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We study two similar spin ladder systems with the ferromagnetic leg coupling. The first model includes two
sorts of spinss=1/2 and 1, and thesecond model comprises onlys=1/2 legs coupled by a “triangular” rung
exchange. We show that the antiferromagnetic(AF) rung coupling destroys the long-range order and eventually
makes the systems equivalent to the AFs=1/2 Heisenberg chain. We study the crossover from the weak- to
strong-coupling regime by different methods, particularly by comparing the results of the spin-wave theory and
the bosonization approach. We argue that the crossover regime is characterized by the gapless spectrum and
nonuniversal critical exponents are different from those inXXZ model.
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I. INTRODUCTION

The strongly correlated systems in one spatial dimension
(1D) has attracted enormous theoretical and experimental in-
terest in the last decade. The 1D fermionic and spin systems
were recognized long ago as useful theoretical models,
where the interaction effects are very important and at the
same time are subject to rigorous analysis.1,2 The experimen-
tal discovery of the systems of predominantly 1D character
inspired renewed interest to this class of problems. Among
the experimental realizations of the 1D systems one
can mention the Bechgaards salts, carbon nanotubes, copper
oxides spin ladders, and purely organic spin chain
compounds.2

While the physics of purely one-dimensional objects, or
chains, is well understood,1,2 the spin ladders are still under
intense investigation. Even the isolated spin chains reveal a
variety of unusual phenomena, including the Haldane gap,
spin-Peierls transition, and magnetization plateaus. The lad-
ders, consisting of a few coupled spin chains are generally
much richer in their behavior, and pose additional theoretical
problems.

The interest to the problem of ladders may be traced back
to earlier attempts to construct the continous representation
of the spinS=1 variable in 1D out ofs=1/2 quantities.3 The
methods elaborated in these studies are now widely used in
the analysis of the ladder systems.

The basic model for the spin chain, the antiferromagnetic
(AF) Heisenbergs=1/2 chain, is thoroughly studied by vari-
ous methods.2 This may be one of the reasons why a major-
ity of the theoretical papers discussing the spin ladders are
now confined to the treatment of quantum spins=1/2 with
antiferromagnetic interaction along the legs. Spin ladders
with different spins or with a ferromagnetic leg exchange
attracted much less attention.

The spin chains and ladders consisting of different spins4

and with the AF leg exchange were considered recently in
Refs. 5–9. Particularly, the ferrimagnetic chains with alter-
nating spin-1/2 and spin-1 were discussed there. It was
shown that, contrary to the case of equal spins, the uncom-

pensated spin value in a unit cell leads to the gap in the
spectrum and the appearance of long-range magnetic order.10

The spin-1/2 ladder with ferromagnetic exchange along
the legs was studied in Refs. 11 and 12. A rather rich phase
diagram was demonstrated, depending on the details of the
magnetic anisotropies for the leg and rung couplings.

In the present paper we study the mixed spinsS=1,
s=1/2d spin ladder with ferromagnetic exchange along the
legs and antiferromagnetic interaction on the rungs(see
Fig. 1). In the absence of rung coupling, the individual
chains show ferromagnetic long-range order(LRO), and the
ground state is classical. The spectrum and ground-state en-
ergy is well described in terms of linear spin-wave theory.5

We show that the inclusion of the antiferromagnetic rung
coupling drives the system into the quantum regime, under-
stood in terms of the AF Heisenberg spin-1/2 chain. In this
regime the magnetic LRO is absent and the spatial correla-
tions show the power-law decay. Note that the uncompen-
sated spin in a unit cell leads to the absence of the gap in
low-lying excitation spectra.

This primary observation is interesting on its own, be-
cause two limiting cases of the model allow asymptotically
exact solutions with gapless spectra. Hence our further mo-
tivation to study the crossover region starting from both lim-
iting points.

We discuss the regimes of weak and strong rung coupling
for different types of the leg exchange anisotropy. The con-
sideration is somewhat complicated by the absence of the
established routines for our case. The bosonization, an ex-
tremely useful tool in dealing with AFs=1/2 systems, does

FIG. 1. A ladder of spinsS=1, s=1/2.
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not fully work here for two reasons. The first is the existence
of two sorts of spins in a unit cell and the other is the ferro-
magnetic leg exchange.

Hence we supplement our study by the consideration of a
similar model, written entirely fors=1/2 butwith the modi-
fied rung couplings. Using these models and comparing two
different approaches, spin-wave theory and bosonization, we
arrive at a unified description of the ferrimagnetic spin lad-
ders. Particularly, we discuss the spectrum and the correla-
tions and observe the crossover from the weak- to strong-
coupling regime. Attention is paid to a subtler point in the
bosonization procedure, a seemingly unstable Gaussian ef-
fective action near the ferromagnetic point.

The rest of the paper is organized as follows. We discuss
the mixed spin model in the strong- and weak-rung-coupling
regime in Sec. II. The spins=1/2 ladder with “triangular”
rung exchange is introduced and analyzed in Sec. III. The
existence of different order parameters in a system is
discussed in Sec. IV. The discussion and conclusions are
in Sec. V.

II. MIXED SPIN LADDER

We investigate the properties of a ladder system, consist-
ing of two sorts of spinss=1/2 andS=1, arranged in a
checkerboard manner. The unit cell comprises four spins and
the Hamiltonian is

H = − o
i

Ji
ass1,2i

a S1,2i±1
a + s2,2i±1

a S2,2i
a d + J'o

i

ss1,2iS2,2i

+ S1,2i+1s2,2i+1d s1d

with the first subscript(e.g., 1 ins1,2i) labeling the leg, and
the second one denoting the site on it(odd or even). Below
we mostly consider the case of the AF rung coupling,J'.0.
The overall ferromagnetic exchange along the chains allows
the uniaxial anisotropyJi

x=Ji
y=J.0, Ji

z=J+D.0, uDu!J.
In what follows, we also consider a useful generalization to
higher spins,s@1 with the differenceS−s=1/2 kept fixed.
The whole consideration is done for zero temperature.

First let us briefly describe two simple limiting cases. At
D=0+ andJ'=0, we have two ferromagnetic chains, which
possess the long-range magnetic order. The spectrum is qua-
dratic at small wave vectorsv,Jq2. We put the lattice spac-
ing a to unity everywhere except in Sec. III D.

