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Resonance Kondo tunneling through a double quantum dot at finite bias
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It is shown that the resonance Kondo tunneling through a double quantum dot~DQD! with evenoccupation
andsingletground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation.
Using the renormalization group technique we derive scaling equations and calculate the differential conduc-
tance as a function of an auxiliary dc bias for parallel DQD described by SO(4) symmetry. We analyze the
decoherence effects associated with the triplet/singlet relaxation in DQD and discuss the shape of differential
conductance line as a function of dc bias and temperature.
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I. INTRODUCTION

Many fascinating collective effects, which exist
strongly correlated electron systems~metallic compounds
containing transition and rare-earth elements! may be ob-
served also in artificial nanosize devices~quantum wells,
quantum dots, etc.!. Moreover, fabricated nanoobjects pr
vide unique possibility to create such conditions for obser
tion of many-particle phenomena, which by no means m
be reached in ‘‘natural’’ conditions. Kondo effect~KE! is one
of such phenomena. It was found theoretically1,2 and ob-
served experimentally3–5 that the charge-spin separation
low-energy excitation spectrum of quantum dots un
strong Coulomb blockade manifests itself as a resona
Kondo-type tunneling through a dot with odd electron occ
pationN ~one unpaired spinS51/2). This resonance tunne
ing through a quantum dot connecting two metallic res
voirs ~leads! is an analog of resonance spin scattering
metals with magnetic impurities. A Kondo-type tunnelin
arises under conditions which do not exist in conventio
metallic compounds. The KE emerges as a dynamical p
nomenon in strong time dependent electric field,6–10 it may
arise at finite frequency under light illumination.11–13 Even
the net zero spin of isolated quantum dot~evenN) is not an
obstacle for the resonance Kondo tunneling. In this cas
may be observed in double quantum dots~DQD! arranged in
parallel geometry,14 in T-shaped DQD,14–16 in two-level
single dots17,18 or induced by strong magnetic field19–22

whereas in conventional metals magnetic field only s
presses the Kondo scattering. The latter effect was also
covered experimentally.23–25

One of the most challenging options in Kondo physics
quantum dots is the possibility of controlling the Kondo e
fect by creating the nonequilibrium reservoir of fermion
excitations by means of strong biaseV@TK applied between
the leads26 (TK is the equilibrium Kondo temperature whic
determines the energy scale of low-energy spin excitation
a quantum dot!. However, in this case the decoherence
fects may prevent the formation of a full scale Kondo re
nance~see, e.g., discussion in Refs. 27–29!. It was argued in
recent disputes that the processes, associated with the
current through a dot with oddN may destroy the coherenc
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on an energy scaleG@TK and thus prevent formation of
ground state Kondo singlet, so that only the weak coupl
Kondo regime is possible in strongly nonequilibrium cond
tions.

In the present paper we discuss Kondo tunneling thro
DQD with evenN, whose ground state is a spin singletuS&.
It will be shown that the Kondo tunneling throughexcited
triplet stateuT& arises at finiteeV. In this case the ground
state is stable against any kind of spin-flip processes indu
by external current, the decoherence effects develop onl
the intermediate~virtual! triplet state, and the estimates o
decoherence rate should be revisited.

As was noticed in Ref. 15, quantum dots with evenN
possess the dynamical symmetrySO(4) of spin rotator in
the Kondo tunneling regime, provided the low-energy part
excitation spectrum is formed by a singlet-triplet~ST! pair,
and all other excitations are separated from the ST mani
by a gap noticeably exceeding the tunneling rateg. A DQD
with evenN in a side-bound~T-shape! configuration where
two wells are coupled by the tunnelingv and only one of
them~say,l ) is coupled to metallic leads (L,R) is a simplest
system satisfying this condition.15 Such system was realize
experimentally in Ref. 30. Novel features introduced by t
dynamical symmetry in Kondo tunneling are connected w
the fact that unlike the case of conventionalSU(2) symme-
try of spin vectorS, theSO(4) group possesses two gener
tors S andP. The latter vector describes transitions betwe
singlet and triplet states of spin manifold~this vector is an
analog of Runge-Lenz vector describing the hidden symm
try of hydrogen atom!. As was shown in Ref. 14, this vecto
alone is responsible for Kondo tunneling through quant
dot with evenN induced by external magnetic field.

