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Ferrimagnetic mixed-spin ladders in weak- and strong-coupling limits
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We study two similar spin ladder systems with the ferromagnetic leg coupling. The first model includes two
sorts of spins=1/2 and 1, and theecond model comprises ordy1/2 legs coupled by a “triangular” rung
exchange. We show that the antiferromagn@i€) rung coupling destroys the long-range order and eventually
makes the systems equivalent to the #&1/2 Heisenberg chain. We study the crossover from the weak- to
strong-coupling regime by different methods, particularly by comparing the results of the spin-wave theory and
the bosonization approach. We argue that the crossover regime is characterized by the gapless spectrum and
nonuniversal critical exponents are different from thos&X¥Z model.
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I. INTRODUCTION pensated spin value in a unit cell leads to the gap in the
The strongly correlated systems in one spatial dimensiogpectrum and the appearance of long-range magnetic Grder.
(1D) has attracted enormous theoretical and experimental in- The spin-1/2 ladder with ferromagnetic exchange along
terest in the last decade. The 1D fermionic and spin systent$e legs was studied in Refs. 11 and 12. A rather rich phase
were recognized long ago as useful theoretical modelgliagram was demonstrated, depending on the details of the
where the interaction effects are very important and at th&nagnetic anisotropies for the leg and rung couplings.
same time are subject to rigorous analysighe experimen- In the present paper we study the mixed sp8¥1,
tal discovery of the systems of predominantly 1D charactes=1/2) spin ladder with ferromagnetic exchange along the
inspired renewed interest to this class of problems. Amondegs and antiferromagnetic interaction on the rurigse
the experimental realizations of the 1D systems ondrig. 1). In the absence of rung coupling, the individual
can mention the Bechgaards salts, carbon nanotubes, coppdrains show ferromagnetic long-range ordeRO), and the
oxides spin ladders, and purely organic spin chainground state is classical. The spectrum and ground-state en-
compoundg. ergy is well described in terms of linear spin-wave theory.
While the physics of purely one-dimensional objects, orWe show that the inclusion of the antiferromagnetic rung
chains, is well understootf, the spin ladders are still under coupling drives the system into the quantum regime, under-
intense investigation. Even the isolated spin chains reveal stood in terms of the AF Heisenberg spin-1/2 chain. In this
variety of unusual phenomena, including the Haldane gapegime the magnetic LRO is absent and the spatial correla-
spin-Peierls transition, and magnetization plateaus. The ladions show the power-law decay. Note that the uncompen-
ders, consisting of a few coupled spin chains are generallgated spin in a unit cell leads to the absence of the gap in
much richer in their behavior, and pose additional theoreticalow-lying excitation spectra.
problems. This primary observation is interesting on its own, be-
The interest to the problem of ladders may be traced backause two limiting cases of the model allow asymptotically
to earlier attempts to construct the continous representatioexact solutions with gapless spectra. Hence our further mo-
of the spinS=1 variable in 1D out 06=1/2 quantities’ The tivation to study the crossover region starting from both lim-
methods elaborated in these studies are now widely used iting points.
the analysis of the ladder systems. We discuss the regimes of weak and strong rung coupling
The basic model for the spin chain, the antiferromagnetidor different types of the leg exchange anisotropy. The con-
(AF) Heisenberg=1/2 chain, is thoroughly studied by vari- sideration is somewhat complicated by the absence of the
ous method$.This may be one of the reasons why a major-established routines for our case. The bosonization, an ex-
ity of the theoretical papers discussing the spin ladders arsemely useful tool in dealing with AB=1/2 systems, does
now confined to the treatment of quantum spinl/2 with

antiferromagnetic interaction along the legs. Spin ladders ?
with different spins or with a ferromagnetic leg exchange '
attracted much less attention. L
The spin chains and ladders consisting of different gpins
and with the AF leg exchange were considered recently in !

Refs. 5-9. Particularly, the ferrimagnetic chains with alter- J|| 2i-1 A 2+l
nating spin-1/2 and spin-1 were discussed there. It was
shown that, contrary to the case of equal spins, the uncom- FIG. 1. A ladder of spin$=1, s=1/2.
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not fully work here for two reasons. The first is the existences, Sis characterized by a total spjs+S and by the rung

of two sorts of spins in a unit cell and the other is the ferro-energyE;=J,s-S= %JL[j (j+1)—s(s+1)-S(S+1)]. The low-

magnetic leg exchange. est state here is doublgt1/2, thefirst excited state is qua-
Hence we supplement our study by the consideration of @rupletj=3/2,with E;,—E;,,=3J, /2. The wave function of

similar model, written entirely fos=1/2 butwith the modi-  a multiplet is

fied rung couplings. Using these models and comparing two

different approaches, spin-wave theory and bosonization, we jmy= > stTrhs@|S”l>|5”h> 2
arrive at a unified description of the ferrimagnetic spin lad- my.My
ders. Particularly, we discuss the spectrum and the correlgyith Clebsch-Gordan Coefficient@isr::hs”h_ The interaction

tions and observe the crossover from the weak- to strongébng the chain is considered
coupling regime. Attention is paid to a subtler point in the
bosonization procedure, a seemingly unstable Gaussian 5t larger spins as well. In this more general case of

fective action near the ferromagnetic point. s=S-1/2=1/2, the operators®, S* act within the lowest

Th? rest O.f the paper is organized as follows. We disc.usaoublet and connect the doublet with the quadruplet, but the
the mixed spin model in the strong- and weak-rung-couplingyirect transitions to the higher statgs1/2—j=5/2 are

regime in Sec. Il. The spis=1/2 ladder with “triangular’  gpqent One can check that the corresponding matrix ele-

rung exchange is introduced and analyzed in Sec. lll. The,ots are given by

existence of different order parameters in a system is

now as a perturbation.
he formula(2) and the consideration below are applicable

S
discussed in Sec. IV. The discussion and conclusions are (j=12msYj=12m)=-—o" .,
in Sec. V. 3
II. MIXED SPIN LADDER i= i = noStl a
. (j=12mSYj=1/2m")y= 3 T 3

