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Kondo effect in complex quantum dots in the presence of an oscillating
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We show how the charge input signal applied to the gate electrode in double and triple quantum dots may be
converted to a pulse in the Kondo cotunneling current being a spin response of a nanodevice under a strong
Coulomb blockade. The stochastic component of the input signal results in the infrared cutoff of Kondo
transmission. The stochastization of the orbital component of the Kondo effect in triple quantum dots results in

a noise-induced SU(4) — SU(2) quantum transition.
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I. INTRODUCTION

Current interest in charge-spin conversion effects is
spurred by challenging prospects of spintronics. Most of the
mechanisms of such a conversion are related to the intercon-
nection between electrical and spin currents due to spin-orbit
interaction,! which results in spin accumulation near the
sample edges. Such an accumulation in three- and two-
dimensional electron gases in elemental and III-V semicon-
ductors may result in a spin-Hall effect’> and positive
magnetoresistance.’ It was argued also that the Rashba-type
spin-orbit interaction in a quantum dot assists pure spin cur-
rent by modulation of the voltages applied to the leads in a
three-terminal device.* Spin Coulomb drag effects should be
mentioned in this context, which may result in spin polariza-
tion of charge current due to intrinsic friction between elec-
trons with different spin projections induced by Coulomb
scattering.>0

In all these propositions the possibilities of conversion of
charge current into spin current were discussed. It is possible
also to try to use the external electric field for the generation
of spin current or another spin response. One such idea was
formulated recently for light emitting diodes (LEDs) based
on conjugated polymers,” where dissociation of excitons in a
strong enough electric field may result in the accumulation of
up- and down-spin densities near the two ends of the LED.

In this paper we show that the charge input signal applied
to the gate electrode in double quantum dot (DQD) and triple
quantum dot (TQD) forming closed loops (equilateral tri-
angle) may be conversed to a pulse in Kondo cotunneling
current, which is in fact the spin response of DQD under
strong Coulomb blockade. The general idea of such a con-
version was formulated in our previous paper® (hereafter re-
ferred to as paper I). Using the example of a T-shaped DQD
occupied by two electrons we have shown that the charge-
spin conversion is possible due to the specific dynamical
symmetry of a spin multiplet consisting of two singlets and a
triplet. Since the states in this multiplet are constrained by
Casimir operators of the group SO(5) characterizing the dy-
namical symmetry,” the time-dependent perturbation in the
charge sector which affects only the singlet states results in a
time-dependent potential acting on the triplet states.
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An important aspect of the problem is the interplay be-
tween the coherent (adiabatic) and stochastic components of
the input signal. In paper I we concentrated mainly on the
coherent signal and discussed in details the conversion of
charge noise into spin response in Kondo tunneling. This
response may be interpreted as dephasing and decoherence
of the Kondo screening. Here, we develop the general
scheme, where both coherent and stochastic responses of
Kondo tunneling to the time-dependent gate voltage are cal-
culated. Besides, the decoherence due to the noise compo-
nent of the input signal is considered in the long relaxation
limit contrary to paper I, where the white-noise approxima-
tion was considered for the noise correlation function.

Another mechanism of charge-to-spin conversion may be
realized in an equilateral triangular TQD in an external mag-
netic field penetrating the triangle plane. This model was
introduced in Ref. 10 with the purpose of studying the inter-
ference between Kondo tunneling and Aharonov-Bohm inter-
ference (see Ref. 11 for an experimental realization). The
actual dynamical symmetry of TQD in a contact with metal-
lic electrodes is SU(4) because the system possesses two spin
and two orbital degrees of freedom. We show in this paper
that the time-dependent gate potential affects only the orbital
component of multiplet, but the Kondo tunneling is sensitive
to this perturbation because both orbital and spin discrete
degrees of freedom are involved in Kondo screening.

II. COHERENT AND STOCHASTIC CHARGE SIGNALS

The subject of our calculations is the study of the trans-
formation of the charge input signal into a Kondo response
of complex quantum dots in tunnel contact with source and
drain electrodes. We study the mechanism of activation of
internal spin degrees of freedom by means of a time-
dependent gate potential applied to passive electrode. Two
examples of complex nanodevices will be considered. The
first is an asymmetric DQD which contacts with metallic
leads in a so-called T-shape geometry [Fig. 1(a)]. The second
is a TQD in the form of an equilateral triangle in a three-
terminal configuration, where the bias is established between
dots 2 and 3 and the time-dependent gate potential is applied
to dot 1 [Fig. 1(b)].
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FIG. 1. (a) Double quantum dot in a T-shape two-terminal ge-
ometry. (b) Triangular quantum dot in a three-terminal geometry in
a magnetic field perpendicular to the plane of the triangle.

In both cases the electron tunneling is described by the
Anderson Hamiltonian

Hszand+Hdot+Hlun’ (21)

where three terms are related to band electrons in the leads,
electrons in the complex dot, and tunneling coupling be-
tween two subsystems, respectively. The lead Hamiltonian
has the form

Hband = E 8bkc;ko-chk(r' (22)
b

Here, b stands for the leads, and k, o are the wave vector and
spin projection, respectively. The leads are identical in our
model (g,;=¢g,;), so it is convenient to re-expand the lead
electron states cZkU in terms of irreducible basis states c};,w of
the corresponding point symmetry groups (mirror symmetry
for DQD and triangular symmetry for TQD).

The Hamiltonian of the dot is written as

J#j’

Hou= 2 H) + 2 Hjjy+ Hy(0), (2.3)
J i’

The potential wells in a complex QD are enumerated by the
index j. Here,

_ 2
Hj-)—sjnj'i' anj

describes electron states in the potential well j under the
Coulomb blockade 0, and n; are the occupation number
operators. The second term,
— T
Hj, =V dyd;y, (2.4)
g
stands for the interdot tunneling. By convention j=1 is re-

served for the well coupled to the gate. This coupling is
described by the last term in Eq. (2.3),

H,(1) =[V,4(0) +v,(1)]n,,

where the gate voltage contains both a static component
V,(0) and a time-dependent perturbation v (7).
The tunneling term in the Hamiltonian (2.1) has the form

Hyn= W2, 2 (chiod;p + Hee). (2.5)

jB ko

The values of j and B are determined by the geometry of the
complex QD (see below).
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We consider a general situation where the gate potential
applied to a multivalley complex QD contains both coherent
and stochastic components,

0,() = T,(1) + 80, (1). (2.6)

Here, #,(t) is the coherent (deterministic) contribution and
dv,(1) is the stochastic noise component, which is defined by

its moments

(1) =0,

80, (Ndv (") = vt —1").

The overbar stands for the ensemble average; the character-
istic function f(¢—¢") will be specified below.

The starting point of our investigation is the canonical
transformation which converts the gate potential into a time-
dependent operator involving one of the generators of the
group characterizing the dynamical symmetry of a complex
QD.3%12 This transformation applied to the Schrodinger op-
erator —ifi(d/ dt)+Hgy,, gives®13:14

(2.7)

~ U
o= Uy HoolUy = iU 2 (2.8)
with
Uy =explig(Hn,], (2.9)
and the phase ¢,(z) given by
1 t
& (1) = %f dr'v,(1'). (2.10)

One may apply the Hausdorff expansion to the first term in
Eq. (2.8),

. ()"
Hoolt) = Higg + 2~ LS L[S0 - [S1.Higl)-. 1

(2.11)

where S;=¢,()n;, and Hgl(()))t includes all time-independent
terms from Eq. (2.3).

It is expedient to introduce “even” and “odd” hopping
operators

17 = 2 [d]djg = djyddy ). (2.12)

g

To the lowest orders in V,, the time-dependent part of the dot
the Hamiltonian acquires the form

SHau(t) == V2 (z'&l(zm;) + %@(rvrﬁ;)), (2.13)
where

<7>1<r>=% f A1),

T2t t
¢1(z)2=% f dr’ f dfi = 1), (2.14)

115330-2



KONDO EFFECT IN COMPLEX QUANTUM DOTS IN THE...