Another manifestation of dynamical symmetry peculiar
DQDs with evenN is revealed in this paper. It is shown th
in the case when the ground state is singletuS& and the S/T
gapd@TK , a Kondo resonance channel arises under a str
bias eV comparable withd. The channel opens atueV2du
,TK , and the tunneling is determined by thenondiagonal
componentJST5^TuJuS& of effective exchange induced b
the electron tunneling through DQD@see Fig. 1 ~right
panel!#.
©2003 The American Physical Society23-1
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II. COTUNNELING HAMILTONIAN OF T-SHAPED DQD

The basic properties of symmetric DQD occupied by ev
number of electronsN52n under strong Coulomb blockad
in each well are manifested already in the simplest casn
51, which is considered below. Such DQD is an artific
analog of a hydrogen molecule H2. If the interwell Coulomb
blockadeQ is strong enough, one hasN5nl1nr , nl5nr
51, the lowest states of DQD are singlet and triplet and
next levels are separated from ST pair by a charge tran
gap;Q. We assume that both wells are neutral atnl ,r51.
Then the effective interwell exchangeI responsible for the
singlet-triplet splitting arises because of tunnelingv between
two wells, I 5v2/Q5d. It is convenient to write the effec
tive spin Hamiltonian of isolated DQD in the form

Hd5ESUSL K SU1(
h

ETUThL K ThU[ (
L5S,Th

ELXLL,

~1!

where XLL85uL&^L8u is a Hubbard configuration chang
operator~see, e.g., Ref. 31!, ET5ES1d, h56,0 are three
projections ofS51 vector. Two other terms completing th
Anderson Hamiltonian, which describes the system show
Fig. 1 ~left panel!, are

Hb1Ht5(
kas

ekackas
† ckas1(

Ll
(
kas

~Ws
Llckas

† XlL1H.c.!.

~2!

The first term describes metallic electrons in the leads
the second one stands for tunneling between the leads
the DQD. Herea5L,R marks electrons in the left and righ
lead, respectively, the biaseV is applied to the left lead, so
that the chemical potentials aremFL5mFR1eV, Ws

Ll is the
tunneling amplitude for the welll ~left!, ul& are one-electron
states of DQD, which arises after escape of an electron w
spin projections from DQD in a stateuL&.

We solve the problem in a Schrieffer-Wolff~SW! limit,31

when the activation energiesuEL2El2mFau and Coulomb
blockade energyQ are essentially larger then the tunnelin
rate g, and charge fluctuations are completely suppres
both in the ground and excited state of DQD. In this lim
one may start with the SW transformation, which proje
out charge excitations. We confine ourselves with the b
eV&d!D, where D is the width of the electrons in th
leads, so the leads are considered in the SW transforma
as two independent quasi equilibrium reservoirs~see Refs.

FIG. 1. Left panel: Double quantum dot in a side-bound co
figuration. Right panel: cotunneling processes in biased DQD
sponsible for the resonance Kondo tunneling.
15532
n

l

e
er

in

d
nd

th

d

s
s

on

8,9!. As is shown in Ref. 15, the SW transformation bei
applied to a spin rotator results in the following effectiv
spin Hamiltonian

H int5(
aa8

@~Jaa8
TT S1Jaa8

ST P!•saa81Jaa8
SS XSSnaa8#. ~3!

Here saa85(kk8ckas
† t̂ck8a8s8 , naa85(kk8ckas

† 1̂ck8a8s , t̂,

1̂ are the Pauli matrices and unity matrix, respectively. T
effective exchange constants are

Jaa8
LL8'

Ws
LlWs*

lL8

2 S 1

eFa2ES/2
1

1

eFa82ES/2
D .

In this approximation the small differences between sing

and triplet states are neglected. In addition,Jaa8
LL8;I in real

DQD.
Two vectorsS andP with spherical components

S15A2~X101X021!, S25A2~X011X210!,

Sz5X112X2121, Pz52~X0S1XS0!,

P15A2~X1S2XS21!, P25A2~XS12X21S! ~4!

obey the commutation relations ofo4 algebra

@Sj ,Sk#5 iejklSl , @Pj ,Pk#5 iejklSl , @Pj ,Sk#5 iejkl Pl

( j ,k,l are Cartesian coordinates andejkl is a Levi-Civita ten-
sor!. These vectors are orthogonal,S"P50, and the Casimir
operator isS21P253. Thus, the singlet state is involved i
spin scattering via the components of the vectorP.

We useSU(2)-like semifermionic representation forS
operators32–34

S15A2~ f 0
†f 211 f 1

†f 0!, S25A2~ f 21
† f 01 f 0

†f 1!,

Sz5 f 1
†f 12 f 21

† f 21 , ~5!

where f 61
† are creation operators for fermions with sp

‘‘up’’ and ‘‘down,’’ respectively, whereasf 0 stands for spin-
less fermion.32,33 This representation can be generalized
SO(4) group by introducing another spinless fermionf s to
take into consideration the singlet state. As a result, thP
operators are given by the following equations:

P15A2~ f 1
†f s2 f s

†f 21!, P25A2~ f s
†f 12 f 21

† f s!,

Pz52~ f 0
†f s1 f s

†f 0!. ~6!