We investigate the properties of a ladder system, consist-
ing of two sorts of spins=1/2 andS=1, arranged in a with o  the Pauli matrices. Fes=1/2 this reads
checkerboard manner. The unit cell comprises four spins and
the Hamiltonian is 1 S Eaa_ (4)

st — =g, 3
H==2,3S{ S} 5,1 +S5 5. ) +J S1 2 5 ) i L .
Ei" (5125201 + %2:1050) L; (512522 It shows that if we consider only the projection of the spin

operators onto the lowest doublet, then the above Hamil-

*S1341%2,2+1) @) tonian corresponds to the AF Heisenberg spin-1/2 model of
with the first subscripte.g., 1 ins, 5) labeling the leg, and the form
the second one denoting the site oriatld or evein Below Hetr = D, Iqo oy, (5)
i

we mostly consider the case of the AF rung couplihg> 0.

The overall ferromagnetic exchange along the chains allowgqre

the uniaxial anisotropy){=J3'=J>0, Jf=J+D>0, |D|<J.

In what follows, we also consider a useful generalization to Jei(J — ) = 2]'s(S+ 1)/9. (6)
higher spinss> 1 with the differenceS—-s=1/2 kept fixed.
The whole consideration is done for zero temperature.
Dch;rftalr?é Julsz%r,levl:ll)e/ gg\s/gnt\?veotfz?rs:ra%ﬁélﬁlgﬂgiggs\?v?ix Let us next consider the role of_ the higher states on a
possess the long-range magnetic order. The spectrum is qura‘ij-ng‘ We do not list here the matrix elements of the spin

: : operatorss®, s* for the transitiong=1/2—j=3/2. Weonly
I ~Jor. We put the lat - .
ic:]rgt;ctitjr??g ev\\/lz;/;w\;\icrteorfxcggi in gepcu. Iﬁl eD.a tice spac note that they are proportional t\&(S+ 1) and are the same

In the opposite limiting casd, >J the ground state of for S* ands®, except for the sign. The second-order correc-
two spins on the rung, sag, 5 and S, 5, is doublet, de- tion in J, between the adjacent rungs, labeled by 1 and 2

scribed by a spirs=1/2 variable o,;. We show below, that P€loW. can be written as

the effective interaction between thesgis antiferromag- 3 B4<%|5g|g><g|sf|%><%|$|g><g|§|%)
netic for the above choicd>0 and hence the situation is Iy oE. —oF

mapped onto a well-known problem ofsx1/2 Heisenberg V2 =82
antiferromagnet. One does not expect the long-range order atfith factor 4 coming from the above property of coincidence
D=0 and the spectrum is lineag~ Jk. The correlation func-  of the matrix elements. Noting that

tions for this case are described below. The intermediate situ- 1 3\ /3 1 S(S+1)
ationJ~J,, D #Ois harder to analyze and we present sev- §,m|s§'|§ §|§|E,m/ = 5 (28, 50mm
= i€upy ) (8

Below we will refer to this estimate adg; as Jgx(c). For
s=1/2 wehaveJgy(«)=2J;"/9.

, ()

eral ways to discuss it below.

A. Strong rung coupling

Consider first the case of strong perpendicular couplingve find that the second order dpresults in Eq(5) with the
J, >J. Taking firstJ=D=0, one sees that each pair of spinsrenormalized value of effective interaction
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9
afBy ng ( )

Jer(d 1) = Jgg(e) +

with Jg¢ from Eq. (6). For the above parametedy and
s=1/2 one has

2_ 8JJ+D)
K= W= —d+ —————, 10
eff eff 9 729]J_ ( )
2 2
e=—(J+D)+ , 11
=0+ g (11
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tions between the spins in different chains are slowly
decaying antiferromagnetic ones, e.¢s{;S5 .1~ ~I2n
+1]™%. The above form of the correlations is obviously un-
changed as long ak <J.

B. Weak rung coupling, spin-wave analysis
Let us next consider the opposite limiting case, when the
leg exchange dominates add can be considered as pertur-
bation. First we explore the spin-wave formalism for the
easy-axis anisotrop® > 0. It was shown recenththat in the
case of a ferrimagnetic system in 1D the spin-wave descrip-
tion gives very good estimate for the ground-state energy and

which particularly means that the relative value of anisotropypn-site magnetization. Performing the standard Dyson-

decreases with decreasidg. The perturbation theory is ex-
pected to break down when the correctionJl'fl is compa-
rable to the first term in Eq9), which happens roughly at
J, ~J's’. Note that this criterion also corresponds to the
point where the bandwidth induced By; becomes compa-
rable to the separationJ, between the quadruplet and dou-
blet. At largerJ, the low-energy dynamics is described by
the AF spin-one-haliXXZ model (5) which is exactly solv-
able. In the isotropic cas®=0, the spectrum is lineaty
=(m/8)Jeq|q| and the correlations are of the form

ool ~ I+ (= 1),

with the omitted minor logarithmic correctiois.
Taking into account the matrix elemen®® we find that
the leading asymptotes in the isotrogre1/2,S=1 case are

<S§Ly,isii+2n> - |2n|—l’
<Sf,i$,i+2n+1> -~ 4|2n + 1|—1’ (12)

(S1iSTivan ~ 16201,

Thus the long-range ferromagnetic order is absent, but the

correlations are ferromagnetic and slowly decaying. In addi

tion, there is a subleading sign-reversal asymptote and modu-

lation depending on the spin valis=1/2,1). The correla-

S2¥+3,) - o VsSy
[ z
IsS S(2J3+J))
Gl t=-| M ”,_i
0 VsSJ
_
\\"SSJL O

Here y,=2 cosk. The spectrum consists of doubly degener-

Maleyev expansion

S

S+a'a, £=-s+b'b,

S =\2sd[1 -a'a/(29)],

+

st=\2sb1 -b'b/(29)],
S = V234 s = 2sb,
S=S-c'c, £=s-d'd,
S5 =291 -c'e/(29)]c,
st =291 -dd/(25)]d,