In the opposite limiting caseJ'@J the ground state of
two spins on the rung, say,s1,2i and S2,2i, is doublet, de-
scribed by a spins=1/2 variables2i. We show below, that
the effective interaction between thesesi is antiferromag-
netic for the above choiceJ.0 and hence the situation is
mapped onto a well-known problem of as=1/2 Heisenberg
antiferromagnet. One does not expect the long-range order at
D=0 and the spectrum is linear«k,Jk. The correlation func-
tions for this case are described below. The intermediate situ-
ation J,J', DÞ0is harder to analyze and we present sev-
eral ways to discuss it below.

A. Strong rung coupling

Consider first the case of strong perpendicular coupling
J'@J. Taking firstJ=D=0, one sees that each pair of spins

s, S is characterized by a total spinj =s+S and by the rung
energyEj =J's·S= 1

2J'f js j +1d−sss+1d−SsS+1dg. The low-
est state here is doubletj =1/2, thefirst excited state is qua-
druplet j =3/2,with E3/2−E1/2=3J' /2. The wave function of
a multiplet is

u j ,ml = o
m1,m2

Csm1Sm2

jm usm1luSm2l s2d

with Clebsch-Gordan coefficientsCsm1Sm2

jm . The interaction
along the chain is considered now as a perturbation.
The formula(2) and the consideration below are applicable
for larger spins as well. In this more general case of
s=S−1/2ù1/2, the operatorssa, Sa act within the lowest
doublet and connect the doublet with the quadruplet, but the
direct transitions to the higher statesj =1/2→ j ù5/2 are
absent. One can check that the corresponding matrix ele-
ments are given by

k j = 1/2,musau j = 1/2,m8l = −
s

3
smm8

a ,

k j = 1/2,muSau j = 1/2,m8l =
S+ 1

3
smm8

a , s3d

with smm8
a the Pauli matrices. Fors=1/2 this reads

sa ↔ −
1

6
sa, Sa ↔ 2

3
sa. s4d

It shows that if we consider only the projection of the spin
operators onto the lowest doublet, then the above Hamil-
tonian corresponds to the AF Heisenberg spin-1/2 model of
the form

Heff = o
i

Jeff
a si

asi+1
a , s5d

where

Jeff
a sJ' → `d = 2Ji

assS+ 1d/9. s6d

Below we will refer to this estimate ofJeff
a as Jeff

a s`d. For
s=1/2 wehaveJeff

a s`d=2Ji
a /9.

Let us next consider the role of the higher states on a
rung. We do not list here the matrix elements of the spin
operatorsSa, sa for the transitionsj =1/2→ j =3/2. Weonly
note that they are proportional toÎssS+1d and are the same
for Sa andsa, except for the sign. The second-order correc-
tion in Ji between the adjacent rungs, labeled by 1 and 2
below, can be written as

Ji
aJi

b
4k 1

2us1
au 3

2lk 3
2us1

bu 1
2lk 1

2uS2
au 3

2lk 3
2uS2

bu 1
2l

2E1/2 − 2E3/2
, s7d

with factor 4 coming from the above property of coincidence
of the matrix elements. Noting that

K1

2
,mus1

au
3

2
LK3

2
us1

bu
1

2
,m8L =

ssS+ 1d
9

s2dabdmm8

− ieabgsmm8
g d, s8d

we find that the second order inJi results in Eq.(5) with the
renormalized value of effective interaction
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Jeff
a sJ'd = Jeff

a s`d + eabg
2 Jeff

b s`dJeff
g s`d

9J'

, s9d

with Jeff
a from Eq. (6). For the above parametersJi

a and
s=1/2 one has

Jeff
x = Jeff

y =
2

9
J +

8JsJ + Dd
729J'

, s10d

Jeff
z =

2

9
sJ + Dd +

8J2

729J'

, s11d

which particularly means that the relative value of anisotropy
decreases with decreasingJ'. The perturbation theory is ex-
pected to break down when the correction inJ'

−1 is compa-
rable to the first term in Eq.(9), which happens roughly at
J',Ji

as2. Note that this criterion also corresponds to the
point where the bandwidth induced byJeff becomes compa-
rable to the separation,J' between the quadruplet and dou-
blet. At largerJ' the low-energy dynamics is described by
the AF spin-one-halfXXZ model (5) which is exactly solv-
able. In the isotropic case,D=0, the spectrum is linear,v
=sp /8dJeffuqu and the correlations are of the form

ksi
asi+n

a l , unu−2 + s− 1dnunu−1,

with the omitted minor logarithmic corrections.13

Taking into account the matrix elements(3) we find that
the leading asymptotes in the isotropics=1/2, S=1 case are

ks1,i
a s1,i+2n

a l , u2nu−1,

ks1,i
a S1,i+2n+1

a l , 4u2n + 1u−1, s12d

kS1,i
a S1,i+2n

a l , 16u2nu−1.

Thus the long-range ferromagnetic order is absent, but the
correlations are ferromagnetic and slowly decaying. In addi-
tion, there is a subleading sign-reversal asymptote and modu-
lation depending on the spin valuess=1/2,1d. The correla-

tions between the spins in different chains are slowly
decaying antiferromagnetic ones, e.g.,ks1,i

a s2,i+2n+1
a l,−u2n

+1u−1. The above form of the correlations is obviously un-
changed as long asJ'&J.

B. Weak rung coupling, spin-wave analysis

Let us next consider the opposite limiting case, when the
leg exchange dominates andJ' can be considered as pertur-
bation. First we explore the spin-wave formalism for the
easy-axis anisotropyD.0. It was shown recently5 that in the
case of a ferrimagnetic system in 1D the spin-wave descrip-
tion gives very good estimate for the ground-state energy and
on-site magnetization. Performing the standard Dyson-
Maleyev expansion

S1
z = − S+ a†a, s1

z = − s+ b†b,

S1
+ = Î2Sa†f1 − a†a/s2Sdg,

s1
+ = Î2sb†f1 − b†b/s2sdg,

S1
− = Î2Sa, s1

− = Î2sb,

S2
z = S− c†c, s2

z = s− d†d,

S2
+ = Î2Sf1 − c†c/s2Sdgc,

s2
+ = Î2sf1 − d†d/s2sdgd,

S2
− = Î2Sc†, s2

− = Î2sd† s13d

we write for the magnon Green function in the linear spin-
wave theory(LSWT) approximation