The Casimir operatorS21P253 transforms to the local con
straint

(
L56,0,s

f L
† f L51.

The final form of the spin cotunneling Hamiltonian is

-
-
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H int5 (
kk8,aa85L,R

Jaa8
S f s

†f sckas
† ck8a8s

1 (
kk8,aa8LL8

~Jaa8
T ŜLL8

d
1Jaa8

ST P̂LL8
d

!

3tss8
d ckas

† ck8a8s8 f L
† f L8 , ~7!

where Ŝd and P̂d(d5x,y,z) are 434 matrices defined by
relations~4!–~6! andJS5JSS, JT5JTT, andJST are singlet,
triplet, and singlet-triplet coupling SW constants, resp
tively.

The cotunneling in the ground singlet state is described
the first term of the Hamiltonian~7!, and no spin flip pro-
cesses accompanying the electron transfer between the
emerge in this state. However, the last term in Eq.~7! links
the singlet ground state with the excited triplet and open
Kondo channel. In equilibrium this channel is ineffectiv
because the incident electron should have the energyd to be
able to initiate spin-flip processes. We will show in the ne
section that the situation changes radically, when str
enough external bias is applied.

III. KONDO SINGULARITY IN TUNNELING THROUGH
DQD AT FINITE BIAS

We deal with the case, which was not met in the previo
studies of non-equilibrium Kondo tunneling. The grou
state of the system is singlet, and the Kondo tunneling
equilibrium is quenched atT;d. Thus, the elastic Kondo
tunneling arises only providedTK@d in accordance with the
theory of two-impurity Kondo effect.15,35,36However, the en-
ergy necessary for spin flip may be donated by external e
tric field eVapplied to the left lead, and in the opposite lim
TK!d the elastic channel emerges ateV'd. The processes
responsible for resonance Kondo cotunneling at finite b
are shown in Fig. 1~left panel!.

In conventional spinS51/2 quantum dots the Kondo re
gime out of equilibrium is affected by spin relaxation a
decoherence processes, which emerge ateV@TK ~see, e.g.,
Refs. 9,27–29!. These processes appear in the same orde
Kondo cotunneling itself, and one should use the n
equilibrium perturbation theory~e.g., Keldysh technique! to
take them into account in a proper way. In our case th
effects are expected to be weaker, because the nonzero
state is involved in Kondo tunneling only as an intermedi
virtual state arising due toS/T transitions induced by the
second term in the Hamiltonian~3!, which contains vectorP.
The nonequilibrium repopulation effects in DQD are weak
well ~see next section, where the nonequilibrium effects
discussed in more details!.

Having this in mind, we describe Kondo tunnelin
through DQD at finiteeV&d within the quasiequilibrium
perturbation theory in a weak coupling regime~see the qua-
siequilibrium approach to description of decoherence rat
large eV in Ref. 27!. To develop the perturbative approac
for T.TK we introduce the temperature Green’s functio
~GF! for electrons in a dot,GL(t)52^Tt f L(t) f L

† (0)&, and
GF for the electrons in the left~L! and right ~R! lead,
15532
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GL,R(k,t)52^TtcL,Rs(k,t)cL,Rs
† (k,0)&. Performing a Fou-

rier transformation in imaginary time for bare GF’s, we com
to following expressions:

Gka
0 ~en!5~ i en2eka1mL,R!21,

G h
0~vm!5~ ivm2ET!21, h521,0,1,

G s
0~en!5~ i en2ES!21, ~8!

with en52pT(n11/2) and vm52pT(m11/3).32,33 The
first leading and next to leading parquet diagrams are sh
on Fig. 2.

Corrections to the singlet vertexG(v,0;v8,0) are calcu-
lated using an analytical continuation of GF’s to the real a
v and taking into account the shift of the chemical poten
in the left lead. Since the electron from the left lead tunn
into the empty state in the right lead separated by the ene
eV, we have to putv5eV, v850 in the final expression for
G(v,0;v8,0). Thus, unlike conventional Kondo effect w
deal with the vertex at finite frequencyv similarly to the
problem considered in Ref. 27. We assume that the le
remain in equilibrium under applied bias and neglect
relaxation processes in the leads~‘‘hot’’ leads!. In a weak
coupling regimeT.TK the leading non-Born contribution
to the tunnel current are determined by the diagrams of F
2~b!–2~e!.