Thus, we obtain the effective time-dependent dot Hamil-
tonian

FIdot = Hfi(()))t + 5Hcoh(t) + 6Hstoch(t)» (215)

where the time-dependent perturbation contains a coherent
component [the first term in Eq. (2.13)] and a stochastic one
[the second term in Eq. (2.13)]. In many cases the coherent
perturbation may be easily taken into account in an adiabatic
approximation,®!? whereas the second term in Eq. (2.15) re-
sults in the stochastization of the quantum state of the com-
plex QD.

We are interested in the influence of such a time-
dependent perturbation on the electron cotunneling through
complex QDs in Kondo regime. To investigate this influence
one should derive the effective spin Hamiltonian from Eq.
(2.1) by means of a time-dependent Schrieffer-Wolff (SW)
transformation®!3 taking into account the perturbation
O0H 4y (1) in Eq. (2.15). The adiabatic component of this per-
turbation results in temporal oscillations of Kondo transpar-
ency and enhances the tunnel conductance on average,"
whereas the stochastic component of the gate potential is
detrimental for Kondo tunneling. It results in the loss of co-
herence of the Kondo singlet state and in the smearing of
zero-bias anomaly (ZBA) in tunnel conductance. In accor-
dance with the general approach to decoherence
phenomena,16 one should discriminate between the decoher-
ence of the ground state of a quantum-mechanical ensemble
and its manifestation at a finite energy or temperature. In the
latter case one should argue in terms of dephasing due to
elastic and inelastic scattering. Both processes are relevant in
our system (see paper I). In the next two sections we will
show how the coherent part of SH(z) results in the conver-
sion of the charge input signal to a Kondo response and why
its stochastic component brings an end to this process.

III. DOUBLE QUANTUM DOT IN T-SHAPE GEOMETRY:
EVEN ELECTRON OCCUPATION

We start with the T-shaped DQD [Fig. 1(a)] and consider
the case of even occupation N'=2 with one electron per po-
tential well. In this two-terminal geometry the irreducible set
cz,,m consists of two combinations of source (s) and drain (d)
leads. Only even standing wave ¢,;,=(Cgo+Caro)/ V2 enters
Hg, (2.5), and we omit in what follows the index B=e. The
intradot indices jj' have two values of 1 and 2. We consider
a DQD with two equivalent wells (Qj:Q) and assume that
the time-independent component V,(0) of the gate voltage
modifies the single-electron spectrum in such a way that the
charge-transfer excitation due to hopping H(1)2 (2.4) is a rela-
tively soft excitation with the energy A,=g,—&,+0<<Q
[see Fig. 2(a)].

Under these conditions the low-lying part of the energy
spectrum of DQD in the charge sector N'=2 consists of two
singlet states and one triplet state:'?
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FIG. 2. Energy levels of an isolated DQD. (a) Single-electron
levels. The interdot tunneling V is shown by a dashed arrow. (b)
Two-electron levels E,. (c) Evolution of E, with the growth of the
scaling parameter £=1n Dy/D (see text for further details).

ES= €1 +82—2(XV,
ET= e+ &y,

EE=282+Q2+26YV. (31)

Here, a=V/Ag; is the effective indirect exchange parameter,
which favors antiparallel orientation of electron spins in two
valleys of the DQD. The ground state of the isolated DQD is
the spin singlet Ej.

In spite of this, Kondo tunneling through DQD in T-shape
geometry is possible under certain conditions, because the
contact with lead electrons renormalizes the effective ex-
change in such a way that the singlet/triplet level crossing is
possible. This result was obtained in Ref. 12 by means of a
renormalization-group (RG) technique'” with scaling param-
eter é=In D,/ D, where D, and D are the initial and current
energy scales for electrons in the leads, respectively.

Having in mind this structure of low-lying states, it is
convenient to represent Hy,, in terms of Hubbard operators

XM =|A)A|, where |A) are the eigenvectors corresponding
to the eigenstates E, (3.1),

Hy = 2 E\XM,
A

A=Tv,S,E, v= *1,0. (3.2)

It is important for further calculations that the system of
operators describing transitions between the levels of any
multiplet consisting of two singlets and one triplet forms a
closed set of generators of the SO(5) algebra. Ten generators
forming this algebra are packed into three vectors S,P,M
and one scalar A. Vectors describe transitions within the trip-
let Tv, between the triplet and the singlet S and between the
triplet and the singlet E, respectively. The scalar A stands for
transitions between the singlets S and E. All these operators
may be expressed via Hubbard operators xAA (see Refs.
8-10 for further details). One may rewrite the Hamiltonian
H,,, in terms of these generators

Hy = 3(E;S* + EPP + E;M?) + QN -2)%. (3.3)
Besides, the hopping operator T(l_z) (2.12) may be represented
as
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74 = iAV2. (3.4)

Finally, the Casimir operator C for the SO(5) group is

C=S*+P>+M?>+A%=4. (3.5)

Using Egs. (3.3) and (3.4) as input data in Egs. (2.11) and
(2.13), we obtain the effective Hamiltonian (2.15) in the fol-
lowing form (see paper I):

Hao() = 3[E7S? + Eg(0P? + Eg()M?] - u(C - 4),
(3.6)

with
ES(I) =Es— 6coh(t) - 5sloch,S(t) s

Eg(t) = Eg+ 8uopn(t) + Syoen (1) (3.7)

Here, coherent and stochastic corrections enter in the
form of time-dependent “energy levels,”

Seon(t) = VA s 1(0),

5sloch,S(t) = (V2/4AST)%7

5stoch,E(t) = (V2/4AET) ‘i)%(t),

Appr=|Ex—Exs|. As was pointed out in Ref. 8, a charge
perturbation cannot directly affect spin degrees of freedom,
and the triplet level E; remains time independent.

It is seen from Eq. (3.7) that the coherent component re-
sults in the time-dependent shift of energy levels. It may be
treated as an adiabatic correction provided the time-
dependent perturbation is weak enough, &,.,(f) <<Agr. Below
we adopt this adiabatic approximation.

Unlike the coherent renormalization, stochastic compo-
nents are not “in phase,” i.e., Syocn,s(f) # Ssioen £(f). This in-
equality makes the constraint imposed on spin dynamics by
the Casimir operator C (3.5) “fragile” for the SO(5) group.
Another source of stochasticity is the last term in Eq. (2.8).
In lowest order in the stochastic correlation functions (2.7)

(3.3)

its contribution is ~%n, ¢, (1) ¢,(¢). This contribution may be
converted into additional fourth-order corrections to Eqgs.
(3.7), and we neglect it in the following calculations.

A time-dependent SW transformation of the Hamiltonian
(2.1) is performed by means of canonical transformation
H= UZHUEI. The phase Y in the matrix U,=exp Y is given
by

Y(1) = 2 [ ()X e, + o ()XF'7¢,, — Hee], (3.9)
ko
The coefficients v,f(r), £ (r) are fixed through the condition
(3.10)

Y
Htun + [Ya (Hdot + Hband)] = lﬁz .

The solution of this equation is described in paper I, and the
resulting cotunneling Hamiltonian has the form

PHYSICAL REVIEW B 81, 115330 (2010)

Heoun() =JES s+ PP -s + JE(OM -s.  (3.11)

Again, pure spin scattering is not affected by charge pertur-
bation, but time-dependent spin-flip transitions in the leads
described by the two last terms in Eq. (3.11) arise due to the
fact that the dynamical symmetry of the dot spin multiplet is
activated by the time-dependent gate potential. Like in Eq.
(3.6), the time-dependent coupling parameters in the SW
Hamiltonian contain both coherent and stochastic compo-
nents,

TNO) =Ty + Tag(1) + T oen (1) (3.12)

(A=S,E). The time-dependent corrections to Jg are calcu-
lated in Appendix A. Now we are well prepared to study the
contribution of adiabatic and stochastic corrections to Kondo
tunneling.

A. Coherent input signal

We study here the transformation of the monochromatic
gate potential

U,(t) =0, sin Q¢ (3.13)

into a coherent (adiabatic) Kondo response under the condi-

tions Q0 <Agy and 8,,(f) <Agp. Then the phase ¢,(r) has a
simple form

al(t)zﬁ%(l —cos 1), (3.14)
so that ¢(r=0)=0.