F† = sak
†,bk

†,c−k,d−kd,

Gijsk,td = − iustdkfFisk,td,F j
†sk,0dgl, s14d

Gsk,vd−1 = −1
ss2Ji

z + J'd − v ÎsSJgk 0 ÎsSJ'
ÎsSJgk Ss2Ji

z + J'd − v ÎsSJ' 0

0 ÎsSJ' ss2Ji
z + J'd + v ÎsSJgk

ÎsSJ' 0 ÎsSJgk Ss2Ji
z + J'd + v

2 s15d

Here gk=2 cosk. The spectrum consists of doubly degener-
ate acoustic and optical modes. The optical mode has the
energy,ÎsSJfor all wave vectors and the acoustic branch at
small k is

«k .
2sS

s+ S
Îs2D + Jk2ds2D + Jk2 + 2J'd s16d

so instead of the quadratic spectrum of purely FM case,
we have an approximately linear spectrum at small energies

«k&sJ'. The contribution of the zero-point fluctuations into
the average on-site magnetization can be estimated forD
!J'!J as follows:

s− ks1il , ÎJ'/J lnsÎJ'/Dd. s17d

This means that the spin-wave approximation fails when the
latter quantity is of order ofs. It happens roughly at
J'*s2Jsln s2J/Dd−2, which corresponds to the crossover
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point g* in Ref. 11. Apart from the logarithmic factor, this
estimate agrees with the above valueJ',s2Ji, obtained in
the largeJ' limit. For lower J' the system shows the long-
range order.

It might be instructive to consider the FM rung coupling
J',0. In this case all the branches of the spectrum are gap-
ful, the lowest modes are

«1,k .
2sS

s+ S
s2D + Jk2d,

«2,k .
2sS

s+ S
s2D + 2uJ'u + Jk2d. s18d

Note that at the isotropic pointD=0, the long-range FM
order and hence the applicability of the LSWT is lost for any
J'.0. The spectrum(16) in this case is gapless and linear
with the spin-wave velocity,sÎJJ', the limit of s.S@1 is
assumed. We know that increasingJ' we should eventually
recover the effective model(5), characterized by spinon ve-
locity ,s2J. These two velocities match again atJ',s2J.

Concluding this section, we also present the LSWT results
for the lowest branches of dispersion for the case of easy-
plane anisotropyD,0. For the AF sign of the exchangeJ'

one has

«1,k .
2sS

s+ S
ÎJk2s2uDu + Jk2 + 2J'd,

«2,k .
2sS

s+ S
Îs2uDu + Jk2ds2J' + Jk2d, s19d

while for the FM exchangeJ',0 we obtain

«1,k .
2sS

s+ S
ÎJk2s2uDu + Jk2d,

«2,k .
2sS

s+ S
Îs2uJ'u + Jk2ds2uDu + 2uJ'u + Jk2d. s20d

In this case LSWT is formally inapplicable, but the above
formulas might be useful for a comparison with further re-
sults.

Summarizing, we observe that while the LSWT cannot
treat the correlations correctly and formally is inapplicable in
the absence of the LRO, it provides simple and reasonable
formulas for the excitation spectra in a complicated one-
dimensional ladder. We illustrate this point below by discuss-
ing the spin-1/2 ladder, where a rigorous description of the
low-energy action is available.

C. Equations of motion

This subsection is devoted to the macroscopic equations
describing the behavior of spins in two coupled chains. To
make our calculations more transparent, we define new op-
erators on a rung as superpositions of two spin operators

Q2i
a = S2,2i

a + s1,2i
a , R2i

a = S2,2i
a − s1,2i

a ,

Q2i+1
a = S1,2i+1

a + s2,2i+1
a , R2i+1

a = S1,2i+1
a − s2,2i+1

a , s21d

satisfying the following commutation relations:

fQi
a,Qi

bg = ieabgQi
g, fRi

a,Ri
bg = ieabgQi

g,

fRi
a,Qi

bg = ieabgRi
g s22d

with eabg totally antisymmetric tensor; the operatorsQa and
Ra commute at different sites.

The commutation relations(22) define the SUs2d
^ SUs2d=SOs4d group with two Casimir operators given by

Q ·R =
5

4
, Q2 + R2 =

11

2
. s23d

The HamiltonianH=Hi+H' takes the form

Hi = −
1

2o
i

Ji
asQi

aQi+1
a − Ri

aRi+1
a d,

H' =
J'

4 o
i

sQi
2 − Ri

2d =
J'

2 o
i

Qi
2 + cst. s24d

The equation of motions for operatorsQ andR are given by

Q̇j
a = ifH,Qj

ag, Ṙj
a = ifH,Rj

ag. s25d

These equations correspond to the well-known Bloch equa-
tions for precession of the magnetic moment of ferromagnets
(antiferromagnets). Taking into account that the operatorsQa

sRad are different on two different sublattices corresponding
to odd (even) sites, we use the properties

fQi
2,Qi

ag = fRi
2,Qi

ag = 0,

fQi
2,Ri

ag = − fRi
2,Ri

ag = ieabghRi
bQi

gj,

and adopt a symbolic notation

ieabghRi
bQi

gj = isRi 3 Qi − Qi 3 Rida.

Then we obtain the following system of coupled Bloch equa-
tions for the isotropicJi

a:

]tQi =
Ji

2
sQi 3 Qi±1 − Ri 3 Ri±1d,

]tRi =
Ji

2
sQi 3 Ri±1 − Ri 3 Qi±1d +

J'

2
sQi 3 Ri − Ri 3 Qid.

s26d

Taking the continuum limit here, one has

]tQ = SAabQ 3
]2Q

]xa]xb

− BabR 3
]2R

]xa]xb
D ,

]tR = SBabQ 3
]2R

]xa]xb

− AabR 3
]2Q

]xa]xb
D

+ CsQ 3 R − R 3 Qd, s27d

where for asymmetric two-leg laddera=b=x and Axx=Bxx
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=Jia2/2, C=J' /2. The lattice indexi is omitted. Rewritten
in terms of densities of magnetic moments, Eq.(27) corre-
sponds to the generalized Landau-Lifshitz equations for the
dynamic SO(4) group. Note that the operatorQ represents a
total spin on the rung, and the operatorR does not have a
simple interpretation.