S=\25¢, s=12sd (19

we write for the magnon Green function in the linear spin-
wave theory(LSWT) approximation

®' = (al,b},c,d_y),

Gij(k) =—i G(t)([<bi(k,t),®f(k, 0], (14)
0 \sSJ
-—w VsSJ | _O (15)
s(2Jf+J) +w VsSJy
VsS¥,  S2F+J)+e

gx=sJ,. The contribution of the zero-point fluctuations into

ate acoustic and optical modes. The optical mode has thihe average on-site magnetization can be estimatedfor
energy~ysSJfor all wave vectors and the acoustic branch at<J, <J as follows:

smallk is

2sS
e = STS\/(zo +JIA)(2D +JKX+ 2] ) (16)

s—(s;;) ~ VJ, /I In(yJ,/D). (17

This means that the spin-wave approximation fails when the

so instead of the quadratic spectrum of purely FM caselatter quantity is of order ofs. It happens roughly at
we have an approximately linear spectrum at small energied, =s?J(In s2J/D)"2, which corresponds to the crossover
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point v* in Ref. 11.. Apart from the logarithmic faqtor, t.his Q541=Sl a1+ S g Rou1= Sl a1~ S50, (2D)
estimate agrees with the above vallie~s?J,, obtained in o . i )
the larged, limit. For lower J, the system shows the long- Satisfying the following commutation relations:
range order. @ 0P =i Y * RA = Y
It might be instructive to consider the FM rung coupling [QF QT =lewsy QT [RART = Tea, Q1
J, <0. In this case all the branches of the spectrum are gap-

ful, the lowest modes are (R, Q1= ieus,RY (22)
26S with €,4, totally antisymmetric tensor; the operat@s and

g1~ ——(2D +JId), R* commute at different sites.
" s+S The commutation relations(22) define the SIR)

® SU(2)=S04) group with two Casimir operators given by

= §(2D+2|J |+ JK%) (18) 5 11
T sts s Q-R=7, Q+R=—. (23)
Note that at the isotropic poinD=0, the long-range FM
order and hence the applicability of the LSWT is lost for any
J, >0. The spectrung16) in this case is gapless and linear 1 o .
with the spin-wave velocity-syJJ,, the limit of s=S>1 is Hy=- EE JQQi ~RRLY),
assumed. We know that increasidg we should eventually !
recover the effective modeb), characterized by spinon ve- 3 3
locity ~s?J. These two velocities match againht~ s2J. H =2t 2_R2 =S 02,4 oot o
Concluding this section, we also present the LSWT results T4 Z Q=R 2 2 Qi+es 249
for the lowest branches of dispersion for the case of easy- ) ) ]
plane anisotrop> < 0. For the AF sign of the exchange  The equation of motions for operatd@sandR are given by

The HamiltonianH=H+H , takes the form

one has : : @ o @
1y = EVr’JkZ(2|D| +JIe+2])), These equations correspond to the well-known Bloch equa-
s+S tions for precession of the magnetic moment of ferromagnets
(antiferromagnets Taking into account that the operat@)$
_ 2sS | % % (R%) are different on two different sublattices corresponding
g2k~ S+ S\‘(2|D| +IK) (23, +JK), (19 to odd(even sites, we use the properties
while for the FM exchangd, <0 we obtain [Q7.Q1=[R%.Q]=0,
2 pat — 2 patl —;
£l = E\’sz(2|D| + sz), [Q| aRi ] - [Ri vRi ] = |Ea,8y{RiﬁQiy}1
’ +S . .
and adopt a symbolic notation
2sS | € ARCQIT =1(R; X Q= Qi X R))™.
£2 = —=\(23, |+ I (2D + 23, [+ IK). (20) S
s+S Then we obtain the following system of coupled Bloch equa-

In this case LSWT is formally inapplicable, but the above 10NS for the isotropicy’

formulas might be useful for a comparison with further re- J
sults. Q= E(Qi X Qis1~ Ry X Rix1),
Summarizing, we observe that while the LSWT cannot
treat the correlations correctly and formally is inapplicable in J
bty

the absence of the LRO, it provides simple and reasonable)R; = EH(Qi X Rix1 —~Ri X Qjzq) + > QI XR-R;j X Q.
formulas for the excitation spectra in a complicated one-

dimensional ladder. We illustrate this point below by discuss- (26)
ing the spin-1/2 ladder, where a rigorous description of the

low-energy action is available. Taking the continuum limit here, one has

#Q #R
- B @ BR )
XX XX

Q= (AaﬂQ X

C. Equations of motion

This subsection is devoted to the macroscopic equations ’n 2
describing the behavior of spins in two coupled chains. To IR = <BaﬁQ % ~ AgR X Q )

make our calculations more transparent, we define new op- X0 XX
erators on a rung as superpositions of two spin operators +CQXR-RXQ) @27
Q=S 3+Sia Ri=S5-5 4, where for asymmetric two-leg ladder=3=x and A,,=B,
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=J@?/2, C=J, /2. The lattice index is omitted. Rewritten
in terms of densities of magnetic moments, [E27) corre-

sponds to the generalized Landau-Lifshitz equations for the

dynamic S@4) group. Note that the operat@ represents a
total spin on the rung, and the opera®rdoes not have a
simple interpretation.

We introduce the densities of magnetic moment character-

izing two sublattices

_2 _25 4
M—N;le N_N$( 1'Q,

2 2 |
0 N; R, T Ng( 'R, (28)
with A/ being total number of rungs in the ladder.
Obviously,M andN represent the uniform and staggered
magnetizations along the ladder, wherdasand O can be
interpreted as “staggered rung” magnetization in the unifor
and staggered channels along the chain, respectively. T

different ordered phases are characterized by nontrivial val

ues ofM, N, O, T or some combinations of them whereas in

the disordered phase these quantities are equal to zero. For

example, the ordered FM phase is characterizeM 0. In
Néel phaseN # 0. In ferrimagnetic phase botll #0 and

N # 0. Therefore, the information about the order paramete
is necessary for deriving the macroscopic Landau-Lifshitz

equations from the microscopic Bloch equations. We poin
out that the scalar product of two spins on a rung

S+ S=4(Q7-RY)

may also be considered as a local order paranmst® dis-
cussion in the Sec. I

Equations(26) are the central result of this subsection.
Upon the assumption of the certain order paranigtehey

lead to macroscopic “equations of motion.” Applying a stan-

PHYSICAL REVIEW B 70, 224402(2004)
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FIG. 2. A triangular ladder of spins=1/2.