We calculate the coherent (adiabatic) response at low
enough energy and temperature, where the last term in Eq.
(3.11) may be omitted. Then we remain in the reduced {S, 7}
part of Hilbert states, i.e., we assume that the Kondo tem-
perature Tk~ Agy is valid. The dynamical symmetry of the
reduced adiabatic (ad) effective Hamiltonian,

ad ad
Hgy= iii)t) + Hiitﬂn’

Hyo = 3[ErS? + Eg(1)P*] + QN - 2)?,

HY = JIS. s+ [J5+,(0]P s

cotun

(3.15)

is SO(4).

The adiabatic part of the time-dependent Hamiltonian
may be incorporated in a Haldane-type RG theory.®!317 As a
result, the levels E, acquire self-energies scaled with the
parameter é=In(D,/D), namely, M y=a,& so that

Er— Er— azé,

Eg(t) — Eg— as(t)é.

The self-energy Mg depends parametrically on time. The co-
efficients a7 were calculated in Ref. 12, and it was shown
there that the inequality a;> ay is always valid due to exis-
tence of excited singlet level Ex. Due to this inequality, the
singlet/triplet level crossing may occur at this stage of renor-
malization [see Fig. 2(c)], so that the ground state of the

(3.16)
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FIG. 3. (Color online) Left column: Tg(Ag;) parametrized as
Ti(x)=Tg™f(x), where x=Agp/ Tg™, f(0)=1, f(x>1) ~x7[cf. Eq.
(3.18)], and f(x=-1)=0. Middle column: time-dependent Tk(¢)
corresponding to the evolution of Tx(Ag7) in the left column. The
intervals over which the evolution is followed are shown by straight
lines in the left column. These intervals are parametrized as (from
top to bottom): x=1.8-0.5y, 1-1.89y, 1-2y, 1-3y, -3y
(y=sin? Qt/2). Right column: evolution of ZBA in the conductance
according to Eq. (3.19). See the text for further discussion.

system is triplet to the right of the crossing point. The time-
dependent factor ag(r) describes parametrically slow varia-
tions of the scaling trajectory due to adiabatic (coherent) cor-
rections given by Egs. (3.7) and (3.8). The expression for
J3,(#) derived in Appendix A reads explicitly [see Eq. (A3)]
as

\EWZ
€— Mg

Jaa= b1(1) (3.17)
(one may neglect the time dependence of the denominator).

It is known from Kondo theory for quantum dots with
SO(4) symmetry'2!819 that the Kondo temperature is a very
sharp function of Ag; with a maximum Ty, at Ag;=0 (see
Fig. 3, left column). It has an intermediate asymptotic behav-
ior for positive Ag; where the ground state of DQD is a
triplet

Tk(t) _[h]n’ (3.18)

Txo | Asrlt)

which is valid in an intermediate asymptotic regime for posi-
tive Agr at Txo/Agr=1. Here, <1 is a universal constant.
This sharp dependence is a key to the charge-spin transfor-
mation mechanism, which is especially effective in the vicin-
ity of the triplet/singlet (T/S) critical point Ag;=0.

Next, we estimate the influence of the trembling signal on
the tunnel conductance G(T,1) at given T> T in a situation
where the temporal variations of Ag(t)=E¢—E;— S.0n(2)
change T(r) close to the above-mentioned degeneracy point
A¢r=0. In this high-temperature weak-coupling regime the
ZBA in tunnel conductance obeys the law
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G
— ~ In"2(T/Ty). (3.19)
Go
Substituting Eq. (3.18) in Eq. (3.19), one gets
G(1) >
G. {In(7/Tko) = 7 In[Txo/Asr ()} (3.20)
0

The results of the numerical analysis of the Kondo re-
sponse Ti(f) to the periodical input given by Eq. (3.13) as
well as the adiabatically varying conductance (3.19) are pre-
sented in Fig. 3. We have taken 7=0.5 in Eq. (3.18) and in
numerical calculations.'® Five rows correspond to five differ-
ent intervals of temporal evolution of Ag;(7) calculated by
means of appropriate parametrization of Egs. (3.14) and
(3.17) regulating the noise amplitude and the gap width Agy,
respectively. It is seen from this analysis that the input sinu-
soidal potential U, sin )¢ transforms into periodic oscilla-
tions of the Kondo-related ZBA in G(¢). The sinusoid is re-
produced with a slight distortion when the gap Ag(2)
remains positive under temporal perturbation (row 1 in Fig.
3). Additional minima impart the “Kremlin wall” shape to
the periodic curve G(¢) when the sign of Ag;(f) changes un-
der the periodic perturbation (rows 2 and 3). The same re-
gime with larger amplitude 0, may result in the complete
suppression of Kondo tunneling due to the periodical triplet-
singlet crossover (row 4). Finally, if the system remains com-
pletely in the singlet sector A¢(f)<O near the crossover
point, the charge perturbation results in a pulsed Kondo out-
put signal (row 5).

It is worth noticing that this mechanism of adiabatic trans-
formation of a charge signal into a Kondo response is close
to that proposed for Kondo shuttling!> where the source of
time dependence are the nanoelectromechanical oscillations
of a quantum dot with even occupation between two leads.
The reference Kondo temperature T is given by the equa-
tion
= De oY),

Tko (3.21)

where j=ppJ", pr is the density of electron states in the

leads at the Fermi level, and D is the characteristic scale of
these states in the SW regime.'? This temperature also oscil-
lates adiabatically in time due to correction (3.17) to the
second term in the exponent. One may estimate adiabatic
oscillations &T%, in the lowest order in j3,/(J{+J5) < 1. One
derives from Eq. (3.21)

54(0) &(1)
STH(1) =~ Tmm ~ Tho Jl-g . (3.22)

These temporal oscillations only weakly distort the curves
shown in Fig. 3 because the Kondo temperature in these
curves changes by the order of its magnitude due to oscilla-
tions changing the sign of Ag;(7). One may roughly estimate
this effect by averaging Eq. (3.22) over an oscillation period.
Like in the Kondo shuttling,'> this averaging results in an
effective enhancement of Ty, which resembles the Debye-
Waller enhancement of neutron-scattering intensity because
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of a nonzero average quadratic displacement induced by
phonon vibrations.

B. Stochastic input

We begin with the discussion of the influence of an inco-
herent input on the spin state of quantum dot isolated from a
metallic reservoir. As is known from the general theory of
dynamical symmetries,” only those states from the total
manifold are involved in its formation whose energies
are comparable with the energy scale of the interaction
that breaks the symmetry of the Hamiltonian. In our case
this scale is determined by the Kondo temperature
T~ Agr<<Apr.

1. Fluctuations of the global constraint

The mechanism of conversion of the stochastic compo-
nent 6v,(¢) of the input signal into a stochastic spin response
is quite unusual. Instead of dephasing due to time-dependent
spin-flip processes,'? stochastization of the energy spectrum
of DQD results in the loss of a Curie-type spin response at
some characteristic energy {. This effect is related to the time
dependence of the factors &,ep A (#) (3.8) in the Hamiltonian
(3.6). Indeed, inserting Eq. (3.7) into Eq. (3.6), one may
write the stochastic part of Hy,, in the form

HfitootCh = [5sloch,S(t)P2 - 5sloch,E([)M2]/2~ (323)
Unlike the adiabatic part of time-dependent energies E (),
this term describes spin fluctuations related to the dynamical
symmetry of DQD. In the reduced singlet/triplet subspace
the exact confinement preserved by the last term in Eq. (3.6)
obeying SO(5) dynamical symmetry transforms into fluctu-
ating confinement in the effective Hamiltonian,

Hdot(t) = %(ETSZ + ESPZ) - M(Sz + P2 - 3) + 5stoch,S(t)P2,
(3.24)

where the SO(4) symmetry is preserved only approximately.
Thus, the stochastic component of the dot Hamiltonian given
by the correlation functions (3.8) appears explicitly in the
constraint.

It follows from Eq. (3.24) that this component survives
even in the asymptotic regime, T<<Agy, where the T/S exci-
tations are quenched in the Kondo scattering, but the singlet
component of the spin multiplet still influences the constraint
via its stochastic constituent. The effective dot Hamiltonian
in this limit has the form

Hyo(t) = 3ES? = u(S? = 2) = Syoens(0S?,  (3.25)

so that the fluctuations of the charge singlet/exciton (S/E)
gap may be transformed into the fluctuations of the spin
constraint. This unusual situation is considered below in
greater detail.