We introduce the densities of magnetic moment character-
izing two sublattices

M =
2

No
l

Ql, N =
2

No
l

s− 1dlQl ,

O =
2

No
l

Rl, T =
2

No
l

s− 1dlRl , s28d

with N being total number of rungs in the ladder.
Obviously,M andN represent the uniform and staggered

magnetizations along the ladder, whereasT and O can be
interpreted as “staggered rung” magnetization in the uniform
and staggered channels along the chain, respectively. The
different ordered phases are characterized by nontrivial val-
ues ofM , N, O, T or some combinations of them whereas in
the disordered phase these quantities are equal to zero. For
example, the ordered FM phase is characterized byM Þ0. In
Néel phaseNÞ0. In ferrimagnetic phase bothM Þ0 and
NÞ0. Therefore, the information about the order parameter
is necessary for deriving the macroscopic Landau-Lifshitz
equations from the microscopic Bloch equations. We point
out that the scalar product of two spins on a rung

s1 ·S2 =
1

4
sQ2 − R2d

may also be considered as a local order parameter(see dis-
cussion in the Sec. III).

Equations(26) are the central result of this subsection.
Upon the assumption of the certain order parameter(s) they
lead to macroscopic “equations of motion.” Applying a stan-
dard routine14 one can show that these equations are equiva-
lent to LSWT treatment and reproduce magnon dispersion
laws discussed in the previous subsection. The detailed
analysis of the Bloch equations for asymmetric SO(4) lad-
ders will be presented elsewhere.

III. TRIANGULAR s=1/2 LADDER

One may regard spin 1 as a ground-state triplet of two
spins 1/2 coupled ferromagnetically. Our model assumes
that this triplet is also FM coupled to other spins 1/2 on a
chain. Therefore instead of the FM chain ofn spins 1 andn
spins 1/2, one may consider 3n spins 1/2. The model we
propose is

H = − o
i

Ji
ass1,i

a s1,i+1
a + s2,i

a s2,i+1
a d + J'o

i

fs1,3iss2,3i + s2,3i+1d

+ ss1,3i+1 + s1,3i+2ds2,3i+2g s29d

with the above choice ofJi
a. The model(29) is not equivalent

to the previous one, Eq.(1). Indeed, the exact mapping of

Eqs. (1)–(29) would include the strong trimerized isotropic
FM in-chain exchange, at those links which form the bases
of the triangles in Fig. 2. In that case one would first consider
the triangles and then couple them to each other, fully restor-
ing the consideration of the previous section. We show below
that the model(29) with uniform value of the rung exchange
has two advantages. First, it is equivalent to Eq.(1) at
J'→` and second, it is easier tractable in the opposite case
J'→0, since the exact form of the low-energy action is
available for the uniformJi

a.

A. Strong rung coupling

We consider a case when the AF exchangeJ' is much
larger thanJ'

a , first for the isotropicJ'
a =J'. In this case a

main block is a triangle formed by two rungs, and the cou-
pling of triangles is a perturbation. The Hamiltonian for the
triangle is

HD = J'ss1 + s2ds3 − Jiss1 ·s2 − 1/4d. s30d

The structure of the energy levels is as follows. The term
J' groups the spins on one leg,s1 and s2, into a triplet uTl
and a singletuSl. The singlet does not couple tos3 and re-
sults in a total doublet denoted asuD0l with the energy
ED0=Ji. The tripletuTl of zero energy couples tos3 with the
formation of doubletuD1l and quadrupletuQl. The corre-
sponding energies areED1=−J' and EQ=J' /2. For Ji→`
the stateuD0l is unimportant, ands1, s2 act as one spin
S=1. At the same time, the low-energy sector of the problem
is associated with the doubletuD1l, and this doublet is the
lowest state also for the situationJ'@Ji. Therefore the
strong coupling limit of the asymmetric ladder with two
spinss=1, s=1/2 is described as well by the triangular lat-
tice depicted in Fig. 2 in the same limit. The demand for
in-triangle Ji to be large, in order to organize the effective
spin-1, is relaxed in this limit, and one can consider the
situation with the uniform value of the exchangeJi along the
whole leg.

The presence of the anisotropy term −Ds1
zs2

z in Eq. (29) is
a negligible effect in the described picture. Indeed, this term
translates into a single-ion anisotropy of the triplet statesSzd2

and the application of the formulas(3) and(8) shows that it
is only the higheruQl state, which becomes split accordingly,
,DsSzd2.

Let us discuss the analog of Eq.(9) for the Hamiltonian
(29). In the limit J'→` the effective interaction is given by
Eq. (5) with sa acting within uD1l and Jeff

a s`d= 1
9Ji

a. The
analog of Eq.(4) for Eq. (30) reads

FIG. 2. A triangular ladder of spinss=1/2.
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s1,2
a ↔ 1

3
sa, s3

a ↔ −
1

6
sa. s31d

The second order inJi
a corresponds to transitions to

higher uD0l and uQl states. After some calculations we find

Jeff
a sJ'd . Jeff

a s`d + eabg
2 Jeff

b s`dJeff
g s`dF 1

3J'

−
3

5J' + 2J
G .

s32d

In Eq. (32) the second term is negative forJ'*J, in contrast
to Eq. (9). It means that the value ofJeff and the relative
exchange anisotropyJeff

z /Jeff
x −1 increase with decreasing of

J'.
Thus we conclude that the strong coupling limit of the the

trinagular ladder is described by the Hamiltonian(5) with Jeff
given by Eq.(32). Similarly to Eq.(12), the in-leg correla-
tions are slowly decaying ferromagnetic ones, although their
modulation is different due to Eq.(31) instead of Eq.(4).

B. Weak rung coupling, LSWT analysis

For the case of ferromagnetic exchange with the easy-axis
anisotropy we employ the spin-wave formalism. The situa-
tion is complicated by the existence of six spins in a unit cell.
As a result, the quadratic Hamiltonian is represented as a
636 matrix. The Hamiltonian for the interaction along the
leg is standard, while the rung exchange needs some care.

Consider first two quantitiesAi andBi referring toith site
on the upper and lower leg, respectively. IfAi and Bi are

coupled by the triangular rung exchange, Fig. 2, then we
have an expression

J'o
j

sA3j + A3j+1dB3j + A3j+2sB3j+1 + B3j+2d, s33d

with one term in the sum(33) describing the coupling in the
unit cell, and three-site peridicity of the overall structure.
Going to Fourier components we have

o
q

AqsB−qgq + B−q+kfq + B−q−kf−q
* d, s34d

with k=2p /3 and

gq =
2

3
J's1 + eiqd, fq = −

1

3
J'seik + eiq−ikd. s35d

Particularly, forAj =A=cst, we obtain

1

3
J'As4B0 + Bk + B−kd.

These preliminary notes show that the rung interaction
hybridizes the magnons with the wave vectorsq and q±k.
The LSWT HamiltonianH=okCk

†HkCk is obtained as a ma-
trix defined for the vector

Ck
† = sak−k

† ,ak
†,ak+k

† ,b−k+k,b−k,b−k−kd.