Egs. (1)—(29) would include the strong trimerized isotropic
FM in-chain exchange, at those links which form the bases
of the triangles in Fig. 2. In that case one would first consider
the triangles and then couple them to each other, fully restor-
ing the consideration of the previous section. We show below
that the mode(29) with uniform value of the rung exchange
has two advantages. First, it is equivalent to Ef) at

My, — o and second, it is easier tractable in the opposite case

flf’ﬁ—>0, since the exact form of the low-energy action is

available for the uniforndy’.

A. Strong rung coupling

We consider a case when the AF exchadgeis much
Irarger thanJ?, first for the isotropic){ =J,. In this case a
main block is a triangle formed by two rungs, and the cou-
ling of triangles is a perturbation. The Hamiltonian for the

riangle is

Ha=J,(S1+ 83— (s 5, — 1/4). (30)

The structure of the energy levels is as follows. The term
J, groups the spins on one leg, ands,, into a triplet|7}
and a singletS). The singlet does not couple & and re-
sults in a total doublet denoted #B0) with the energy
Epo=J;. The triplet|7) of zero energy couples t& with the
formation of doubletD1) and quadrupletQ). The corre-
sponding energies argy;=-J, andEqg=J,/2. ForJ,—®

dard routiné* one can show that these equations are equivae state|DO) is unimportant, ands,, s, act as one spin
lent to LSWT treatment and reproduce magnon dispersio=1 At the same time, the low-energy sector of the problem
laws discussed in the previous subsection. The detailed 35s50ciated with the doubléd1), and this doublet is the

analysis of the Bloch equations for asymmetric(&dad-
ders will be presented elsewhere.

Ill. TRIANGULAR s=1/2 LADDER

One may regard spin 1 as a ground-state triplet of two>
spins 1/2 coupled ferromagnetically. Our model assume
that this triplet is also FM coupled to other spins 1/2 on a

chain. Therefore instead of the FM chainrogpins 1 anch
spins 1/2, one may considen3pins 1/2. The model we
propose is

H=- Z Ji(s1iSTjv1 + 52iS341) + ‘JLZ_ [s1,3(S2,3 + S2,340)
I I

+ (81,341 + 51,3420, 5142] (29

with the above choice aff". The mode(29) is not equivalent
to the previous one, Eql). Indeed, the exact mapping of

lowest state also for the situatioh, >J,. Therefore the
strong coupling limit of the asymmetric ladder with two
spinss=1, s=1/2 isdescribed as well by the triangular lat-
tice depicted in Fig. 2 in the same limit. The demand for
in-triangle J; to be large, in order to organize the effective
pin-1, is relaxed in this limit, and one can consider the
gituation with the uniform value of the exchangjealong the
whole leg.

The presence of the anisotropy termsis; in Eq. (29) is
a negligible effect in the described picture. Indeed, this term
translates into a single-ion anisotropy of the triplet s{&&?
and the application of the formul&8) and(8) shows that it
is only ';he highelQ) state, which becomes split accordingly,
~D($H)=

Let us discuss the analog of E@) for the Hamiltonian
(29). In the limit J, — o the effective interaction is given by
Eq. (5 with o acting within [D1) and J&(e)=3Jf" The
analog of Eq(4) for Eqg. (30) reads
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N 1., . Y coupled by the triangular rung exchange, Fig. 2, then we

$120 30 ST g (31 have an expression
The second order inJj corresponds to transitions to JLE (Agj + Agj+1)Bsj + Agjs2(Bgjs1 + Bgji) (33

higher|DO) and|Q) states. After some calculations we find j
1 3 with one term in the suni33) describing the coupling in the
Jer(J1) = Ig(o0) + €5, 98(22) () 3 513 unit cell, and three-site peridicity of the overall structure.
L L Going to Fourier components we have
(32

In Eqg.(32) the second term is negative fdr = J, in contrast % Aq(Be + Bgrily * Bogel o), (34)

to Eqg. (9). It means that the value afy; and the relative _
exchange anisotrop¥,/ Jis—1 increase with decreasing of With x=2/3 and
JJ_.
Thus we conclude that the strong coupling limit of the the 0q= gJL(l +¢d), fq=— lji(ei" +datic) (35
trinagular ladder is described by the Hamiltoni@nwith Jgg 3 3
given by Eq.(32). Simi_larly to Eq.(12),_the in-leg correla- Particularly, forA;=A=cst we obtain
tions are slowly decaying ferromagnetic ones, although their
modulation is different due to Eq31) instead of Eq(4). 1
§J LA(4By+B,+B_,).
B. Weak rung coupling, LSWT analysis
For th f ferromaanetic exchanae with th axi These preliminary notes show that the rung interaction
anisgtro e Cv?/iee?n eIo Othaegsein?vsa\(;eafo?rialism _el_he: SSBi/tSa_ﬁybridizes the magnons with the wave vectgrand g «.
AhiSotropy w ploy P : N . The LSWT Hamiltoniari—|=2k*1'lHk‘I'k is obtained as a ma-
tion is complicated by the existence of six spins in a unit cell._. s
. N trix defined for the vector
As a result, the quadratic Hamiltonian is represented as a
66 matrix. The Hamiltonian for the interaction along the Wl =(al_.al,al, bbby ).
leg is standard, while the rung exchange needs some care. _ _ ;
Consider first two quantitied; andB; referring toith site  The Green function G;;(k,t)==i o(t)([¥;(k,t), ¥ (k,0)])
on the upper and lower leg, respectively.Af and B; are  takes the form