To investigate the influence of stochastic corrections of w
on the spin properties of isolated dot, we rewrite the Hamil-
tonian (3.25) in a fermionized form
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Hoy()= 2 [Ef2-p0Ifif, (3.26)

v=0,%1

Here, f,, are spin fermions representing the S=1 triplet,*° and
the time-dependent chemical potential for spin fermions is
defined as u(f)= o= Syocn s(¢). The stochastic component of
o may be treated as a random potential in the time domain,
which describes the fluctuations of global fermionic
constraint.® The problem of propagation of spin fermions in a
random time-dependent potential may be considered by
means of the “cross technique™?” developed for the study of
electron propagation in a field of impurities randomly dis-
tributed in real space.

In Ref. 8 the short-time (white-noise) fluctuations of a
global fermionic constraint have been considered. The noise
correlation in this limit is deltalike,

D(t—1") = W () ult"))y = rodt —1').

Such a description presumes that the chemical potential that
suddenly “shaken” at any moment does not keep memory
about its previous value (correlation time equals zero). The
decoherence time calculated in Born approximation is given
by

(3.27)

fL/Td"“ rog.

Here, we propose another realization of the stochastic po-
tential, which corresponds to the situation when the chemical
potential varies slowly in time [~exp(—y7)]. A very long
relaxation time 7.~ 1/7y with small vy is assumed, so that the
noise correlation is given by

28y
D(w) = ilil(l)m = 27T§25(a)).

(3.28)
In this limit the averaged spin propagator describes the en-
semble of states with chemical potential w=const in a given
state, but this constant is random in each realization.?!

The problem of decoherence of the spin state in a stochas-
tically perturbed DQD in this limit can be mapped on the
so-called Keldysh model??>* originally formulated for sys-
tems which are o correlated in the momentum space impurity
scattering potential. The problem can be solved exactly and
the decoherence time is defined by the variance ¢ of the
Gaussian correlation (see below). We look for a solution of
the time-dependent model where time is the only current
coordinate in the system.

The spin-fermion propagator at 7=0 is defined as

Grt=1) = (£, (Of (1 == K£,(DF1)]). (3.29)

We sum the perturbation series for the Fourier transform of
this Green’s function (GF),

[

G"(e) = g(e) [ 1+2 An§2”gz”(8)] : (3.30)

n=1

Here, g(g)=(g+id)~' is the free spin-fermion propagator
with E7/2—ug=0 taken as the reference energy. The index v
is omitted since the fluctuations of w are related to the global
U(1) symmetry. The noise correlation function (3.28) is nor-
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Sony M,

W
FIG. 4. (a) Feynman diagrams for the self-energy with vertex

corrections; (b) bare self-energy; (c) first line correction; (d) first
vertex correction.

(c) (d)

malized in such a way that corresponding vertices are dimen-
sionless.

The Feynman diagrams for the self-energy 3(e) are
shown in Fig. 4. The key features of the Keldysh model stem
from the fact that all self-energy diagrams in a given order
are equivalent due to the delta-function character of the cor-
relation function D(w) (3.28). As a result, the contribution of
all diagrams in a given order n is completely determined by
the combinatorial coefficient A,=(2n—1)!!, giving the total
number of diagrams corresponding to all possible pairwise
connections of n vertices by wavy lines. Then the exact ana-
lytical equation for the self-energy may be derived,?>2*

2(€)=fZ—wr(e,e—w;w)G(e—w)D(w). (3.31)

Here, I' is the full vertex (triangle), G is the full Green’s
function (thick line), and D is the noise correlation function
(wavy line) in Fig. 4(a). Evaluation of the integral (3.31)
with the & functional D(w) (3.28) gives

S(e) = ’T(€,€:0)G(e). (3.32)

In order to find G(e€) we use the Ward identity illustrated in
Fig. 5, which connects the triangular vertex and the GF,

(a) (b) (c)

FIG. 5. Diagrams for the vertex I'.
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(a) : (b) :

FIG. 6. Diagrams for bare and dressed spin susceptibilities.

dG™!
I'(g,€,0) = y (6)
€

(3.33)

Then the Dyson equation for the spin-fermion propagator is
transformed with the help of Eq. (3.33) into an ordinary dif-
ferential equation,

,dG
£ +eG-1=0. (3.34)

This equation is supplemented by the boundary condition?3?*

G(e— 00)=;. (3.35)

The solution of Eq. (3.34) satisfying the boundary condition
(3.35) is given by

[ d
GF(e) = —— f P (3.36)

o2 €—7+id

Remarkably, the spin-fermion GF in this model has no poles,
singularities, or branch cuts. The solution (3.36) represents
the set of spin states under a stochastically fluctuating chemi-
cal potential averaged with a Gaussian exponent character-
ized by the variance .

Let us investigate the spin response of this ‘“‘stochasti-
cized” DQD. To calculate the spin susceptibility, it is conve-
nient to make an analytical continuation of G¥ on the imagi-
nary semiaxes of complex energies, i.e., to go over to the
thermodynamical Matsubara Green’s functions,

iy [ et
27

i€, — 2

(3.37)

The spin (triplet) susceptibility at finite temperatures defined
by the diagrams in Fig. 6 may be calculated by means of
these functions. The spin susceptibility with vertex correc-
tions is determined as

Y(iw,) =T, Gliw, +i€,)Glie,)[ (i€, i€, + iw,,;iw,,).
(3.38)

The Ward identity (3.33) provides us with the exact equation
for the vertex function
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FIG. 7. (Color online) Static susceptibility x(0,7). The inset
shows a frequency dependence of Im y with a maximum at o~ .

eGR -1

IR, €;0) = W,

(3.39)

giving access to the exact evaluation of the static suscepti-
bility x(0) (right diagram in Fig. 6). Combining Eq. (3.38)
with Egs. (3.37) and (3.39), we find

1 oo
x(0) = — dye™ 12y tanh(i—i). (3.40)

V87l J
The asymptotic behavior of the static susceptibility x(0)
is

(3.41)
cull, (>,

=
0) = {CC/T, T>{
where C¢ and Cy are constants. At high 7 the behavior of the
dot is Curie-like with the Curie constant Cc modified by
averaging. At low T the noise dispersion ¢ plays the role of
an effective temperature in the Keldysh model with the cor-
responding constant Cy in the numerator.

There is a great simplification in the calculations of the
dynamic susceptibility at temperatures 7> {. We notice that
I"'—1 in this limit since transferred energy exceeds the dis-
persion of the noise spectrum. Under this condition one can
neglect the vertex corrections, and the spin susceptibility is
given by

inh L=
dz,dz,e zl+zz)/2£2 Sin T

z iw,+2,-2 ’
cosh(—l)cosh<—2) 2o
2T 2T

Performing the analytical continuation, one gets the follow-
ing equation for the imaginary part of the spin response func-
tion at real frequencies:

1 o
X(iwm) = 2,”_4,2 f_m

— w42 ® —g21a%
e w e
I =————tanh{ — dg——F———

m (@) e . <2T)f_w qcosh(f;)
— 5t
cosh(z—T)

(3.42)

Thus, Im y®~ w at small w<T. The real part of the static
susceptibility is given by

PHYSICAL REVIEW B 81, 115330 (2010)
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(a) (b)

FIG. 8. Diagrams for spin-electron loops responsible for the
Kondo effect. Here solid and dashed lines stand for spin-fermion
propagators G(ie,) and electron propagators g(p,iw,), respectively.

u sinh *
—2) —u%ag? f dq

—00

Re x(w) =5 g

_q2/4§2
X

cosh( )+cosh( ) (3.43)

where the principal part of the integrals is taken.

It follows from Egs. (3.40), (3.42), and (3.43) and from
results of numerical calculations presented in Fig. 7 that the
low-frequency response of a DQD in the Keldysh regime has
nothing to do with the behavior of a free spin. This means
that in spite of the fact that at high 7 a DQD behaves like a
quantum object with a spin of 1, it looses at {w,T}<<{ the
generic characteristics of a localized spin due stochastiza-
tion; hence, it cannot serve as a source of Kondo screening at
low energies.