The Green function Gijsk,td=−iustdkfCisk,td ,C j
†sk,0dgl

takes the form

Gsq,vd−1 = −1
vq−k + g0 + v fk

* fk gq−k fk−q
* fq−k

fk vq + g0 + v fk
* fq gq f−q

*

fk
* fk vq+k + g0 + v f−k−q

* fq+k gq+k

g−q+k fq
* f−q−k vq−k + g0 − v f0

* f0

f−q+k g−q fk+q
* f0 vq + g0 − v f0

*

f−k+q
* f−q g−q−k f0

* f0 vq+k + g0 − v

2 , s36d

wherevq=Ji
z−Ji cosq is the magnon spectrum for isolated

chains, easy-axis anisotropyJi
z−Ji .0 is assumed. The new

spectrum is determined from the equation detfGsq,vd−1g=0.
The last equation amounts to the third-order polynomial in
v2, which can be subsequently solved.

In order to analyze the lowest energies in the spectrum,
v.0 atq.0 it is sufficient to deal with smaller matrices. It
can be shown that in this case one may consider almost de-
generate 232 block formed by second and fifth lines(col-
umns). The asymptotic expressions for the energies obtained
this way coincide with those obtained directly from Eq.(36).

This simplified analysis can be also performed for other
cases of the in-chain exchange anisotropy and rung ex-
change. Particularly it is useful when the analytic treatment
of the spectrum becomes problematic. For instance, the full
LSWT consideration of the easy-planeD,0 for Eq. (29)

amounts to the analysis of 12312 matrix Green’s function,
while the simplified treatment reduces the calculation to the
biquadratic equation.

In the subsequent equations of this section, the rung ex-
changeJ' appears with a prefactor 2gq=0=8/3.This prefac-
tor is conveniently incorporated into the quantity

J1 ; 8J'/3, s37d

which is used below. Thus we interchangeably callJ1 andJ'

as the rung coupling value.
For the small anisotropyD, and uJ1u!J we find the fol-

lowing asymptotic expressions.
(i) Easy-axis,D.0, AF signJ'.0. Doubly degenerate

gapful mode:
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«1,2,k .
1

2
Îs2D + Jk2ds2D + 2J1 + Jk2d. s38d

(ii ) Easy-plane,D,0, AF signJ'.0. One gapless, one
gapful mode:

«1,k .
1

2
ÎJk2s2uDu + 2J1 + Jk2d,

«2,k .
1

2
Îs2uDu + Jk2ds2J1 + Jk2d. s39d

(iii ) Easy-axis,D.0, FM signJ',0. Two gapful modes:

«1,k . D +
1

2
Jk2, «2,k . D + uJ1u +

1

2
Jk2. s40d

(iv) Easy-plane,D,0, FM signJ',0. One gapless, one
gapful mode:

«1,k .
1

2
ÎJk2s2uDu + Jk2d,

«2,k .
1

2
Îs2uDu + 2uJ1u + Jk2ds2uJ1u + Jk2d. s41d

These results are similar to Eqs.(16) and (18)–(20) and
will be compared below with the treatment by bosonization.
Particularly they show that the low-energy dynamics of the
triangular ladder is similar to the mixed-spin ladder of Sec. II
not only in the strong rung coupling regime, but also for the
weak rung coupling. In Fig. 3 we depict the character of
dispersion in different domains of the small parametersD,
J', according to Eqs.(38)–(41).

C. Weak rung coupling, bosonization

As discussed above, the spin-wave theory becomes inap-
plicable at largerJ' when the role of quantum fluctuations
grows. Instead, one may use a formalism which does not
assume the average on-site magnetization and is suitable for
spin-one-half chains. This formalism includes the Jordan-
Wigner transformation to spinless fermions, and the eventual

continuum description with the use of fermion-boson duality
described elsewhere.2

This procedure is well defined for an easy-plane aniso-
tropy D,0 in Eq. (29), which is the case considered in this
subsection; the AF signJ' is implied. The continuum repre-
sentation of the spin operators in each of the chains reads

sx
± = e±iufC + cosspx + 2fdg,

sx
z = p−1]xf + cosspx + 2fd, s42d

with the omitted normalization factors before cosines and
constantC defined below. The bosonic fieldsfisrd, uisxd are
characterized by the chain indexi and a continuous coordi-
natex. The HamiltonianH=H1+H2+H' has a part for the
noninteracting chains

Hi =E dxSpuK

2
Pi

2 +
u

2pK
s]xfid2D , s43d

where i =1,2 andPi =p−1]xui canonically conjugated mo-
mentum tofi. The form ofH' in bosonization notation is
discussed below. The general form of the leg Hamiltonian
(43) prescribed by the bosonization procedure is comple-
mented by the exact form of its coefficients, known from the
Bethe ansatz.15 Denoting cosph=Jz/J, we have

1/K = 2h, u = Jssinphd/s2 − 2hd.

For uDu!J these formulas are simplified

ph .Î2uDu
J

, K .Î p2J

8uDu
, u .ÎuDuJ

2
s44d

and the coefficientC in Eq. (42) becomes16 C2.sphd−h /8
.1/8. Note that the spinon velocityu in Eq. (44) coincides
with the one obtained by LSWT, Eq.(39) at J1=0. This
unusual observation relates to the fact that the ferromagnetic
ground state is describable in classical terms of the total
magnetization, and the semiclassical LSWT approach should
work well in the nearly ferromagnetic situation even without
LRO.

The rung interactionH' couples different terms of the
spin densities. However, the interaction of the AF component
,cosspx+2fd in Eq. (42) is irrelevant in the renormaliza-
tion group sense; moreover, the structure ofH', Eq. (34),
shows that this interaction is absent in the lowest order.

It is convenient to introduce the symmetrized combina-
tions f±=sf1±f2d /Î2, u±=su1±u2d /Î2. In terms of these,
the relevant and marginally relevant terms ofH' are

H' . J1E dxhC2 cossÎ2u−d + 8−1/2C2]xu+ sinsÎ2u−d

+ s2pd−2fs]xf+d2 − s]xf−d2gj. s45d

The second term in Eq.(45) comes from the gradient expan-
sion of Eq.(34). Its inclusion, however, does not change the
Gaussian character of the action for the fieldu+ (see below).
Integration over this latter field produces a contribution
,sJ1

2/Jdcos 2Î2u−, which (i) is less relevant and(ii ) has a
smaller prefactor than the first term in Eq.(45). That is why
we omit the term]xu+sinsÎ2u−d below.