The effective vertex shown in Fig. 2~b! is given by the
following equation:

GLR
(2b)~v!5JLL

STJLR
TS(

k

12 f ~ekL2eV!

v2ekL1mL2d
. ~9!

Changing the variableekL for ekL2eV one finds that

GLR
(2b)~v5eV!;JLL

STJLR
TSn ln~D/max$~eV2d!,T%!.

Here D;«F is a cutoff energy determining effective ban
width, n is a density of states on a Fermi level andf («) is
the Fermi function. Therefore, under conditionueV2du
!max@eV,d# this correction does not depend oneV and be-
comes quasielastic.

FIG. 2. Leading~b!,~d! and next to leading~c!,~e! parquet dia-
grams determining renormalization ofJS ~a!. Solid lines denote
electrons in the leads. Dashed lines stand for electrons in the d
3-3
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Unlike the diagram Fig. 2~b!, its ‘‘parquet counterpart’’
term Fig. 2~c! containseV1d in the argument of the Kondo
logarithm:

GLR
(2c)~v!5JLL

STJLR
TS(

k

f ~ekL2eV!

v2ekL1mL1d
. ~10!

At eV;d@T this contribution is estimated as

GLR
(2c)~eV!;JLL

STJLR
TSn ln~D/~eV1d!!!GLR

(2b)~eV!.

Similar estimates for Figs. 2~d! and 2~e! give

GLR
(2d)~v!;JLL

STJLL
T JLR

TSn2ln2~D/max$v,~eV2d!,T%!,

GLR
(2e)~v!;JLL

STJLL
T JLR

TSn2ln~D/max$v,~eV2d!,T%!

3 ln~D/max$v,eV,T%. ~11!

ThenGLR
(2e)(v)!GLR

(2d)(v) at eV→d.
Thus, the Kondo singularity is restored in nonequilibriu

conditions where the electrons in the left lead acquire ad
tional energy in external electric field, which compensa
the energy lossd in a singlet-triplet excitation. The leadin
sequence of most divergent diagrams degenerates in this
from a parquet to a ladder series.

Following the poor man’s scaling approach, we derive
system of coupled renormalization group~RG! equations for
Eq. ~7!. The equations for LL cotunneling are

dJLL
T

d ln D
52n~JLL

T !2,
dJLL

ST

d ln D
52nJLL

STJLL
T . ~12!

The scaling equations forJLR
L are as follows:

dJLR
T

d ln D
52nJLL

T JLR
T ,

dJLR
ST

d ln D
52nJLL

STJLR
T ,

dJLR
S

d ln D
5

1

2
nS JLL,1

ST JLR,2
TS 1

1

2
JLL,z

ST JLR,z
TS D . ~13!

One-loop diagrams corresponding to the poor man’s sca
procedure are shown in Fig. 3. To derive these equations
collected only terms;(JT)nlnn11(D/T) neglecting contribu-

FIG. 3. Irreducible diagrams contributing to RG equation
Hatched boxes and circles stand for triplet-triplet and singlet-trip
vertices respectively. Notations for lines are the same as in Fig
15532
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tions containing ln@D/(eV)#. The analysis of RG equation
beyond the one loop approximation will be published el
where.

The solution of the system~13! reads as follows:

Ja,a8
T

5
J0

T

12nJ0
Tln~D/T!

, Ja,a8
ST

5
J0

ST

12nJ0
Tln~D/T!

,

JLR
S 5J0

S2
3

4
n~J0

ST!2
ln~D/T!

12nJ0
Tln~D/T!

. ~14!

Herea5L, a85L,R. One should note that the Kondo tem
perature is determined by triplet-triplet processes only
spite of the fact that the ground state is singlet. One fin
from Eq. ~14! that TK5D exp@21/(nJ0

T)#. This temperature
is noticeably smaller than the ‘‘equilibrium’’ Kondo tempera
tureTK0, which emerges in tunneling through triplet chann
in the ground state, namely,TK'TK0

2 /D. The reason for this
difference is the reduction of usual parquet equations forTK
to a simple ladder series. In this respect our case differs
from conventional Kondo effect at strong bias,27 where the
nonequilibrium Kondo temperatureT* 'TK0

2 /eV arises. In
our model the finite bias does not enterTK because of the
compensationeV'd in spite of the fact that we take th
argumentv5eV in the vertex~9!.

The differential conductanceG(eV,T)/G0;uJLR
STu2 ~see

Ref. 37! is the universal function of two parametersT/TK
andeV/TK , G05e2/p\:

G/G0; ln22~max@~eV2d!,T#/TK!. ~15!