A direct calculation of spin-electron loops responsible for
Kondo screening (Fig. 8) confirms this conclusion. These
second-order perturbation theory corrections to the spin-
electron vertex are given by

T(ie )] ~ JTY, f

dp . : )
(277)3 g(p’lwm)g(lsn + lwm) .

Substituting Green’s functions into this integral, we have

tanh( ¢ )
2T

ie,—E+7°

D
T (ie,)1J ~ pJ) dz e f dé———

This vertex correction reflects the averaging of the standard
Kondo vertex with the Gaussian distribution of chemical po-
tentials. Evaluating the integral, one obtains a combination
of logarithmic, hypergeometric, and imaginary error func-
tions

s 1
T%(e— 0)/J = poJ In(\2CD/{) + EpOJ

X\ Fil =2, || = | —7Efil — ]|,
2’728 )\ ¢ V2¢
(3.44)

where y=In C is the Euler constant. In two limiting cases of
low and high temperatures relative to the dispersion ¢ of
noise spectrum, it leads to the following compact expres-
sions:
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pJ In(DIT),
pJ In(D/¢),

T>{

o7 (3.45)

TP(e— 0)/J = {
We conclude from here that the variance ¢’ predetermines
the energy or temperature cutoff (similarly to the Kondo-
spin-glass problem?). This result correlates with the above
observation that at low 7<<{ the magnetic excitations in sto-
chasticized DQD loose the properties of spin-flip processes,
which are essential for Kondo screening. The characteristic
decoherence time is given by

ﬁ/Td"“ g

If {< Ty, the noise effect is seen in the behavior of the mag-
netic susceptibility as a logarithmic correction,

x(T) = xcA1 = In"'[max(T, )/ Tx] + -},

but to study the influence of év, (2.6) on the Kondo pro-
cesses at finite temperatures one should also consider the
dephasing effects.

Direct measurement of magnetic susceptibility of quan-
tum dot is not an easy task.”® However, the infrared cutoff of
Kondo screening is reflected in the low-energy/low-
temperature behavior of ZBA in tunnel conductance: the
Kondo peak is smeared due to stochastic fluctuations of lo-
calized spin, so that the half-width of the Kondo peak in
conductance is scaled by ¢ rather than by Ty provided
(>Tg.

We comment also on the singlet/triplet response function

XeP(t—1") == i[P (1), Pa(t")]) — Sapxpli,),

which corresponds to the bare loop represented in Fig. 6 (left
loop), where one of the two lines corresponds to the singlet
fermionic GF, while the other one represents the triplet fer-
mionic GF. Since the singlet line is not affected by the noise,
only one of the GFs in the loop suffers from Gaussian aver-
aging.

The straightforward calculations lead to the following an-
swer for the imaginary part:

w
sinh(—)
1 2T

Imxﬁ(w)~—z—. (A_ST>
sinh
2T
ex (_ (Agr+ a))2> < (Agr— 0))2)
o DAY 20
cosh( Asr+ w) cosh( Asr= cu)
2T 2T
(3.46)

and the real part of the susceptibility

* (z— AST) Sinh[(Z - AST)/ZT]
Re xf(w) ~ dz (c-Ag) - o

§ e
e—zz/zg2

X .
cosh(z/2T)cosh(Ag;/2T)

(3.47)
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FIG. 9. (Color online) Left: bare vertex in the fluctuation part of
the exchange Hamiltonian (3.48). Right: first nonadiabatic correc-
tion to the exchange vertex J§ in Eq. (3.11).

The static susceptibility which mimics the Curie law at
very large temperatures T3> (Agp,{) is suppressed
exponentially  ~exp(-Agy/T) at low temperatures
T<(Agr,¢) and has an intermediate asymptotic behavior
xp(0)~1/¢In(L/T) if Agp<T<{, while xp(0)~1/Agp
when {<T<<Ag;. The real part of the dynamic susceptibility
taken at the resonance frequency w=*Ag grows as
1/¢1In(¢/T) when the temperature is lowered. The exponen-
tial suppression does not occur since Agy is compensated by
the external frequency. We therefore conclude that the noise
may strongly affect the nonequilibrium electric-field-induced
Kondo transport in the regime when the singlet is a ground
state of DQD, while the access to the triplet state is facili-
tated by the applied gate voltage.

2. Fluctuations of the scattering phase

In accordance with the general approach to decoherence
and dephasing effects,'¢ the latter phenomena arise due to
scattering processes at finite energy and/or temperature.
These processes are described by the effective cotunneling
Hamiltonian (3.11). The main contribution to dephasing is
given by the term

HSOD = S (1P -s. (3.48)

Here, J3,.,(?) is the stochastic component of the indirect ex-
change integral calculated in Appendix A [Eq. (A3)]. To re-
veal the de_:ph_asing mechanism, one should notice that the
parameter J (1),

w2V (vg<r>¢,<t)

A2
yTAT 0 ) (3.49)

NOE

€ €
is in fact the modification of the effective SW exchange due
to temporal fluctuations of the intradot exchange 2aV, which
is nothing but the gap Ag; [see Eq. (3.1)]. Unlike the similar
term Syoh(?) in Egs. (3.7) and (3.24), it does not influence
the modulus of the vector P, but the components of this
vector, and thereby it affects the components of the spin
vector S via scattering processes illustrated in Fig. 9. The
time-dependent exchange vertex (3.49) is taken in the form
J,,@,(t), so that the fluctuating part in parenthesis is repre-
sented by a single mode ¢(7).

The wavy lines in the diagram stand for the correlation
functions S(z—1")=(¢(t)¢(t")), while the solid line in the ver-
tex correction corresponds to the bare retarded propagator
g (t—1' )=(fs(t)fj,(t’)>R for pseudofermion excitations repre-
senting the singlet mode in the SO(5) multiplet.!> As was
noted in paper I, the eventual source of dephasing is the
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gauge fluctuation field induced by nonadiabatic excitations in
the nondiagonal operator P with components P,=f!f,,.

The problem of dephasing due to slow fluctuations
S(w—0) was analyzed in paper I, so we do not repeat here
the corresponding calculations. The net result of this analysis
is that the dephasing processes are relevant at high enough
temperatures, and at T<<Ag, dephasing is effectively
quenched.

IV. TRIPLE QUANTUM DOT IN A TRIANGULAR
GEOMETRY: ODD ELECTRON OCCUPATION

In this section we sort out the coherent and stochastic
components of the weak probe time-dependent potential
v,(t) (2.6) applied to the triangular TQD shown in Fig. 1(b).
To make the mathematical treatment more transparent, we
consider the three-terminal geometry, so that the system pos-
sesses a perfect triangular symmetry Csy. It is convenient to
enumerate both the dots and the leads by the numbers 1-3.
The bias is supposed to be created between leads 2 and 3,
and the role of a passive terminal 1 is to serve as a reservoir
for Kondo screening of the electron spin in the dot. The gate
voltage v,(7) is applied to one of the electrodes forming dot
1.

Then the band Hamiltonian has the form

Hypa= > & jkCJTkgC ko (4.1)
j=1.2,3
Correspondingly, the tunnel Hamiltonian is written as
Hyp= W2 (cfiod;p+He), (4.2)

Jjko

We study the excitation spectrum of the TQD in the charge
sector N'=1. The spin degrees of freedom obey the SU(2)
symmetry, and all dynamical symmetry effects are related to
orbital degrees of freedom. We will show here how the in-
fluence of charge input on the orbital degrees of freedom
may be converted into Kondo response.

