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Resonance Kondo tunneling through a double quantum dot at finite bias
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It is shown that the resonance Kondo tunneling through a double quantu(@@ay with evenoccupation
andsingletground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation.
Using the renormalization group technique we derive scaling equations and calculate the differential conduc-
tance as a function of an auxiliary dc bias for parallel DQD described by SO(4) symmetry. We analyze the
decoherence effects associated with the triplet/singlet relaxation in DQD and discuss the shape of differential
conductance line as a function of dc bias and temperature.
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I. INTRODUCTION on an energy scal€>Ty and thus prevent formation of a
ground state Kondo singlet, so that only the weak coupling

Many fascinating collective effects, which exist in Kondo regime is possible in strongly nonequilibrium condi-
strongly correlated electron systenisietallic compounds tions.
containing transition and rare-earth elememsay be ob- In the present paper we discuss Kondo tunneling through
served also in artificial nanosize deviceguantum wells, DQD with even)\, whose ground state is a spin sing|8}.
quantum dots, etg. Moreover, fabricated nanoobjects pro- |t will be shown that the Kondo tunneling througixcited
vide unique possibility to create such conditions for observatriplet state|T) arises at finiteeV. In this case the ground
tion of many-particle phenomena, which by no means mayate is stable against any kind of spin-flip processes induced
be reached in “natural” conditions. Kondo effe®E) is one  py external current, the decoherence effects develop only in

of such phen_omena._ét was found theore_tida?l;and 0b-  ihe intermediatgvirtual) triplet state, and the estimates of
served experimentalfy® that the charge-spin separation in decoherence rate should be revisited

low-energy excitation spectrum of quantum dots under As was noticed in Ref. 15, quantum dots with ev&n
strong Coulomb blockade manifests itself as a resonance . ... the dvnamical s.mm,eBp(4) of Spin rotator in
Kondo-type tunneling through a dot with odd electron occu-P y y P

pation\ (one unpaired spiB= 1/2). This resonance tunnel- the .KO.”dO tunneling _regime, provided.the Iow-energy part of
ing through a quantum dot connecting two metallic reser_excnatmn spectrl_Jmlls formed by a singlet-tripl&T) pair, .
voirs (leads is an analog of resonance spin scattering inand all other'excnauons are separated frqm the ST manifold
metals with magnetic impurities. A Kondo-type tunneling PY & gap noticeably exceeding the tunneling rateA DQD
arises under conditions which do not exist in conventionaWith even\'in a side-boundT-shape configuration where
metallic compounds. The KE emerges as a dynamical phdwo wells are coupled by the tunnelingand only one of
nomenon in strong time dependent electric ffeltl it may ~ them(say,l) is coupled to metallic leadd (R) is a simplest
arise at finite frequency under light illuminatioti.’® Even  system satisfying this conditiori.Such system was realized
the net zero spin of isolated quantum deven\) is not an  experimentally in Ref. 30. Novel features introduced by the
obstacle for the resonance Kondo tunneling. In this case iynamical symmetry in Kondo tunneling are connected with
may be observed in double quantum d@€D) arranged in  the fact that unlike the case of conventio®dl(2) symme-
parallel geometry? in T-shaped DQD*% in two-level try of spin vectorS, theSO(4) group possesses two genera-
single dot&”'® or induced by strong magnetic fiéfd?> torsSandP. The latter vector describes transitions between
whereas in conventional metals magnetic field only supsinglet and triplet states of spin manifolthis vector is an
presses the Kondo scattering. The latter effect was also disnalog of Runge-Lenz vector describing the hidden symme-
covered experimentalf~2° try of hydrogen atom As was shown in Ref. 14, this vector
One of the most challenging options in Kondo physics ofalone is responsible for Kondo tunneling through quantum
quantum dots is the possibility of controlling the Kondo ef- dot with even\ induced by external magnetic field.
fect by creating the nonequilibrium reservoir of fermionic  Another manifestation of dynamical symmetry peculiar to
excitations by means of strong bia¥> T, applied between DQDs with even\ is revealed in this paper. It is shown that
the lead®® (T is the equilibrium Kondo temperature which in the case when the ground state is sing@tand the S/T
determines the energy scale of low-energy spin excitations igapd> Ty, a Kondo resonance channel arises under a strong
a quantum dot However, in this case the decoherence ef-bias eV comparable withs. The channel opens &V— 6
fects may prevent the formation of a full scale Kondo reso-<Ty, and the tunneling is determined by thendiagonal
nance(see, e.g., discussion in Refs. 27)29was argued in  componentlgr=(T|J|S) of effective exchange induced by
recent disputes that the processes, associated with the finitee electron tunneling through DQDsee Fig. 1 (right
current through a dot with odd” may destroy the coherence pane)].
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Left lead (L) 8,9). As is shown in Ref. 15, the SW transformation being
‘W UL eV=H—Hg applied to a spin rotator results in the following effective
Vo — spin Hamiltonian
1 v r
HOOFs \Y ™,
W N Hin= 2 [(I11,S+35T P) 5,0+ 355 X5%,0 1. (3
K 8 ‘—‘—\\ /,»’ aa’
(@) Right lead (R) ® L — R R

_ too _ t o3
Here Spa’ = Ekk'cka(rTCk’a’(r’ y, Ngar = Ekk/cka(rlck/ a'gr Ty
FIG. 1. Left panel: Double quantum dot in a side-bound con-1 are the Pauli matrices and unity matrix, respectively. The

figuration. Right panel: cotunneling processes in biased DQD reeffective exchange constants are
sponsible for the resonance Kondo tunneling.