Its behavior as a function of bias and temperature is show
Fig. 4. It is seen from this picture that the resonance tunn
ing ‘‘flashes’’ ateV;d and dies away out of this resonanc
In this picture the decoherence effects are not taken
account, and it stability against various non-equilibrium c
rections should be checked.

IV. DECOHERENCE EFFECTS

We analyze now the decoherence rate\/td associated
with T/S transition relaxation induced by cotunneling. T
calculations are performed in the same order of the pertu
tion theory as it has been done for the vertex renormaliza

.
t

2.

FIG. 4. The Kondo conductance as a function of dc-biaseV/TK

andT/TK . The singlet-triplet splittingd/TK510.
3-4
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~see Figs. 2 and 3!. The details of the calculation scheme a
presented in the Appendix.

To estimate the decoherence effects, one should calcu
the decay of the triplet state or in other terms to find
imaginary part of the retarded self-energy of triplet sem
fermion propagators at actual frequency@see discussion be
fore Eq. ~9!#, \/td522 ImST

R(v). The second and third
order diagrams determining\/td are shown in Figs. 5~a!–
5~d!. Two leading terms given by the diagrams of Figs. 5~a!,
5~b! describe the damping of triplet excitation due to its
elastic relaxation to the ground singlet state. These terms
calculated in Appendix@see Eqs.~A8!, ~A10!#. One finds
from these equations that the relaxation rate associated
ST transition is

1/td
ST;~JST/D !2max@eV,v,TK#. ~16!

It should be noted that for corrections associated with
~RR! diagrams@Fig. 5~a!#, describing cotunneling processe
on a left~right! lead, the use of quasiequilibrium technique
fully justified when the leads themselves are in thermal eq
librium. We are interested in the zero frequency damping
resonanceeV'd. Neglecting the small difference betwee
JT andJST ~see Ref. 15!, we also takeJT'JST5J. Thus the
T→S spin relaxation effect~16! does not contain logarithmic
enhancement factor in the lowest order. It is estimated a

1/td
ST;~eV!~J/D !2'J3/D2. ~17!

The repopulation of triplet state as a function of exter
bias is controlled by the occupation number for triplet st
modified by the biaseV. The latter, in turn, depends on th
modified exchange splittingd* given by solution of the
equation

d* 2d5ReSR~d* ,eV,T!. ~18!

The ReSR @Figs. 5~a!, 5~b!# is given by

ReSTST
R(2)~v,eV,T!52a2S J

D D 2

v lnS D

max@v,eV,T# D ,

~19!

where a2;1 is a numerical coefficient. As it is seen, th
perturbative equation for ReSR is beyond the scope o
leading-log approximation. As a result,d* (eV)2d!d and

FIG. 5. Leading diagrams~a!–~d! for \/td ~see text!. Dashed
line in the self-energy part stands for the singlet state of a t
electron configuration in the dot.
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repopulation of the triplet state is exponentially small. T
corresponding factor in the occupation number is

Pt~eV!5exp@2d* ~eV!/T#. ~20!

The effects of repopulation become important only
eV@d when ud* 2du;d. In that case the quasiequilibrium
approach is not applicable and one should start with
Keldysh formalism.27,28This regime is definitely not realized
in conditions considered above.

Next second order contribution is the damping of trip
state itself given by Eqs.~A12!, ~A14!. It is seen from these
equations that this damping is of threshold character

1/td
TT;~J/D !2~v2d!u~v2d!, ~21!

where u(v) is a Heaviside step function. These proces
emerge only atv.d, so unlike the conventional case27 they
are not dangerous.

Corresponding contribution to ReSR casts the form

ReSTTT
R(2)52b2S J

D D 2

~d2v!lnU D

max@~d2v!,T#
U, ~22!

whereb2;1.
Next, one has to check whether the higher order logar

mic corrections modify the estimate~17!. These corrections
start with the third order terms shown in Figs. 5~c!, 5~d!.
Straightforward calculations lead toeV(J/D)3ln(D/eV) cor-
rection@see the first term Eq.~A23!#. This leading term like
the second order term originates fromT→S spin relaxation
processes. All other contributions are either of thresh
character, or vanish atv→0. As a result, the estimate