The spectrum of the TQD was discussed in Refs. 10 and
27. This dot is described by the Hamiltonian?®

3
H((ig)t = EE E dj‘adjtr"' QE npn; + le E njNg!
b

j=l o j (o
+ V2 2 (dyd;,+ He). (4.3)
Gy o

Here, nj,,=d;gdjm (Gl)=(12),(23),(31), Q and Q' are intra-
dot and interdot charging energies (Q>Q’), and V is the
interdot tunneling amplitude. In the case N=1 charging
terms are irrelevant and Eq. (4.3) is easily diagonalized,

HY =2 epd}dr,. (4.4)

I',o
Here, the index '=A,E. stands for irreducible representa-
tions of the symmetry group of equilateral triangle. The basis
of this representation is given by the eigenfunctions
)= (d], + dby+ di N3,

lo
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FIG. 10. (Color online) Left: evolution of energy levels of a
TQD in a magnetic field. Right: zoomed level crossing around
(D = 3@0/ 2.

iy o= (dl,+e*¥eds, + i) )3 (4.5)

(@=2m/3). The ground state is the orbital singlet A, and the
orbital degrees are quenched at low temperatures T<<V.

The triangular geometry provides us with a possibility for
controlling quantum tunneling.'® The tunnel current may be
driven by means of an external magnetic field oriented nor-
mally to the plane of triangle, because the electron spectrum
of electrons in the TQD is a function of the magnetic flux ®
through the triangle in such a geometry. As a result orbital
degrees of freedom may be activated at finite magnetic field,
and the possibility opens to realize a charge-spin conversion
mechanism already in the case of the TQD occupied by a
single electron (A=1). The electron energy spectrum at finite
[OBN

er(®)=€e-2V cos(p— %), (4.6)

and the values of p=0, 27/3, 4m/3 correspond, respec-
tively, to '=A,E,,E_. At zero ® the states ;. form degen-
erate doublet excitations. At finite ® the electron acquires
chirality, the doublet is split, the levels evolve in accordance
with Eq. (4.6), and at ®,=(n+1/2)®, the ground state be-
comes doubly degenerate (here, ® is a quantum of magnetic
flux, n=*1,*=2,...). The level evolution is shown in Fig.
10 (left panel). The dynamical symmetry SU(4) is involved
in the signal transformation at @ close to ®, or, in other
words, at ep—epr ~ Ty for any pair of states I',I"'. Figure 10
(left panel) shows the evolution of the energy levels in the
interval 0 =® =3®d,, but the real periodicity of the spectrum
is of course @, because at finite magnetic field all three
states may be converted into each other by the appropriate
choice of the gauge. To make the notation symmetric we will
consider below the sector ®y=® =2d, shown in Fig. 10
(right panel). In this sector two states E. become nearly
degenerate at ® approaching 3®,/2. When the symmetry of
TQD is perfect, the point @=3®d,/2 is a point of accidental
degeneracy, in which the symmetry of TQD is SU(4).!° This
symmetry is broken by the potential v,(7). As a result level
crossing transforms into anticrossing (dashed lines in Fig.
10, left panel).

In order to calculate the contribution of SHy, () in the
charge-spin conversion we need the matrix elements of the
operators Tf) (2.12) in the basis |T") of the Cs, point group,
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in particular those involved in the above level crossing or
anticrossing in the sector ®,=® =2®,,. The relevant matrix
elements in the subspace |E..) are

(EL|HDIE.)==2V sin ¢ ¢(0),

(E+|HSWIE=) =0, (4.7)
and
(E.|HP|E.) ==V cos ¢ $(1),
(EL|HY|E=) = - Ve (1), (4.8)

It follows from Eq. (4.7) that the first-order term gives a

purely adiabatic contribution ~,(z) (2.14). Second-order
corrections [first line in Egs. (4.8)] slightly change the adia-
batic renormalization. The stochastic signal ~¢f(t) arises
from the off-diagonal matrix elements [second line in Egs.

(4.8)].

A. Coherent input signal

Following Ref. 10, we use the irreducible representations
{A,E.} not only for dot eigenstates (4.5) but also for lead
states,

T il T T 2y
CA,o- - 2 (clko- + Céko'+ C3k<r)/V’3 ’
k

Ch o= 2 (Clpp+ €0k + e0d}, JN3,  (4.9)
- k

in the three-terminal geometry. In zero magnetic field the
ground state is degenerate; the singly occupied TQD works
as an effective spin 1/2, so that the effective spin Hamil-
tonian has the standard form JS-s,,, where only fully sym-
metric combinations with I'=A of lead and dot electrons are
represented. Orbital degrees of freedom become relevant
near the crossing points, so that the effective Kondo Hamil-
tonian has the form

Heoun= 2 JrrSrrospr + 1,17
rr’

(4.10)

in the representations (4.5) and (4.9). The spin operator for
lead electrons is determined as SII‘F/=Ekk’ClT“,k<T7A-iCF’,k’o-’- Due
to the orbital degeneracy (E,=E_), one more vector, namely,
the pseudospin vector 7 defined as

. T=[TT,

T =2 |E..oXE_ 0]

1
T= 52 (|E..oXE, ol - |[E_,oXE_a]), (4.11)

together with its counterpart for lead electrons is involved in
Kondo tunneling. There five vectors provide 15 generators of
the SU(4) group. The effective Kondo Hamiltonian consists
of six terms with corresponding exchange vertices: three of
these vertices are relevant (including that for pseudospin in-
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Tic/ TR

(a) - m Qt

FIG. 11. (Color online) Left panel: time-dependent Ty
corresponding to the evolution of AL in TQD. The evolution inter-
vals are parametrized as Tx(x)=Tg"*g(x). Function g(x) is defined
similarly to f(x) in Fig. 3 for x>0, while g(—x)=g(x). Inset: Tk as
a function of A.. The intervals of this evolution are shown by
straight lines. Upper (symmetric) line is parametrized as
Ao/ TR™=1, Sap/Tg™=2; lower line  corresponds  to

coh

Ay=0, Sup/Tg™=2. Right panel: time-dependent ZBA in the con-
ductance in accordance with the evolution of 7. See text for further

discussion.

teraction) and the corresponding Kondo temperature T(KE) for
A, =0 exceeds the zero-field Kondo temperature T(,?) by a
factor of 5 (see Ref. 10 for details). Similarly to the case of
single/triplet (ST) degeneracy, deviation from the level cross-
ing point results in a sharp decrease in Ty, although in this
case the peak is symmetric relative to the zero gap point
(inset in the left panel of Fig. 11). The width of this peak
may be estimated as ~T{If).

In the vicinity of the level crossing point the E.
orbital components of the spin operators in Eq. (4.10) are
involved in Kondo screening, provided the difference
A.=|E,—E_|~Tg. Like in the case of a DQD (3.18), the
Kondo temperature itself depends on the level distance,
Tx=Tx(A.). We work in the adiabatic regime and incorpo-
rate matrix elements (4.7) and (4.8) in the energy terms &

(4.6), so that
AL(r)=2\[ex (@) ex ()14 +V21(1).  (4.12)

We conclude from these equations and from Fig. 10 that only
the nondiagonal matrix elements (E..|[HZ)|E~) are relevant.
Mixing of two branches ~qb% results in a time-dependent
lifting of degeneracy of the orbital doublet at zero magnetic
field, @=0, and at ® =3®d,/2. In agreement with the general
rule for the Kondo effect in presence of dynamical
symmetry,'%182% T (A.) is maximum for AL =0, but unlike
the case of DQD (Fig. 3), the curve Tx(A.) is symmetric
around its maximum (see Fig. 11, inset to the right panel).
Now we may repeat the procedure proposed for the DQD in
the previous section and calculate the time-dependent re-
sponse of the ZBA peak in tunnel conductance to a coherent
input signal (4.8). Two types of adiabatic temporal oscilla-
tions Tk(r) are presented in the left panel of Fig. 11. These
oscillations follow the dependence Tx(A.) given by Eg.
(3.18) with A, (4.12) substituting for Agy. If A oscillates
between zero and some maxima due to fluctuations of the
gate voltage, Tk(7) reaches its maximum at Qr=27mn. The
tunnel conductance G(r) shown in the right panel evolves
with the same periodicity in accordance with Eq. (3.19). If
A, oscillates symmetrically around the zero value, the pe-
riod is halved, and G(r) reaches minima at Q¢=mn. In the
general case when A varies between —A, and +A,, the os-
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cillations of G(¢) are periodic but not monochromatic. Ex-
perimentally one may turn from one regime to another by
changing the magnetic field (shifting the value of @) in the
vicinity of the point ®=3®d,/2.