FIG. 3. The character of dispersion in different domain of pa-
rameters, the uniaxial anisotropyD and the rung couplingJ'.
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The remaining terms are combined into the Hamiltonian
of the formH=H++H− with

H+ =E dxSpu+K+

2
P+

2 +
u+

2pK+
s]xf+d2D , s46d

H− =E dxSpu−K−

2
P−

2 +
u−

2pK−
s]xf−d2 + J1C

2 cosÎ2u−D ,

s47d

where

u+K+ = u−K− = uK . pJ/4,

u±/K± = u/K ± J1/2p . s2uDu ± J1/2d/p. s48d

Equations(46) and(48) show that the modef+ remains gap-
less, and its velocity is increased withJ', hence it corre-
sponds to«1 mode in Eqs.(39) and (19).

The situation with thef− mode is more complicated. Two
features are noted here, the instability of the Gaussian action
at J1.4uDu and the appearance of the gap in the spectrum.

Indeed, the scaling dimension of the operator cosÎ2u− in
Eq. (47) is 1/s2K−d!1 and the dynamics ofu− mode is
described by the sine-Gordon model in the quasiclassical
limit, with a large number of quantum bound states, or
“breathers.” The gapD in the spectrum ofu− field is given by
the mass of the lightest breather, which is roughly found by
expanding the cosine term and rescaling the fieldu−
→u−/ÎK−:

D2 . 2pu−J1C
2/K− .

uJ1u
2
SuDu −

J1

4
D . s49d

In the leading order inJ1 this expression corresponds to the
mode«2 in Eqs.(39) and (19). The refined value of the gap
can be obtained after usual scaling arguments17,18 or directly
from the exact formulas in Ref. 16. The identification of our
model parameters with those of Lukyanov and Zamolod-
chikov reads

m = u−J1C
2/2, b2 = s4K−d−1

andu− stands for the overall energy scale.
The gap(m in notation of Ref. 16) is then found as

D2 .
J

2
SuDu −

J1

4
DS uJ1u

J
D1/f1−1/s4K−dg

s50d

and the spectrum becomes

«+,k
2 =

1

2
SuDu +

J1

4
DJk2,

«−,k
2 =

1

2
SuDu −

J1

4
DsuJ1u + Jk2d. s51d

The mean value of the cosine term is given by the expression

kcosÎ2u−l . − S D

4u−
D1/2K−

. − S uJ1u
16J

D1/4K−

. s52d

According to Eqs.(48) and (52), the increase ofJ1 leads
to the instability of the Gaussian action, which happens si-
multaneously with the saturation of the quantitykcosÎ2u−l.
Note that the similar situation was observed in Ref. 12 for
the simple two-leg ferromagnetic ladder.

For one chain, the breakdown of the Gaussian action hap-
pens atDù0, and corresponds to the transition to the ferro-
magnetic ground state. The average value of spin in this case
becomeskszl=p−1k]xfl= ±1/2.

For a ladder, the discussed instability and the saturation of
cosine term correspond to the saturation of the scalar product
of spins in different chainsks1,j ·s2,jl (see below). It means
that the spins in adjacent chains form a singlet state. The
peculiarity of this phenomenon is the energy scale when it
happens,J',uDu, following from the bosonization(see Ref.
12).

This small energy scale is unusual and may be compared
to the LSWT treatment. Successful enough for isolated
chains, LSWT is in qualitative agreement with bosonization,
regarding the increase of the spinon velocity withJ' for the
symmetric modef+ as well as the gap value for thef−
mode. At the same time, LSWT predicts theincreasein the
velocity of f− with J' at the energies higher than the gap
value. The bosonization says the opposite.

At this moment it is also instructive to consider the FM
rung couplingJ1,0. In this case the LSWT formulas(20)
and(41) show again one gapless and one gapful mode, with
the unchanged and increased velocities, respectively. The
bosonization(51) provides a similar picture, but says again
about the collapse of the gaplessf+ mode atuJ1u,uDu.

It is worth noting here that the average cosine term(52)
and the correlation length(55) below, does not show any
peculiarities atJ1,uDu. A possible explanation for the above
discrepancy stems from the observation that the«2 mode
(39) atJ1= uDu attains the form«2.uDu+Jk2/2. The region of
linear dispersion of bosons, a cornerstone of conformal treat-
ment, is lost here, which may be reflected by vanishing ve-
locity in the bosonization treatment. Note also, that Eq.(39)
shows a roughly linear gapful spectrum upon the further in-
crease of the rung exchangeJ1@ uDu. This feature should
assumably be valid in the corrected bosonization treatment.

We suggest here that the action(47) should be comple-
mented by the irrelevant terms, usually dropped in the infra-
red limit. They come from the consideration of the lattice
Hamiltonian and are of the structure

a2fs]xfd4 + s]x
2fd2g, s53d

with a the lattice spacing. The appearance of these terms is
most easily observed by the consideration of one-chainXY
model. In terms of the Jordan-Wigner fermionsc, one has
the tight-binding fermionic spectrum cosq. Near the Fermi
points q= ±p /2 the leading terms in the expansion of the
fermionic dispersion are the linear and cubic terms. The
linear-in-q fermionic term,c†]xc transforms intos]xfd2 in
the bosonic language, and the cubic term,c†]x

3c attains the
form (53). Omitting the unknown coefficients,a2,1 and
denoting]xf−=f−8 etc., the new Hamiltonian(47) is then
schematically written as
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J

2
P−

2 +
J1

2
u−

2 +
uDu − J1

2
sf−d2 +

J

2
sf−d2 +

J

4
sf−8d4. s54d

Let us consider first the caseJ1=0. The interaction term
s]xfd4 may be discarded in the infrared action, and the qua-
dratic terms]x

2fd2 modifies the spectrum«k
2,uDuJk2+J2k4,

so the spectrum may be regarded as linear only at
k&ÎuDu /J. The latter estimate is in accordance with the
LSWT formulas (39) and (19). The dynamical correlation
function becomes

k]xf−,]xf−lk,v ,
Jk2

v2 − JuDuk2 − J2k4

which leads to the estimate for the average square(correla-
tion function atx= t=0) ks]xf−d2l,e0

1dkk/Îk2+ uDu /J. The
latter quantity is defined by largek,1 and shows that the
fluctuations are strongks]xf−d2l,1, as should be expected
from Eq. (42) for the fluctuating spins without LRO.

