
1

12�

GLT3

eEC�2 �s2 − a2�ln� EC

T + �
�sin�2�N�F1	T

�

 ,

G =
GLT2

4�EC�
F2	T

�

 . �12�

The functions F1�x� and F2�x� are defined in Ref. 21,
��1.78. Equation �12� allow regular expansion at low tem-
peratures T�Tmin, where F1�x�1�=8�4 /5− �136�6 /35�x2

+O�x4� and F2�x�1�=8�2 /3− �8�4 /5�x2+O�x4�. Taking the
leading term of this expansion we obtain

S = −
��

5e

T

��N�
�s2 − a2�ln� EC

��N��sin�2�N� , �13�

where s , a= ��r↓�� �r↑�� and ��N� given by Eq. �11�. Equa-
tions �11�–�13� and emergence of new energy scales Tmin and
Tmax represent the central result of this Letter. One sees from
Eq. �13� that the thermopower at a�s is not sinusoidal.
Moreover, the extrema of S at T�Tmin are located at gate
voltages N�1 /2��a /2s and its value at the maximum is

Smax �
1

e

T

EC

s

a
ln	1

a

 . �14�

Thus, the Fermi-liquid behavior eSmax�T /E0 is nontrivially
restored. The role of �F in Ref. 11 is played by
E0=EC�B /BC�ln−1�BC /B�r�� �Ref. 19� which vanishes at
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B=0 �giant Fermi liquid� and has very weak �logarithmic�
dependence on the reflection amplitude.

Existence of the new energy scale Tmin manifests itself in
the behavior of Smax�T� /T �see Fig. 2, right panel�, diverging
at B=0 while saturating at temperatures below Tmin at a
nonzero B. Another manifestation of the new energy scale is
the existence of maximum in dS /dB �Fig. 2, left panel�.
This maximum is located at magnetic field Bm where
Tmin�Bm��T.

Finally we identify three regions of parameters with dif-
ferent behavior of the thermopower. �i� “Giant FL” regime
Eq. �13� is predicted for T�Tmin. �ii� Proximity to “strong
NFL” regime with Smax�e−1�r��T /EC ln�EC /T� can be seen
at Tmin�T�Tmax. �iii� Perturbative “weak NFL” regime Eq.
�2� holds at Tmax�T�EC. Thus, the magnetic field stabilizes
the FL thermoelectric properties and can be used as a fine
tuning parameter to control the heat flow.

We conclude that the external magnetic field applied to

the SET in the strong-coupling regime is responsible for the
NFL-to-FL crossover in the transport properties. A parallel
magnetic field applied to SET results in the channel up/down
asymmetry and thus changes the universality class from the
two-channel Kondo to the single-channel Kondo regimes.
We also expect restoration of the FL transport for the out-of-
equilibrium SETs, in particular, for SETs at a finite source-
drain voltage and subject to external noise.
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