We see that the situation with the SU(2)— SU(4)
—SU(2) crossover is close to the case of the SO(4)
—SO(5) — U(1) crossover discussed in the previous section
from the point of view of the conversion of the charge signal
into Kondo response. Due to the fact that the orbital degrees
of freedom are involved in the formation of an effective ex-
change, the perturbation v,(¢) directly affects Kondo tunnel-
ing by means of a time-dependent lowering of the point sym-
metry of the triangle induced by the gate voltage.

B. Incoherent input signal

The stochastization of orbital degrees of freedom in a
TQD is induced by the term 5H£f§f°h)(t) [Egs. (2.15) and
(4.8)]. The relevant part is

A(stoch)(t) — <E_|H(sitoch|E+> —_ V(ﬁ%(l‘)ei(’o.

ot

(4.13)

These stochastic interlevel transitions are responsible for the
Sfluctuation-induced avoided crossing E,—E_ (dashed lines in
the right panel of Fig. 10). One may write the corresponding

part of the Hamiltonian in terms of pseudospin operator T as

Hstoch — A(Jijh) (l) T+ A >i(stoch) (l) T

dot

(4.14)

This term should be added to the effective Kondo Hamil-
tonian of TQD (4.10).

Thus, in this case the TQD stochastic fluctuations of gate
voltage induce random pseudospin scattering, and the
Keldysh approximation (3.28) may be used for this type of
random potential. However, unlike the DQD case, the scat-
tering has a vector character, so that the fermionized Hamil-
tonian (4.14) has the form

Hyo (1) = e(0)g]g; + 0*(0g]g)» (4.15)

where 0(7) is a random scattering potential which stems from
Eq. (4.14), g; and g, are “pseudospin fermions” for vector 7.
Only the transversal component of pseudospin scattering is
involved in the stochastic perturbation.

Then, following the pattern of the scalar model (3.28), we
introduce the correlation function C(t—t")=(g(r)@*(¢')) and
its Fourier transform is proportional to the Gaussian variance

&,

2
Clw) =i ig Y

'y~>0w + 'yz

The expansion of the Fourier transform of the Green’s func-
tion for pseudospin operators

=478 w). (4.16)

Fi(t=1") =(g,(0g}(t))z

[cf. Eq. (3.29)] has the same form as in the scalar Keldysh
model,>>?* namely,

(4.17)
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FIG. 12. First nonvanishing diagrams for the vertex (right) and
the vertex correction to the fermionic self-energy (left) in the vector
Keldysh model. Black and white sites correspond to the two terms
in the Hamiltonian (4.15); pseudospin correlation functions (4.17)
are represented by dashed lines.

F(e) = fle) + > B, (V282 (¢). (4.18)
n=1

Here, f(€)=(e+id)~! is the free spin-fermion propagator and
B, is the total number of 2nth-order diagrams. The indices
R, o are omitted here and below for the sake of brevity. The
main advantage of the Keldysh model, namely, the equiva-
lence of all diagrams corresponding to various combinations
of noise correlation functions in the self-energy (Fig. 4) is
still available. However, the essential part of the diagrams in
>.(€) disappears due to the kinematic constraint 7777=0 (or
gj,gj,=0). This means that only the diagrams with the pseu-
dospin operators ordered as ... 777 7t7 ... survive in the
self-energy [Fig. 4(a)].

A similar version of the cross technique in a real space
arises in electron systems in the domain of long-range
Gaussian fluctuations near the charge-density wave (CDW)
instability, although the physical mechanism is radically dif-
ferent (alternating incoming and outgoing umklapp fluctua-
tions of CDW order parameter in one-dimensional?*** and
two-dimensional3!*? systems).??

One may represent the diagrams for the vector Keldysh
model in the following way. The vertices on the fermion line
have two colors (say, black and white) corresponding to the
first and second terms in the time-dependent Hamiltonian
(4.15). The black and white vertices alternate and the wavy
lines connect only the vertices of different colors. Therefore,
the perturbation series includes only the even-order terms
with equal number of black and white vertices. Following
these rules the vertex correction presented by the fourth-
order diagram of Fig. 4(d) disappears. One of nonzero sixth-
order diagrams is shown in Fig. 12 (left). This is the first
nonvanishing vertex correction to the self-energy of the vec-
tor Keldysh model. The difference between scalar and vector
Keldysh models is in this combinatorial coefficient.3* In the
scalar model the coefficient A,=(2n—1)!! and summation of
the perturbation series result in Eq. (3.36). In the vector
model the coefficient B,=n! due to above kinematic selec-
tion rules and summation gives

Flo=+ f v dxe—iz§2 f - dye_i/zgz 1
2) o 827 Jo E27m Le-NXP+)*+id

(4.19)

1
e
e+ \x>+y*+ié

(see Appendix B for the derivation of this result). We see that
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Eq. (4.19) is the natural generalization of the one-
dimensional Gaussian averaging (3.36) characteristic for the
scalar Keldysh model to the two-dimensional Gaussian aver-
aging of a vector random field with purely transversal xy
fluctuations. Only the modulus of the random field
r=vx’>+y? is averaged with the Rayleigh distribution func-
tion Pg(e)=(e/ &)exp(—€>/2&%), whereas the angular vari-
able remains irrelevant due to the in-plane isotropy of the
system. Like in the scalar model, the averaged pseudospin-
fermion Green’s function has no singularities.

In order to find the Ward identity for the vertex and the
differential equation for the Green’s function generalizing
Egs. (3.33) and (3.34), we propose for the vector Keldysh
model the procedure which is an alternative to that used in
Ref. 23 for the scalar model. We calculate explicitly the de-
rivative dGﬁ(e)/ de using the same method of summation of
the series in the right-hand side (r.h.s.) of Eq. (4.18) as the
one which was used for the calculation of the integral repre-
sentation (4.19) for the Green’s function. This calculation
(see Appendix B) gives the following result:

2

which is obviously the generalization of Eq. (3.34) with the
similar boundary condition F(e—%)=¢"!. One may rewrite
Egs. (3.34) and (4.20) in a unified way,

& (4.20)

G~ 1= 2G(94G7(9),

eF(e) -1 =§2F2(6){£§6[6F_1(6)]}. (4.21)

One may check straightforwardly that the functions G(e)
and F(e), given by Egs. (3.36) and (B2), are indeed solutions
of differential equations (4.21). Then, appealing to Eq.
(3.33), we define the vertex I'(e, €,0) for the vector model as

= li[fF_l(e)]. (4.22)
ede

It is worth noting that the differential operator in the r.h.s. of
Eq. (4.22) is nothing but div, in polar coordinates. This form
reflects effective two dimensionality of Gaussian averaging
in the vector Keldysh model, which has been noticed already
in Eq. (4.19). Equations (4.20) and (4.22) facilitate the cal-
culation of response functions of TQD.

The stochastization of pseudospin manifests itself in the
transformation ~ of  the  response  function  x, ()
=(T(t)77(0)) shown in Fig. 6. Now the solid lines corre-
spond to pseudofermion propagators F(¢) and F (1), and
the vertex corrections are presented by diagram 12 (right
panel) and the higher-order diagrams of that sort. In order to
calculate the pseudospin susceptibility at finite temperature
we address the equation

PHYSICAL REVIEW B 81, 115330 (2010)

x(iw,) = T, Filio, +i€,)F (i€, (i€, i€, + iw,;iw,),

n

(4.23)

similar to Eq. (3.38). Here, F,(i€,) is the Matsubara-type
analytical continuation of the Fourier transform of the
Green’s function (4.17). Using the definition (4.22) of the
vertex I' and the second equation from Egs. (4.21), we ex-
press the vertex as

i€, Flie,) — 1

Henen0)= EF(ie,)

(4.24)

[cf. Eq. (3.39)]. Following the procedure which led to Egs.
(3.40) and (3.41) in scalar model, we obtain for x, (0) and its
asymptotic the following equations:

Xi(0)=§f yzdye"yz/2 tanh(g), (4.25)
0

o 1T T .