\/td;eV~J0
ST/D !2$11O@nJ ln„D/~eV!…#%

holds. The topological structure~sequence of intermediat
singlet and triplet states and cotunneling processes in the
and right lead! in perturbative corrections for the triplet sel
energy part is different from those for the singlet-singlet v
tex ~see Appendix!. Namely, the leading~ladder! diagrams
for the vertex contain maximal possible number of interm
diate triplet states, whereas the higher order nonthresh
log-diagrams for the self-energy part must contain at le
one intermediate singlet state. As it is seen from the App
dix @Eqs. ~A18!–~A23!#, the higher order contributions to
Im ST(v) are not universal and the coefficients in front
log have sophisticated frequency dependence. As a result
perturbative series for triplet self-energy part cannot be c
lected in parquet structures and remain beyond the lead
log approximation discussed in the Sec. III. There is
strong enhancement of the second order term in SO(4)
rotator model in contrast to SU(2) case discussed in Ref.
As was pointed out above, the main reason for difference
estimates of coherence rate is that in case of QD with oddN,
the Kondo singlet develops in the ground state of the d
and decoherence frustrate this ground state. In DQD w
evenN the triplet spin state arises only as a virtual state
cotunneling processes, and our calculations demonstrate
plicitly that decoherence effects in this case are essent
weaker.

-
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The third order correction to ReS is given by

ReSR(3)~v!;S J

D D 3

v ln2S D

v D ~23!

~see Appendix!. This correction also remains beyond th
leading-log approximation.

Thus we conclude that the decoherence effects are
destructive for Kondo tunneling through T-shaped DQD, i
the TK@\/td is valid provided

d~d/D !2!TK!d. ~24!

This interval is wide enough becaused/D!1 in the Ander-
son model.

The same calculation procedure may be repeated
Keldysh technique. It is seen immediately that in the leadi
log approximation the off-diagonal terms in Keldysh mat
are not changed in comparison with equilibrium distributi
functions because of the same threshold character of rep
lation processes, so in the leading approximation the
diagram Fig. 5~b! ~determiningL-R current through the dot!
calculated in Keldysh technique remains the same as
~A8!–~A10!.

In fact, repopulation effects result in asymmetry of t
Kondo-peak similar to that in Ref. 28 due to the thresh
character of ImSTTT ~see Appendix!. This asymmetry be-
comes noticeable ateV@d, where our quasiequilibrium ap
proach fails, but this region is beyond our interest, beca
the bias-induced Kondo tunneling is negligible at large
ases~see Fig. 4!.

V. CONCLUDING REMARKS

We have shown in this paper that the tunneling throu
DQD with evenN with singlet ground state and triplet exc
tation divided by the energy gapd@TK from the singlet state
exhibits a peak in differential conductance ateV'd ~Fig. 4!.
This result is in striking contrast with the zero bias anom
~ZBA! at eV'0 which arises in the opposite limitd,TK . In
the latter case the Kondo screening is quenched at ene
less thand, so the ZBA has a form of a dip in the Kond
peak~see Ref. 18 for a detailed explanation of this effect!.

In this case strong external bias initiates the Kondo eff
in DQD, whereas in a conventional situation~QD with odd
N spin 1/2 in the ground state! strong enough bias is destru
tive for Kondo tunneling. We have shown that the princip
features of Kondo effect in this specific situation may
captured within a quasiequilibrium approach. The scal
equations ~13!, ~14! can also be derived in Schwinge
Keldysh formalism~see Refs. 28,33! by applying the ‘‘poor
man’s scaling’’ approach directly to the dot conductance.8

Of course, our RG approach is valid only in the we
coupling regime. Although in our case the limitations im
posed by decoherence effects are more liberal than th
existing in conventional QD, they apparently prevent the f
formation of the Kondo resonance. To clarify this point o
has to use a genuine non-equilibrium approach, and we h
to do it in forthcoming publications.

One should mention yet another possible experimenta
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alization of resonance Kondo tunneling driven by exter
electric field. Applying the alternate fieldV5Vaccos(vt) to
the parallel DQD, one takes into consideration two effec
namely, ~i! enhancement of Kondo conductance by tuni
the amplitude of ac voltage to satisfy the conditionueVac
2du!TK and ~ii ! spin decoherence effects due to finite d
coherence rate.8 One can expect that if the decoherence r
\/t@TK ,

Gpeak/G0; ln22~\/tTK!, ~25!

whereas in the opposite limit\/t!TK ,

Gpeak5G~Vaccos@vt# ! ~26!

is averaged over a period of variation of ac bias. In this c
the estimate~15! is also valid.

In conclusion, we have provided an example of Kon
effect, which existsonly in non-equilibrium conditions. It is
driven by external electric field in tunneling through a qua
tum dot with even number of electrons, when the low-lyi
states are those of spin rotator. This is not too exotic situa
because as a rule, a singlet ground state implies a tri
excitation. If the ST pair is separated by a gap from oth
excitons, then tuning the dc bias in such a way that app
voltage compensates the energy of triplet excitation, o
reaches the regime of Kondo peak in conductance. This th
retically predicted effect can be observed in dc- and
biased double quantum dots in parallel geometry.
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APPENDIX

We calculate perturbative corrections forS(v) by per-
forming analytical continuation ofS( ivn) into upper half
plane ofv. The parameter of perturbation theory isnJ!1
where n denotes the density of states for conduction el
trons at the Fermi surface.