Wyt Got @ f; fi Yg-« f;—q fq-x
fi wgtQgot @ i fq Yq 1E*—q
(g0 = f ff Ogrc+ Go+ @ g fq:,( Ogre | 36
O-gx fq e Wg-Tgo~ @ fo fo
fgrn O ff<+q fo WgtQgo~ fB
fiK+q f—q O-q-« f(*) fo Wgs T Oo~ @

where w,=Jf-J, cosq is the magnon spectrum for isolated amounts to the analysis of X212 matrix Green’s function,
chains, easy-axis anisotropfy—J,>0 is assumed. The new while the simplified treatment reduces the calculation to the
spectrum is determined from the equation[@¢t, »)*]=0.  biquadratic equation.
The last equation amounts to the third-order polynomial in In the subsequent equations of this section, the rung ex-
? which can be subsequently solved. changel, appears with a prefactoigg-,=8/3. This prefac-
In order to analyze the lowest energies in the spectrumor is conveniently incorporated into the quantity
w=0 atq=0 it is sufficient to deal with smaller matrices. It
can be shown that in this case one may consider almost de-
generate X2 block formed by second and fifth linésol-
umng. The asymptotic expressions for the energies obtained
this way coincide with those obtained directly from E86).  which is used below. Thus we interchangeably datndJ
This simplified analysis can be also performed for otheras the rung coupling value.
cases of the in-chain exchange anisotropy and rung ex- For the small anisotrop®, and|J;|<J we find the fol-
change. Particularly it is useful when the analytic treatmentowing asymptotic expressions.
of the spectrum becomes problematic. For instance, the full (i) Easy-axis,D>0, AF signJ, >0. Doubly degenerate
LSWT consideration of the easy-plai®<0 for Eq. (290  gapful mode:

J,=8J,/3, (37)
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Easy—plane Easy-axis continuum description with the use of fermion-boson duality
Iy described elsewhere.
This procedure is well defined for an easy-plane aniso-
tropy D <0 in Eq.(29), which is the case considered in this
One gapless, one gapful Gapful, doubly degenerate subsection; the AF sigd, is implied. The continuum repre-
AFAL—0, Ay— DA Av—Ay— /DD + 1) sentation of the spin operators in each of the chains reads
_ s, = €"1[C + cog mx + 2¢)],
D
FM One gapless, one gapful Two gapful modes S)Z( = 77_1&)((!) + cogmX + qu)) , (42)
A1 =0, Ay = VIA[D +[4]) Ar=D, Ay=D+|]i] with the omitted normalization factors before cosines and
constantC defined below. The bosonic fields(r), 6(x) are
characterized by the chain indéxand a continuous coordi-

natex. The HamiltonianH=H;+H,+H , has a part for the

FIG. 3. The character of dispersion in different domain of pa'noninteracting chains

rameters, the uniaxial anisotrofy and the rung coupling, .
uK u
Hi :f dX(THiZ"'ﬁ(axd’i)Z)a (43
wherei=1,2 andIl;=7"14,6, canonically conjugated mo-
(i) Easy-planeD <0, AF signJ, >0. One gapless, one Mentum tog;. The form ofH, in bosonization notation is
gapful mode: ’ * ' discussed below. The general form of the leg Hamiltonian
(43) prescribed by the bosonization procedure is comple-
mented by the exact form of its coefficients, known from the
Bethe ansat?> Denoting cosTn=J%/J, we have

1/K=2y, u=JsinTyl/(2-27y).
1
B2k= 75 V(2|D| + JK) (2, + JKP). (39)  For|D|<J these formulas are simplified

/2|D / /|D|3
(iii) Easy-axisD >0, FM signJ, <0. Two gapful modes: Ty = % K= % u= % (44)

g1x=D+ }sz, g =D+ |3y + }sz_ (400  and the coefficienC in Eq. (42) become¥ C?=(77)""/8
2 2 =1/8. Note that the spinon velocityin Eq. (44) coincides
(iv) Easy-planeP <0, FM signJ, <0. One gapless, one With the one obtained by LSWT, Eq39) at J;=0. This
gapful mode: unusual observation relates to the fact that the ferromagnetic
ground state is describable in classical terms of the total
E1p= }\W magnetization, and the semiclassicgl L_SWT approach_should
n2 work well in the nearly ferromagnetic situation even without
LRO.
1 The rung interactiorH ;| couples different terms of the
Eox = EV'(2|D| + 2|34 + JK)(2]34| + JKA). (41)  spin densities. However, the interaction of the AF component
~cogmx+2¢) in EqQ. (42) is irrelevant in the renormaliza-
These results are similar to Eq4.6) and (18)—(20) and  tion group sense; moreover, the structureHof, Eq. (34),
will be compared below with the treatment by bosonization.shows that this interaction is absent in the lowest order.
Particularly they show that the low-energy dynamics of the It is convenient to introduce the symmetrized combina-
triangular ladder is similar to the mixed-spin ladder of Sec. litions ¢,=(¢,% ¢,) /2, 0.=(6,%6,)/\2. In terms of these,
not only in the strong rung coupling regime, but also for thethe relevant and marginally relevant termskbf are
weak rung coupling. In Fig. 3 we depict the character of
dispersion in different domains of the small parameters H, = 31J dx{C? COS(\EQ_) +8712¢25 0, sin(\Ea_)
J,, according to Eqs(38)—(41).

1
10k = 5\/(2D +JI2)(2D + 23, + JKd) . (39)

1 [
E1x= EV’Jk2(2|D| +2J,+JKP),

+ (2m) A (3:)? = (0,0-)°1}- (45)

The second term in E@45) comes from the gradient expan-

As discussed above, the spin-wave theory becomes inapion of Eq.(34). Its inclusion, however, does not change the
plicable at largerd, when the role of quantum fluctuations Gaussian character of the action for the fiéld see below.
grows. Instead, one may use a formalism which does ndintegration over this latter field produces a contribution
assume the average on-site magnetization and is suitable fer(J2/J)cos 2/26_, which (i) is less relevant andi) has a
spin-one-half chains. This formalism includes the Jordansmaller prefactor than the first term in E45). That is why
Wigner transformation to spinless fermions, and the eventuake omit the termd,6,sin(\26-) below.