AN AT
II. COTUNNELING HAMILTONIAN OF T-SHAPED DQD AA,’% W“ M 1 + 1 .
ad 2 e_Fa_ES/2 EFar_ES/Z

The basic properties of symmetric DQD occupied by even
number of electronsd/=2n under strong Coulomb blockade In this approximation the small differences between singlet
in each well are manifested already in the simplest case
=1, which is considered below. Such DQD is an artificial
analog of a hydrogen molecule,Hf the interwell Coulomb
blockadeQ is strong enough, one ha§=n;+n,, nj=n,
=1, the lowest states of DQD are singlet and triplet and the +_ 104 01 —_ 014 y—1
next levels are separated from ST pair by a charge transfer S'=V2X4 X0, S \/E(X X7,
gap ~Q. We assume that both wells are neutrahgt=1.
Then the effective interwell exchanderesponsible for the
singlet-triplet splitting arises because of tunnelingetween
two wells, | =v?/Q= 4. It is convenient to write the effec- PT=\2(X"S=X51), PT=\2(X=X"1%) (4
tive spin Hamiltonian of isolated DQD in the form

s><s+2” Er

where X' =|A)(A'| is a Hubbard configuration change

operator(see, e.g., Ref. J1Er=Es+4, #==.0 are three o u, (vering via the components of the ve@or

projections ofS.=1 vector. Two othgr terms completing the' We useSU(2)-like semifermionic representation @
Anderson Hamiltonian, which describes the system shown '%perator%z‘s“

Fig. 1 (left pane), are

and triplet states are neglected. In additid@ﬁ,/ﬂ in real
DQD.
Two vectorsS and P with spherical components

Sz: X11—X‘1‘1, Pz: _ (XOS+ XSO),

obey the commutation relations of;, algebra

T7l><T7IEAESTn EAXMA, [S;.Sd=ieusS, [Pj.Pd=ieuS, [Pj,Sd=iejP

(D (j.k,I are Cartesian coordinates agg| is a Levi-Civita ten-
son. These vectors are orthogon&P=0, and the Casimir
operator isS?+P?=3. Thus, the singlet state is involved in

Hd:ES

+_ tf gt —_ tog gt
HotHim D) 6alnCiant S S (WIS XM +H.c). 3= VAfef ot i), 8= V2(fot ot
kao AN KkKao
@) SF=flf,—f1 f 4, (5

The first term describes metallic electrons in the leads andvhere f1, are creation operators for fermions with spin
the second one stands for tunneling between the leads aridp” and “down,” respectively, wheread, stands for spin-
the DQD. Herea=L,R marks electrons in the left and right less fermior??33 This representation can be generalized for
lead, respectively, the biasV is applied to the left lead, so SO(4) group by introducing another spinless fermitanto
that the chemical potentials agg-| = urr+eV, WA" is the  take into consideration the singlet state. As a result,Rhe
tunneling amplitude for the well(left), |[\) are one-electron operators are given by the following equations:

states of DQD, which arises after escape of an electron with

spin projections from DQD in a statgA). Pr=\2(flf—flf_)), P~ =\2(flf,— I fy),
We solve the problem in a Schrieffer-Wolf8W) limit, 3
when the activation energi¢& , —E, — ur,| and Coulomb PZ=—(fif +fif). (6)

blockade energy are essentially larger then the tunneling

rate y, and charge fluctuations are completely suppressed@he Casimir operato®®+ P?=3 transforms to the local con-
both in the ground and excited state of DQD. In this limit straint

one may start with the SW transformation, which projects

out charge excitations. We confine ourselves with the bias E
eV=56<D, whereD is the width of the electrons in the A=
leads, so the leads are considered in the SW transformation

as two independent quasi equilibrium reservagsse Refs. The final form of the spin cotunneling Hamiltonian is

flf =1
S
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s . . , N .
Him:kk’ Z_LR‘]aa’flfSCan’Ck’a’a’ \\,/ \\ ,,—>~\\ « \\ /—>~\\,/
T od ST ad /\ N\ / \
+ 2 (‘]aa’SAA’+JDza’PAA') a) b) C) /
kk",aa’ AN’ P,
X1 CleoCiraror FhfAr S @) N e e o
where $? and PY(d=x,y,z) are 4<x4 matrices defined by /W\
relations(4)—(6) andJS=JSS JT=J"T, andJST are singlet, d)
triplet, and singlet-triplet coupling SW constants, respec-

tively.
The cotunneling in the ground singlet state is described by FIG. 2. Leading(b),(d) and next to leadingc),(e) parquet dia-

the first term of the Hamiltoniaii7), and no spin flip pro- grams determining renormalization df (a). Solid lines denote

cesses accompanying the electron transfer between the leaglsctrons in the leads. Dashed lines stand for electrons in the dot.