Consider now the caseJ1Þ0 in Eq. (54). In the regime
with the negative coefficient befores]xf−d2, the interaction
term s]xfd4 stabilizes the action against the divergent static
mean value]xf−. The usual recipe here is first to determine
the variational static solution to the above Hamiltonian let-
ting P−=0=u−, see, e.g., Ref. 19, and references therein. The
trivial classical solution is the doubly degenerate vacuum
]xf−

s0d;r0, ±ÎsJ1− uDud /J. The spectrum of fluctuations
around it is well defined with the velocityu*

2,JsJ1− uDud and
the Luttinger exponentK*

2,J/ sJ1− uDud. The short-range
fluctuations are still determined by the quadratic part of the
spectrum«k,Jk2 and the average square of the fluctuations
is similarly estimatedks]xf−−]xf−

s0dd2l,1. It shows that the
amplitude of the quantum fluctuations exceeds the distance
between the vacua 2r0 which makes the choice of the clas-
sical vacuum dubious.

The refined analysis reveals the existence of multisoliton
classical solutions to Eq.(54). Variating the static Lagrangian
over f8sxd and letting f8sxd=r0fsyd with y=r0x we
obtain an equation −d2f / sdyd2= f − f3, which allows a
solution of the form f =a1snsa2y,kd with snsy,kd the
Jacobi elliptic function andk the elliptic index. It leads
to the N-soliton solution for classical vacuum
]xf−

s0d= ±r0Î2k2/ s1+k2dsnsxr0/Î1+k2,kd, with the soliton
densityN/L=r0/ f2Î1+k2Kskdg.19 In the limiting casek=1
one has one soliton]xf−

s0d,r0 tanhsxr0/Î2d. The difference
in the classical energy between theseN-soliton solutions and
the above trivial vacua is estimated as,NJr0

3, i.e., a small
quantity atN,1!r0L, as compared to the classical energy
,LJr0

4. The full analysis of the problem should hence in-
clude the summation over theN-soliton solutions. The exis-
tence of the quantum gapD2,J1sJ1− uDud expected from the
J1u−

2 term in Eq. (54), only adds to the complexity of this
problem, which should be discussed elsewhere. One can only
observe here that the necessity of summation over the clas-
sical vacua provides the absence of the staggered magnetiza-
tion along thez axis, associated with the nonzero classical
]xf−.

Knowing the spectrum and the Luttinger exponents, one
can use the principal advantage of the bosonization in evalu-
ation of the correlation functions. These correlations are dis-
cussed in the next section upon the assumption of the weaker
couplingJ1& uDu.

D. Correlation functions

The spectrum of Eq.(47) consists of one gapless and one
gapful mode. The gapD corresponds to a finite correlation
length

j = u/D , ÎJ/J1 s55d

separating domains of different behavior of the correlation
functions. The transverse spin correlations in one chain
j =1,2 have the form20

ksj ,0
+ sj ,r

− l , r−1/4K+efK0sr/jd−K0sa/jdg/s4K−d, s56d

with K0sxd ,K1sxd modified Bessel functions anda the lattice
spacing. At shorter distancesr ,j this expression becomes
ksxsxl, r−1/4K+−1/4K−, while at large r *j one has ksxsxl
, r−1/4K+j−1/4K−. The interchain correlations are

ks1,0
+ s2,r

− l , − r−1/4K+e−fK0sr/jd+K0sa/jdg/s4K−d, s57d

with the behavior −r−1/4K++1/4K−j−1/2K− and −r−1/4K+j−1/4K− at
shorter and larger distances, respectively. Hence the inter-
chain correlations decay faster beyond the scaler ,j.

The longitudinal correlations are obtained in the form

ks1,0
z s1,r

z l ,
K+

r2 +
K−

jr
K1sr/jd, s58d

ks1,0
z s2,r

z l ,
K+

r2 −
K−

jr
K1sr/jd, s59d

which shows particularly that atr ,j the interchain correla-
tions are of the AF character.

The parametersK+
−1,u+,D ,j−1 increase withJ'. Hence

the transverse correlations decay faster at largerJ'. We ar-
gued above that in the strong-coupling limitJ'→` one
deals approximately with the AF Heisenberg chain situation,
wherein ksxsxl, r−1. Comparing it with Eqs.(56) and (57)
one may conclude thatK+

−1 should reach the value 1/4 in the
strong coupling regimeJ',J. Actually it is not so simple,
since the derivation of Eq.(47) assumedK+.1, and other
terms of the rung interaction become important at smaller
K+. As a result, one expects that the increase ofJ' eventually
changes the structure of the effective low-energy action.

Summarizing, we show that the “triangular” model of this
section is equivalent to one of Sec. II for the strong rung
couplings. Further its dynamics is similar to one of the mixed
spin ladder also for the weak rung coupling, as shown by the
LSWT approach complemented by the bosonization. Two
latter techniques reveal certain shortcomings in the decrip-
tion of the situation, as LSWT becomes formally inappli-
cable without LRO and the bosonization becomes unstable at
the level of the Gaussian action.

Working in the close vicinity of the FM point in
the parameter spacesD ,J'd, we observe that the transition
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to the FM ordered phase is of the first order at the line
DÞ0,J'=0. At nonzero AF values ofJ', this transition
becomes the second-order one, at the lineJ'

* ,D.0. Ap-
proaching this transtion line from above,J'.J'

* , one should
observe the divergence of the correlation length and vanish-
ing critical exponents of the correlation functions.

Combining the results of Secs. II and III, we
conjecture that the crossover from the weak to strong
rung coupling regime for the isotropic situationD=0
is characterized by the absence of the long-range order
and gapless character of dispersion. Increasing the AF
value of J' on has«k,ÎJJ'k until J'&J and «k,Jk at
J'*J. This form of dispersion takes place atk&j−1

,ÎJ' /J. The correlation functions are of the form
ks0

asr
al, r−g beyond the correlation lengthj with g,ÎJ' /J

at J'&J andg=1 otherwise.
Note that this nonuniversal behavior of the critical expo-

nent g characterizes theisotropic gapless situation and
should be contrasted to the well-studied case of a gapless
XXZ chain.2 In the latter case one has different exponentsga

for different spin projectionsa, with certain relations be-
tween them, e.g.,gxgz=1/4.