C. Weak rung coupling, bosonization
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The remaining terms are combined into the Hamiltonian According to Eqs(48) and(52), the increase of; leads

of the formH=H,+H_ with to the instability of the Gaussian action, which happens si-
multaneously with the saturation of the quantigpsy26._).
H+:f dx( 7Tu"K+1-[3+ ty ((9X¢,+)2>, (46) Note.that the similar situation was observed in Ref. 12 for
2 27K, the simple two-leg ferromagnetic ladder.

For one chain, the breakdown of the Gaussian action hap-
_ mUK__, u_ 5 5 = pens atD =0, and corresponds to the transition to the ferro-
H-= [ —— T+ (dyp-)=+J,C"cosV26_ |, magnetic ground state. The average value of spin in this case
- becomegs)=mXop)=+1/2.
(47) For a ladder, the discussed instability and the saturation of
where cosine term correspond to the saturation of the scalar product
of spins in different chaings, ;-s,;) (see below. It means
uK, =uK_=uK=mJ/4, that the spins in adjacent chains form a singlet state. The
peculiarity of this phenomenon is the energy scale when it
Us/Ky =U/K £ 33/27 = (2|D| £ J4/2)/ 1. (48)  happens), ~|D|, following from the bosonizatiofsee Ref.
12).
This small energy scale is unusual and may be compared
. to the LSWT treatment. Successful enough for isolated
sponds tce; mode in Eqs(39) and(19). chains, LSWT is in qualitative agreement with bosonization,

The situation with thes_ mode is more complicated. Two ; . ? :
features are noted here, the instability of the Gaussian actiorr%agardlng the increase of the spinon velocity withfor the

. symmetric mode¢, as well as the gap value for th¢_
at J,>4|D| and the appearance of the gap in the spectrum. X d .
I;dee|d | the scaling%imension of thegogerator _Ep in mode. At the same time, LSWT predicts timereasein the

. . : velocity of ¢_ with J, at the energies higher than the gap
Eq. (4.17) IS 1/(2hK_)§1 and the dynalm'|cs r?g‘ model S vlalue. The bosonization says the opposite.
Icijsqsitcn\l/)v(ietﬂ Zy I;reeSIr?L?r-rﬁ)zrrd%? nlc;(:ﬁur;n goincéuif;::s"g? At this moment it is also instructive to consider the FM
“b ’th " Th 9 i th ? 8. field is o b, rung coupllngJ1<Q. In this case the LSWT formula®0) _
reathers.” ihe gari In the spectrum ov- Tield IS given by and(41) show again one gapless and one gapful mode, with
the mass of the I|ght_est breather, which |s.r0ughly fo_und b%he unchanged and increased velocities, respectively. The
exF’a”‘?'ﬂQ the cosine term and rescaling the field bosonization(51) provides a similar picture, but says again
— 0-/VK: about the collapse of the gaplegs mode at|J;|~ |D].
|34 J It is worth noting here that the average cosine t¢5®)
7<|D| - Z) (49) and the correlation lengtlb5) below, does not show any
peculiarities atl; ~|D|. A possible explanation for the above
In the leading order ird; this expression corresponds to the discrepancy stems from the observation that dhemode
modes, in Egs.(39) and(19). The refined value of the gap (39) atJ;=|D| attains the fornz, = |D|+Jk?/2. The region of
can be obtained after usual scaling argumérfsor directly  linear dispersion of bosons, a cornerstone of conformal treat-
from the exact formulas in Ref. 16. The identification of our ment, is lost here, which may be reflected by vanishing ve-
model parameters with those of Lukyanov and Zamoloddocity in the bosonization treatment. Note also, that E9)

Equationg46) and(48) show that the modeé, remains gap-
less, and its velocity is increased with, hence it corre-

A? = 277u_J,CYK_ =

chikov reads shows a roughly linear gapful spectrum upon the further in-
~ ) - . crease of the rung exchange> |D|. This feature should
m=u3,C72, B°=(4K.) assumably be valid in the corrected bosonization treatment.
andu_ stands for the overall energy scale. We suggest_here that the actiofi7) should be _compl_e-
The gap(m in notation of Ref. 1§is then found as ment_ed_ by the irrelevant terms, usua_lly drqpped in the m_fra-
red limit. They come from the consideration of the lattice
, J 3y \ [ |3q] | MA-HAK)] Hamiltonian and are of the structure
A*=\Bl-7 N7 (50
(k) + (%), (53
and the spectrum becomes
with a the lattice spacing. The appearance of these terms is
&2 = }<|D| " ﬂ)sz most easily observed by the consideration of one-cbain
kT2 4 ' model. In terms of the Jordan-Wigner fermioiis one has

the tight-binding fermionic spectrum cgs Near the Fermi
, 1 J; points q=*/2 the leading terms in the expansion of the
8—,k=§(|D|_Z)(|\]1|+Jk2)- (51)  fermionic dispersion are the linear and cubic terms. The

linear-in- fermionic term~ .4 transforms intd(d,¢)? in

The mean value of the cosine term is given by the expressiothe bosonic language, and the cubic ter 72y attains the

ok Ak form (53). Omitting the unknown coefficients-a®?~1 and

<cos\s’50_> - (A) - <3_1|> . (52 denoting d,¢p_=¢" etc., the new Hamiltoniari47) is then