The second order self-energies have the following str
ture ~the indicesT and ST in exchange vertices are tempo
rarily omitted!:

S (2)~ ivn!;J2T2 (
v1v2

(
k1,k2

G0~2 iv1 ,2k1!

3G0~ iv2 ,k2!G 0~ ivn1 iv11 iv2!. ~A1!

The Green functions~GF! are defined in Eq.~8!. Performing
summation over Matsubara frequenciesv1 ,v2 and replacing
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the summation overk1,k2 by integration overj1 ,j2 in accordance with standard procedure, we come to following expres

S (2)~ ivn!;
1

2
~Jn!2E

2D

D

dj1E
2D

D

dj2

F tanhS l

2TD2tanhS j2

2TD GF tanhS j1

2TD2cothSj22l

2T D G
ivn1j22j12lS,T

. ~A2!
s

c

r
re

pa
m

ip

w

ing
.
r-

g

by
.

Here we assumed that conduction electron’s band ha
width W52D, eF;D andn51/D in order to simplify our
calculations. This assumption is sufficient for log-accura
of our theory. The Lagrange multiplierslS,T are different for
singlet ~triplet! GF, namely,lS5ES andlT5ET1 ipT/3.

To account for decoherence effects in the same orde
perturbation theory as we have done for the vertex cor
tions, we focus on the self-energy~SE! part of triplet GF.
This SE has to be plugged in back to a semifermionic pro
gator to provide a self-consistent treatment of the proble
We denote the self-energy parts associated with singlet/tr
and triplet/triplet transitions asSTST andSTTT , respectively.

To prevent double occupancy of singlet/triplet states
take the limit Re@lS,T#@T in the numerator of Eq.~A2!. As
a result, Eq.~A2! casts the form

S (2)~ ivn!;~Jn!2E
2D

D

dj1E
2D

D

dj2

n~j2!@12n~j1!#

ivn1j22j12lS,T
.

~A3!

Since all spurious states are ‘‘frozen out’’ we can putl̃S

50 and l̃T5d5ET2ES in denominator~in the latter case
we perform a shiftl̃T5lT2 ipT/3) and proceed with the
analytical continuationivn→v1 i01. Without loss of gen-
erality we assumev.0. As a result, we get for retarded~R!
self-energies

Im STST
(2)R~v!;~JSTn!2E

2D

D

dj1E
2D

D

dj2n~j2!

3@12n~j1!#d~v1j22j1!, ~A4!

ReSTST
(2)R~v!;~JSTn!2E

2D

D

dj1E
2D

D

dj2n~j2!

3@12n~j1!#P
1

v1j22j1
, ~A5!

Im STTT
(2)R~v!;~JTn!2E

2D

D

dj1E
2D

D

dj2n~j2!@12n~j1!#

3d~v1j22j12d!, ~A6!

ReSTTT
(2)R~v!;~JTn!2E

2D

D

dj1E
2D

D

dj2n~j2!

3@12n~j1!#P
1

v1j22j12d
, ~A7!

whereP denotes the principal value of the integral.
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We start with discussion of self-energy parts determin
the spin relaxation due toT→S transitions shown in Figs
5~a!, 5~b!. AssumingT!D and neglecting temperature co
rections at low temperaturesv@T, we get

Im STST
(2)R~v!;~JSTn!2E

0

D

dj1E
2D

0

dj2d~v1j22j1!

;@JSTn~0!#2E
0

v

dj;~JSTn!2v, ~A8!

ReSTST
(2)R~v!;~JSTn!2E

0

D

dj1E
2D

0

dj2P
1

v1j22j1

;~JSTn!2v lnS D

v D . ~A9!

In the opposite limitT@v

Im STST
(2)R~v!;~JSTn!2T, ~A10!

ReSTST
(2)R~v!;~JSTn!2v lnS Dg

2pTD , ~A11!

where lng5C50.577••• is the Euler constant.
Next we turn to calculation of the triplet level dampin

due to TT relaxation processes@Figs. 5~a!, 5~b!#. According
to the Feynman codex, we can putES50 at the first stage
since the population of triplet excited state is controlled
finite level splittingd. The contribution from diagram Fig
5~a! is given by

Im STTT
(2LL)5Im STTT

(2RR);~J0
Tn!2~v2d! u~v2d!,

~A12!