IV. ORDER PARAMETERS

A. String order parameter vs scalar product

In Ref. 21(see also Refs. 22 and 23) a model of a sym-
metric AF Heisenberg ladder of spinss=1/2 wasconsidered.
Particularly, the authors discussed the string order parameter
(OP), which was associated with the topological OP intro-
duced earlier24 for the spin-1 chain. In fact, the discussion by
Sheltonet al.21 for nonzero AF rung exchangeJ' can be
reduced to the observation that the scalar products1s2 on the
rung assumes the nonzero value.

Let us characterize each state of two spins on a rungj in
terms of singletuS jl and tripletuT jl. The ground stateuGl of
the whole ladder has a component comprised of all rung
singlets uStotl= ^ juS jl. It is clear that for the case of ex-
tremely large AF rung exchange the weightW of uStotl in uGl
is unity. One expects that for moderate AFJ',Ji this
weightW is finite. Consider now the spin product onj th rung
−4sj ,1

a sj ,2
a =expipssj ,1

a +sj ,2
a d with a=x,y,z, which may be

represented as

− 4sj ,1
a sj ,2

a = Ps,j + s1 −Ps,jdeipSj
a

s60d

with Ps,j projecting onto thej th singlet andSj
a spin-1 opera-

tor for the j th triplet. Note that the presence ofPs,j makes

Eq. (60) different from the operatoreipSj
a

used by den Nijs
and Rommelse in their discussion24 of the spin-1 chain.

Indeed, the “string” operatorp j=l
n s−4sj ,1

a sj ,2
a d has its

ground-state expectation value contributed by the weight of
the uStotl state. This partial contribution is equal toW and
does not depend on the distancesn− ld. Particularly, the ex-
pectation value of the scalar product −4sj ,1sj ,2=4Ps,j −1 has
a contribution 3W from uStotl state. In bosonization notation
we have

ksj ,1sj ,2l , kcosÎ2u−l − kcosÎ8f+l + kcosÎ8f−l.

For the AF signs ofJi ,J', considered in Ref. 21, first two
cosines in the latter expression have nonzero values. Some
inspection shows that these values correspond to ones re-
ported in Ref. 21 for the infinitely long string OP.

Hence we conclude that the string OP discussed in Refs.
21 and 22 for AF rung interaction can be identified with the
scalar product of spins on a rung and measures the weightW
of the total singlet in the ground state. It should be stressed,
that our above arguments are not applicable for the FM rung
interaction, when the lowest rung state is triplet. In this latter
case the string order parameter discussed in Refs. 21–23 is
the appropriate description and cannot be reduced to a local
scalar product. Clearly, the nonzero average value of the sca-
lar product is disconnected from the appearance of the on-
site magnetization, as discussed below.

B. Asymmetric ladders

Applying the same type of consideration to our above
systems, we can say, e.g., that for the mixed spin ladder the
order parameter is the average value of the scalar product on
the rungpj =Sjsj. It assumes two valuespj =−1 and 1/2 for
the rung doublet and quadruplet, respectively. ForJ'=0 all
these six states have the same weight, resulting inkpjl=0.
With the increase of AF rung exchange,kpjl saturates into a
−1 value.

Similarly, for the triangular ladder, one considers the com-
bined scalar productpD=ss1+s2ds3, see Eq.(30). This quan-
tity takes three possible valuespD=−1,0,1/2 in thestates
uD1l , uD0l , uQl, respectively. IncreasingJ', the uD1l state
becomes favorable, withkpDl→−1.

Notice, that the discussed order parameter is bilinear in
spins, independent of the in-leg spin exchange anisotropy
and does not imply the ordering of individual spins. The spin
ordering in a proper sense depends on the sign of the uniaxial
anisotropy. Particularly, in the case of the easy-plane aniso-
tropy, both the weak and strong rung coupling regimes cor-
respond to theXXZ model in the absence of LRO. Therefore
one does not expect the spin ordering here.

The case of the easy-axis anisotropy can be analyzed for
the mixed spin model. We showed in Sec. II that the LSWT,
applicable for isolated chains, fails for the intermediateJ'.
At the same time, the strong coupling Hamiltonian(5) is
the AF easy-axisXXZ model. This means the appearance of
nonzero staggered magnetization for the effective spinss j

z in
Eq. (5). Scaling estimates(see, e.g., Ref. 18) show that
ks j

zl,s−1d jsD /Jda with a=sp /4dÎJ/D. This exponentially
small value of the order parameter for the effective Hamil-
tonian (5) translates into the corresponding values for initial
spins according to Eq.(4). Note that the average spins in one
leg are aligned in one direction, but due to the difference in
their contribution to the rung doublet state, Eqs.(4) and(31),
both the uniform and the staggered magnetization is present
in the system.10

V. CONCLUSIONS

We demonstrate above that the mixed spin ladders and
triangular ladders with the ferromagnetic coupling along the
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legs are generic models for description of a transition from
the classical(ferrimagnetic) to quantum(antiferromagnetic)
regime. The individual legs with the isotropic Heisenberg
exchange show the classical ground state and their dynamics
is well described by the quasiclassical spin-wave theory.
Turning on the AF rung coupling introduces strong fluctua-
tions, which destroy the long-range order and eventually
make the system equivalent to the quantum AF spins=1/2
Heisenberg model.

We showed that in a large domain of parameters for these
ladders the spin wave theory, although missing certain fea-
tures caused by quantum fluctuations in one dimension, is
still quite instructive for the qualitative determination of the
spectra, which allows for further comparison with more so-
phisticated methods. The refined analysis of the spectrum
and correlations by the bosonization technique complements
the investigation of the “quantum” regions of the phase dia-
gram. As a result, the unified description of the model be-
comes possible, partly including the complicated crossover

region from the weak to strong rung coupling limit.
We argue that for the isotropic spin exchange this cross-

over is characterized by the gapless spectrum with(spinon)
velocity ,ÎJJ'. The vanishing velocity atJ'=0 corre-
sponds to the first-order phase transition to the ferromagnetic
state. The asymptotic decay of correlation functions is de-
scribed by a unique critical exponentg,ÎJ' /J for all three
projections of spin. This type of behavior makes the mixed
spin ladder in its crossover regime quite distinct from the AF
s=1/2 Heisenberg model, which would be very interesting
to verify by independent, e.g., numerical, methods.
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