4u_ 16J schematically written as
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J 2 3102 ID | 5 2, 4 Knowing the spectrum and the Luttinger exponents, one
1 (¢ )+ (¢ )<+ (¢-) . (54 can use the principal advantage of the bosonization in evalu-
ation of the correlation functions. These correlations are dis-
Let us consider first the cask=0. The interaction term cussed in the next section upon the assumption of the weaker
(d,¢)* may be discarded in the infrared action, and the quacouplingJ; <|D]|.
dratic term(d#2¢)? modifies the spectruna?~ |D|IK2+J%K?,
so the spectrum may be regarded as linear only at D. Correlation functions
k= \"|D|/J The latter estimate is in accordance with the The Spectrum of Eq47) consists of one gap|ess and one
LSWT formulas(39) and (19). The dynamical correlation gapful mode. The gap corresponds to a finite correlation

function becomes length
12 E=u/A ~ I, (55)
(G -l ™ 2-JD|k? - 3% separating domains of different behavior of the correlation
functions. The transverse spin correlations in one chain
which leads to the estimate for the average squeerela- 1=1.2have the forrff
tion function atx=t=0) ((dx¢_)? ~ [dkk/ \k>+|D|/J. The <s* S~ (=LK Ko(8)Ko(@l O (aK_) (56)

latter quantity is defined by large~1 and shows that the
fluctuations are stron(dy_)% ~ 1, as should be expected With Kq(x),K;(x) modified Bessel functions araithe lattice

from Eq. (42) for the fluctuating spins without LRO. spacing. _ﬁksﬂ?ﬁer distances< ¢ this expression becomes
Consider now the casd #0 in Eq. (54). In the regime (SS9~ """, while at larger=¢ one has(s's)
with the negative coefficient befor@,_)2, the interaction ~r~Y*+&- The interchain correlations are

term (d,¢)* stabilizes the action against the divergent static
mean valuej,¢_. The usual recipe here is first to determine
the variational static solution to the above Hamiltonian let-with the behavior £ Y4K+1/4K_ 1K gng 14K 14K gt

ting [I_=0=6_, see, e.g., Ref. 19, and references therein. Thehorter and larger distances, respectively. Hence the inter-
trivial classical solution is the doubly degenerate vacuunthain correlations decay faster beyond the scat€.
(9X¢(_°)Epo~ +(J;—|D[)/J. The spectrum of fluctuations The longitudinal correlations are obtained in the form

around it is well defined with the velocity? ~ J(J; - |D|) and

<SI,OS£J> ~ = r_1/4K+e_[Ko(r/§)+K0(aI§)]/(4K—), (57)

the Luttinger exponenk?~J/(J;-|D|). The short-range (S S~ K +&K1(r/§) (59)
fluctuations are still determined by the quadratic part of the &

spectrume,~ Jk? and the avera%]()a square of the fluctuations

. . . _ 02y K_

is smﬂarly estimated(dyp_—dyp. ") .> 1. It shows that 'the <S§.,05§,r> - _+ _ —Kl(rlg) (59)
amplitude of the quantum fluctuations exceeds the distance rroo&

between the vacuapg which makes the choice of the clas- which shows particularly that at< ¢ the interchain correla-

SIC?L\éarCeL;:JnZ]dd;rt:flu;s reveals the existence of muItlsolltontIOns are of the AF character
y The parameter&;t,u,,A,&1 increase withd,. Hence

classma}l solutions to I'qu54)’Var_|at|ng the §tat|c I:agranglan the transverse correlations decay faster at ladgerWe ar-
over ¢'(x) and letting ¢'(x)=pof(y) with y=pox we d above that in the strong-coupling lindit — one
i ion &f/(dy)2=1—f3, which allows a JUed apove . g-coupling fimlt = oc one
obta|.n an equation : deals approximately with the AF Heisenberg chain situation,
solution of _the form f=a,sn(azy, «) V_V'th snly,x) the \nerein(ss~rL. Comparing it with Eqs(56) and (57)
e e e o e Ay o may conclde (! should each e vale 1 n
3 strong coupling regimd, ~J. Actually it is not so simple,
34" =2 poy 2K2/(1+K +2)srixpo/ 1+, ), with the soliton sincegthe dperi\?atio?] of Eq.4n assur%/ed<+>1, and otﬁer
densityN/L= Po/[2\1+K2K(")] ¥1In the limiting casex=1  tgrms of the rung interaction become important at smaller
one has one solitos,$'” ~ py tanh(xpy/2). The difference  K,. As a result, one expects that the increasg oéventually
in the classical energy between thed;soliton solutions and  changes the structure of the effective low-energy action.
the above trivial vacua is estimated adJpg, i.e., a small Summarizing, we show that the “triangular” model of this
quantlty atN~1<pgl, as compared to the cIaSS|caI energysection is equivalent to one of Sec. Il for the strong rung
~LJpg. The full analysis of the problem should hence in- couplings. Further its dynamics is similar to one of the mixed
clude the summation over thé-soliton solutions. The exis- spin ladder also for the weak rung coupling, as shown by the
tence of the quantum gay? ~ J;(J,—|D|) expected from the LSWT approach complemented by the bosonization. Two
J,#* term in Eq.(54), only adds to the complexity of this latter techniques reveal certain shortcomings in the decrip-
problem, which should be discussed elsewhere. One can ontion of the situation, as LSWT becomes formally inappli-
observe here that the necessity of summation over the clasable without LRO and the bosonization becomes unstable at
sical vacua provides the absence of the staggered magnetizae level of the Gaussian action.
tion along thez axis, associated with the nonzero classical Working in the close vicinity of the FM point in
Oyp_. the parameter spad®,J,), we observe that the transition
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to the FM ordered phase is of the first order at the line (18,2 ~ <COSVE€—>_<COS\N§¢+>+<COSV’§¢)_>.
D#0,J, =0. At nonzero AF values ofl , this transition _ _ _ ]

becomes the second-order one, at the I]Fje«D>0. Ap- For.the AF signs of);,J,, cor)S|dered in Ref. 21, first two
proaching this transtion line from abO\[EL>J1 one should cosines in the latter expression have nonzero values. Some
observe the divergence of the correlation length and vanisHn'SPection shows that these values correspond to ones re-

ing critical exponents of the correlation functions. ported in Ref. 21 for the infinitely long string OP.
Combining the results of Secs. Il and I, we Hence we conclude that the string OP discussed in Refs.