ReSTTT
(2LL)5ReSTTT

(2RR);~J0
Tn!2~v2d! lnU D

v2dU.
~A13!

Similarly for Fig. 5~b!,

Im STTT
(2LR)5Im STTT

(2RL);~J0
Tn!2~v2d! u~v2d!

~A14!

and, with logarithmic accuracy

ReSTTT
(2LR)5ReSTTT

(2RL);~J0
Tn!2~v2d! lnU D

v2dU.
~A15!
3-7
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FIG. 6. Fourth order leading
diagrams~a!–~f! for triplet self-
energy part.
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The threshold character of relaxation determined by
Fermi golden rule is the source of asymmetry in broaden
of triplet line ~see the text!.

Now we turn to calculation of the third order diagram
S (3) shown in Figs. 5~c!, 5~d!.

S (3c)~ ivn!;J3T3 (
v1,2,3

(
k1,2,3

G0~2 iv1 ,2k1!

3G0~ iv2 ,k2!G0~2 iv3 ,2k3!

3G 0~ ivn1 iv11 iv2!G 0~ ivn1 iv21 iv3!,

S (3d)~ ivn!;J3T3 (
v1,2,3

(
k1,2,3

G0~ iv1 ,k1!

3G0~2 iv2 ,2k2!G0~ iv3 ,k3!

3G 0~ ivn1 iv11 iv2!G 0~ ivn1 iv21 iv3!.

Evaluation of Matsubara sums gives

S (3c)~ ivn!;~Jn!3E
2D

D

dj1E
2D

D

dj2E
2D

D

dj3

3
n~j2!@12n~j1!#@12n~j3!#

~ ivn1j22j32l1!~ ivn1j22j12l2!
,

~A16!

S (3d)~ ivn!;~Jn!3E
2D

D

dj1E
2D

D

dj2E
2D

D

dj3

3
n~j1!n~j3!@12n~j2!#

~ ivn1j32j22l1!~ ivn1j12j22l2!
.

~A17!

Let us consider first the casel15l25lS50 which corre-
sponds to two singlet fermionic lines inserted in self-ene
part. Analytical continuation leads to following expressi
for S (3)5S (3b)1S (3c) at T!v

Im STSST
(3) ~v!;~JSTn!3

JS

JSTFv lnS D

v D2vG , ~A18!

ReSTSST
(3) ~v!;~JSTn!3

JS

JST
vReF Li 2S 2

D

v D G
;S J

D D 3

v ln2S D

v D , ~A19!
15532
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whereLi 2(x) is a dilogarithm function.40 As we already no-
ticed, the first log correction to ImS appears only in third
order of the perturbation theory. Thus,

Im STSST~v!;~JSTn!2vF11a~JSn!lnS D

v D1•••G ,
~A20!

ReSTSST~v!;~JSTn!2Fv lnUDvUH 11b~JSn!lnUDvU1•••J
1c~v2d!lnU D

v2dUH 11d~JSn!lnU D

v2dU
1•••J G ~A21!

with coefficient a,b,c,d;1. These results are consiste
with the Abrikosov-Migdal theory38,39 for SU~2! Kondo
model.

We assume now thatl15l25lT5d. It corresponds to
the situation when both internal semifermionic GF cor
spond to different components of the triplet. Following t
same routine as for calculation ofS (2) we find

Im STTTT
(3) ~v!;~JTn!3F ~v2d!lnU D

v2dU2~v2d!G
3u~v2d!. ~A22!

Thus, the corrections to the relaxation rate associated w
transitions between different components of the triplet hav
threshold character determined by the energy conservati

Finally, we consider a possibility when two internal sem
fermionic GF correspond to different states, e.g.,l15lS
50, whereasl25lT5d. Performing the calculations, on
finds

Im STSTT
(3) ~v!;~JSTn!3

JT

JSTS Fd lnUDd U2~d2v!lnU D

d2vU
2vG1Fd lnUDd U2v lnUDvU2~d2v!G
3u~v2d! D . ~A23!

A similar expression can be derived for ImSTTST
(3) (v).

Any insertion of the triplet line in diagrams Figs. 5~a!–
3-8
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5~d! results in additional suppression of corresponding c
tribution for v,eV, which, in turn, prevents the effectiv
renormalization of the vertexJS in contrast to the processe
shown in Fig. 3. The leading corrections in the fourth ord
.

c

M

e
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of perturbation theory are shown in Figs. 6~a!–6~f!. We point
out that all corrections to ImS (n>2);v lnn22(D/v),
ReS (n>2);v lnn21(D/v), and contain an additional powe
of the small parameterd/D!1 asv→d.
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ui,
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