X011 est (4.26)

Thus, the pseudospin in the vector model looses its local
characteristics in the same way as the spin in the scalar
model. Accordingly, stochastization affects the Kondo tun-
neling. To estimate this effect we calculated the electron-
pseudofermion loops similar to those shown in Fig. 8, but
with solid lines standing for F(i€,). Since the weak-
coupling approach works only in the limit 7,£>A., the
pseudogap in the spectrum does not affect the logarithmic
behavior of the Kondo loop. The stochastization-induced
level repulsion in the vector model excludes states within the
pseudogap both when 7> ¢ and T<<¢. In the latter case the
infrared Kondo cutoff is on the order of & Therefore, the
resonance Kondo tunneling in this case is controlled by spin
degrees of freedom only in accordance with the SU(2)
Kondo effect paradigm.

We conclude from the above results that the case of SU(4)
symmetry supported by the interplay between spin and or-
bital degrees of freedom in a TQD differs radically from the
case of SO(4) symmetry involving only the spin variables. In
the latter case the external charge noise results in the sto-
chastization of spin degrees of freedom, so that the DQD
“looses” its spin moment at low enough energy or tempera-
ture. In the former case the spin 1/2 is robust, and only the
orbital (pseudospin) degrees of freedom are affected by the
charge noise. Pseudospin stochastization means that the loga-
rithmic divergences in the corresponding Kondo loops given
by the diagrams similar to those in Fig. 8 are subjected to a
cutoff similar to that given by Eq. (3.41). As a result, only
the spin-electron loops determine the Kondo screening at
low T. Thus, a noise-induced SU(4) — SU(2) crossover takes
place in TQD. This is an example of noise-induced crossover
in Kondo tunneling: heretofore such quantum phase cross-
overs were predicted and observed only in coherent regime.
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V. CONCLUDING REMARKS

We have demonstrated that the charge-to-spin conversion
of a time-dependent input signal applied to the gate attached
to a side well of a complex quantum dot is possible through
several mechanisms involving the dynamical symmetry of
this nano-object. Such a possibility arises when the multiplet
involved in the dynamics of low-energy excitations includes
both charge and spin degrees of freedom. In the case of
SO(5) symmetry characterizing the T-shaped DQD with even
occupation, charge-transfer singlet excitons are activated by
v,(t), and the spin degrees of freedom are excited via the
Casimir constraint. In the case of SU(4) symmetry which
determines the dynamics of TQD with single-electron occu-
pation, the signal v,(¢) affects orbital (pseudospin) degrees of
freedom, which are involved in the Kondo screening together
with conventional spin states.

In this paper we have chosen for theoretical analysis of
conversion of charge input to Kondo response in DQD and
TQD the most representative charge sectors N=2 and 1, re-
spectively. In these configurations the principal features of
charge-to-spin conversion are manifested in the most distinct
way. Since DQD with odd electron occupation possesses
only SU(2) symmetry of half-integer spin, there is no room
for the manifestation of dynamical symmetry related conver-
sion mechanisms. As to the symmetry of TQD in other
charge sectors, one should note that TQD with N=2 behaves
similarly to N=1 case because the oscillating curves describ-
ing the evolution of energy levels as a function of magnetic
field have the same form as the cosine family presented in
Fig. 10.?” In the sector N=3 the basic symmetry is also
SU(4), but another motive of orbital and spin frustration
arises,» 37 so that this case should be considered separately.
We plan to return to this problem in our future studies.

Two major premises of our approach to charge-to-spin
conversion are adiabaticity of temporal evolution of nanosys-
tem under coherent component of driving field and extreme
slowness of its stochastic component. Extreme slowness in
this context means that the characteristic time of classical
noise essentially exceeds all relaxation times for intrinsic
quantum fluctuations of spin subsystem. The experimental
possibility of adiabatic singlet/triplet level crossing in DQD
under slowly varying magnetic field was demonstrated re-
cently (see Ref. 38 and references therein). Characteristic
times for these adiabatic processes are on the order of 10—
100 ns. Fluctuations of nuclear spins are responsible for slow
component of intrinsic quantum fluctuations. The relaxation
time of these fluctuations 7y~ 10 ms assigns the limits for
validity of Keldysh’ conjecture for classical fluctuations. It
should be noted, however, that small quantum corrections to
Keldysh-type approximations may be calculated in a regular
way. Diagrammatic perturbation theory for the Keldysh
model in real space was elaborated by Efros,?* and this tech-
nique may be transferred straightforwardly in time domain.

To conclude, we have shown that both coherent and sto-
chastic components of v,(z) are subjected to a charge-spin
transformation. The Kondo response to a coherent charge
signal is close in its nature to oscillations of the Kondo tem-
perature discussed in a context of Kondo shuttling.!> The
noise component introduces the stochastization of spin de-
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grees of freedom. This stochastization may be complete in
DQD, provided the variance of the Gaussian noise exceeds
Tx. Then the low-energy cutoff results in the smearing and
even in the elimination of the Kondo-related ZBA in tunnel-
ing conductance. In TQD with SU(4) symmetry only the
charge (orbital) degrees of freedom are stochasticized.
Strong enough noise may result in peculiar noise-induced
quantum crossover SU(4) — SU(2), which may be controlled
experimentally by varying the noise level in the input signal.
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APPENDIX A

The time-dependent SW transformation may be per-
formed in the adiabatic approximation.'? In our case it gives
the following expressions for the coupling constants control-
ling T/S and T/E transitions:®

W —wS(t) W1 = VIAps(n) N2 b, (1)

S(4) =

TO0= i Aps(0) -
s Wowh() W= VIA(01N2¢ (1)
0= o a0 M

with

M(t) = Mg— Cspi(1), Mg(t) = Mg+ Csi(2),

VW\245(1)

VW\245(1)
AES b 9’

E
)=
R

wi(1) =

B0 =di(t) - K3(0), 51 = y(1) - K5(0),

K0 =v,(0)/ €  K5(1)=v,(1)/(€&+0)).

To second order in v,(f) Eqs. (Al) and (A2) lead to the
averaged time-dependent corrections to the coupling coeffi-
cients

ROEN T

stoch

[r 2 hvio Db () —
_\aw {g)l(tﬂﬂ/(vg(tm(t)_¢1(t)2)],

Ags €

(A3)

and a similar expression for J(), where €,— M is replaced
with €+ Q2+ME‘

APPENDIX B

To derive the pseudospin-fermion GF for the vector
Keldysh model, we generalize the original Keldysh summa-
tion procedure®>?* to the perturbation series (4.18). Using the
integral representation for the I' function, n!=[{dz z"¢™%, we
transform the series (4.18) into
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Fle)=f(e)y 1+2> J i tdiftef() e
n 0

(cf. Ref. 30). Here, we substituted 7> for the variable z. Then
changing the order of summation and integration, we trans-
form F(e) into the integral

fle) 7
1-2081(e)
Taking into account the explicit form of the free pseudospin-
fermion propagator, f(e)=(e+i 5[1, we change the integra-

tion variable once more, t=u/y2¢ and put it into the form
(B1),

F(e) = fw 2tdt (B1)
0

udu 1
Fle) = f 2( .)e‘“z’zg. (B2)
28 \e— u+15 €E+uU+id
Next we introduce the “Cartesian” coordinates, x

=u cos ¢, y=sin ¢, so that u=\x>+y”> and dxdy=ududd.
The angle-independent integral (B2) may be rewritten as

F(e) = —f dxf dye ™™ y%)2e?

1 ] (B3)

X + >
€— Va2 +y2+ié €+ Vx? +y +id

which is in fact the expression in Eq. (4.19).
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In order to calculate the derivative de;/ de, we start with
the same expansion (4.18). The analog of Eq. (B1) for the
derivative has the form

o 2 \2ape
dF(e) =-f(e )[1+f 2tdt2(21t Dre fe) "2}.
. _

de 2°7EF(e)

The subsequent variable change which gave Eq. (B2) for the
GF gives for its derivative the following equation:

dF(¢)

de _fz(s)[ @ ?”

(B4)

where

% 2
J,= j dz 7" exp(— 21_52)“(8 -z)—fle +2)].

0

After some manipulations, these integrals are represented via
the GF for the vector model (B2):

J,=2e8F-28, J,=—48+¢6Y (B5)
Substituting these integrals in Eq. (B4), we come after some
algebra to the differential equation (4.20).
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