conjecture that the crossover from the weak to stron921 and 22 for AF rung interaction can be identified with the
rung coupling regime for the isotropic situatiob=0  Scalar product of spins on a rung and measures the waight
is characterized by the absence of the long-range ordé}f the total singlet in the ground state. It should be stressed,

and gapless character of dispersion. Increasing the Afhatour above arguments are not applicable for the FM rung
value of J, on hase,~ \;Ek until J, <J and e~ Jk at interaction, when the lowest rung state is triplet. In this latter

J,=J. This form of dispersion takes place &=<g?! — Case the str_ing order.pa}rameter discussed in Refs. 21-23 is
N\;m. The correlation functions are of the form the€ appropriate description and cannot be reduced to a local
(sts™ ~ =7 beyond the correlation lengthwith y~ \m scalar produpt. _Clearly, the nonzero average value of the sca-
atJ, =J andy=1 otherwise. lar product is disconnected from the appearance of the on-

Note that this nonuniversal behavior of the critical expo—Slte magnetization, as discussed below.
nent y characterizes thdsotropic gapless situation and B. Asymmetric ladders
should be contrasted to the well-studied case of a gapless
XXZ chain? In the latter case one has different exponents
for different spin projectionsy, with certain relations be-
tween them, e.g.y,y,=1/4.

Applying the same type of consideration to our above
systems, we can say, e.g., that for the mixed spin ladder the
order parameter is the average value of the scalar product on
the rungp;=S;s;. It assumes two valugg=-1 and 1/2 for

the rung doublet and quadruplet, respectively. Fp=0 all

IV. ORDER PARAMETERS these six states have the same weight, resultingpjr=0.
A. String order parameter vs scalar product \_/\Qtt]/ ;rzjee increase of AF rung exchangg;) saturates into a
In Ref. 21(see also Refs. 22 and 28 model of a sym- Similarly, for the triangular ladder, one considers the com-

metric AF Heisenberg ladder of spies 1/2 wasconsidered. bined scalar produgt, =(s; +s,)s;, see Eq(30). This quan-
Particularly, the authors discussed the string order parametéty takes three possible valugs=-1,0,1/2 in thestates
(OP), which was associated with the topological OP intro-|D1),|D0),|Q), respectively. Increasing,, the |D1) state
duced earliet* for the spin-1 chain. In fact, the discussion by becomes favorable, witfp,)— -1.

Sheltonet al?! for nonzero AF rung exchang&, can be Notice, that the discussed order parameter is bilinear in
reduced to the observation that the scalar prodisston the  spins, independent of the in-leg spin exchange anisotropy
rung assumes the nonzero value. and does not imply the ordering of individual spins. The spin

Let us characterize each state of two spins on a jjuing  ordering in a proper sense depends on the sign of the uniaxial
terms of singletS;) and triplet|7;). The ground statéG) of  anisotropy. Particularly, in the case of the easy-plane aniso-
the whole ladder has a component comprised of all rungropy, both the weak and strong rung coupling regimes cor-
singlets |S,p=®j|S)). It is clear that for the case of ex- respond to th&XXZmodel in the absence of LRO. Therefore
tremely large AF rung exchange the weiditof | S, in [G)  one does not expect the spin ordering here.
is unity. One expects that for moderate AR ~J; this The case of the easy-axis anisotropy can be analyzed for
weightW is finite. Consider now the spin product ¢th rung  the mixed spin model. We showed in Sec. Il that the LSWT,
-4s’;s’,=expim(si +s) with a=x,y,z, which may be applicable for isolated chains, fails for the intermediate
represented as At the same time, the strong coupling Hamiltoniés) is
the AF easy-axi{XZ model. This means the appearance of
nonzero staggered magnetization for the effective spfria
Eqg. (5). Scaling estimategsee, e.g., Ref. }8show that
. o o _ (09)~(=1))(D/I* with a=(m/4)yJ/D. This exponentially
with Ps; projecting onto thgth singlet andS" spin-1 opera-  sma|| value of the order parameter for the effective Hamil-
tor for the jth triplet. Note that the presence 8%; makes  tonjan(5) translates into the corresponding values for initial
Eq. (60) different from the operatoe™ used by den Nijs spins according to Eq4). Note that the average spins in one
and Rommelse in their discussfdrof the spin-1 chain. leg are aligned in one direction, but due to the difference in

Indeed, the “string” operatorH]f‘:,(—4sj‘flstfz) has its their contribution to the rung doublet state, E@h.and(31),
ground-state expectation value contributed by the weight oboth the uniform and the staggered magnetization is present
the |S,,y State. This partial contribution is equal W and  in the systent®
does not depend on the distanee-1). Particularly, the ex-
pectation value of the scalar products;{s; ,=4Ps;—1 has V. CONCLUSIONS
a contribution 8V from |S,,y State. In bosonization notation ~ We demonstrate above that the mixed spin ladders and
we have triangular ladders with the ferromagnetic coupling along the

- 4157, = P + (1 - P )e™ (60)
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legs are generic models for description of a transition fronregion from the weak to strong rung coupling limit.

the classicalferrimagneti¢ to quantum(antiferromagnetic We argue that for the isotropic spin exchange this cross-

regime. The individual legs with the isotropic Heisenbergover is characterized by the gapless spectrum ygfiinon

exchange show the classical ground state and their dynamie®locity ~vJJ,. The vanishing velocity atl, =0 corre-

is well described by the quasiclassical spin-wave theorysponds to the first-order phase transition to the ferromagnetic

Turning on the AF rung coupling introduces strong fluctua-state. The asymptotic decay of correlation functions is de-

tions, which destroy the long-range order and eventuallycribed by a unique critical exponept-+J, /J for all three

make the system equivalent to the quantum AF s3il/2  projections of spin. This type of behavior makes the mixed

Heisenberg model. spin ladder in its crossover regime quite distinct from the AF
We showed that in a large domain of parameters for these=1/2 Heisenberg model, which would be very interesting

ladders the spin wave theory, although missing certain feato verify by independent, e.g., numerical, methods.

tures caused by quantum fluctuations in one dimension, is

still quite instructive for the qualitative dgtermmgmon of the ACKNOWLEDGMENTS
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