emerge in this state. However, the last term in &g.links

the singlet ground state with the excited triplet and opens &, g(k,7) = —<TTCL’RO_(|(,T)CE'RO,(k,O)>. Performing a Fou-

Kondo channel. In equilibrium this channel is ineffective, rier transformation in imaginary time for bare GF’s, we come

because the incident electron should have the enétgybe  to following expressions:

able to initiate spin-flip processes. We will show in the next

section that the situation changes radically, when strong G (€n)=(i€n— €xat L r) 1,

enough external bias is applied. ’

Gy om)=(on—Ep~" 7=-101,

I1l. KONDO SINGULARITY IN TUNNELING THROUGH

DQD AT FINITE BIAS Qg(en)=(i €n— ES)_l, (8)

We deal with the case, which was not met in the previous
studies of non-equilibrium Kondo tunneling. The groundWith €,=27T(n+1/2) and wy=2aT(m+1/3).3*% The
state of the system is singlet, and the Kondo tunneling irfirst leading and next to leading parquet diagrams are shown
equilibrium is quenched af~ 6. Thus, the elastic Kondo On Fig. 2. .
tunneling arises only provideTi> & in accordance with the ~ Corrections to the singlet vertdk(w,0;o’,0) are calcu-
theory of two-impurity Kondo effect>*>*®However, the en- lated using an analytical continuation of GF’s to the real axis
ergy necessary for Spin f||p may be donated by external eley and taklng into account the shift of the chemical potential
tric field eV applied to the left lead, and in the opposite limit I the left lead. Since the electron from the left lead tunnels
T«< 6 the elastic channel emergeseaf~ 5. The processes INto the empty state in the right lead separated by the energy
responsible for resonance Kondo cotunneling at finite biagV, we have to puw=eV, »’=0 in the final expression for
are shown in F|g 1|eft pane)_ T(w,O;w’,O). Thus, unlike conventional Kondo effect we

In conventional SpirS: 1/2 guantum dots the Kondo re- deal with the vertex at finite frequenay similarly to the
gime out of equi"brium is affected by Spin relaxation and problem considered in Ref. 27. We assume that the leads
decoherence processes, which emerge\&TK (See’ e.g., remain in equilibrium under applled bias and neglect the
Refs. 9,27-29 These processes appear in the same order d§laxation processes in the leatfsot” leads). In a weak
Kondo cotunneling itself, and one should use the noncoupling regimeT>Ty the leading non-Born contributions
equilibrium perturbation theor{e.g., Keldysh techniqueo  to the tunnel current are determined by the diagrams of Figs.
take them into account in a proper way. In our case thes@(b)—2(€).
effects are expected to be weaker, because the nonzero spinThe effective vertex shown in Fig.(12 is given by the
state is involved in Kondo tunneling only as an intermediatefollowing equation:
virtual state arising due t&/T transitions induced by the
second term in the Hamiltonig@), which contains vectop. [(2)( )= JSTITSS 1-f(e—eV)
The nonequilibrium repopulation effects in DQD are weak as LR LYLR<4 :
well (see next section, where the nonequilibrium effects are

(C)

o= € tpu —0

discussed in more detajls Changing the variable,, for €, —eV one finds that
Having this in mind, we describe Kondo tunneling
through DQD at finiteeV<§ within the quasiequilibrium ) (w=eV)~JI[I3vIn(D/max(eV-4),T}).

perturbation theory in a weak coupling regirteee the qua-

siequilibrium approach to description of decoherence rate atlere D~ ¢ is a cutoff energy determining effective band-
large eV in Ref. 27. To develop the perturbative approach width, v is a density of states on a Fermi level af(@) is
for T>Ty we introduce the temperature Green’s functionsthe Fermi function. Therefore, under conditideV— 4
(GF) for electrons in a dotg, (7)= _<TTfA(T)fj-\(0)>, and <maxeV,d] this correction does not depend el and be-
GF for the electrons in the leftL) and right (R) lead, comes quasielastic.
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FIG. 3. Irreducible diagrams contributing to RG equations.

Hatched boxes and circles stand for triplet-triplet and singlet-triple&
vertices respectively. Notations for lines are the same as in Fig. 2

Unlike the diagram Fig. ), its “parquet counterpart”
term Fig. Zc) containseV+ & in the argument of the Kondo
logarithm:

flex.—eV)

(L)_EkL+ILLL+ 5 (10)

() =B0RS
At eV~ 6>T this contribution is estimated as
(%) (eV)~JI33 S In(D/(eV+8))<T'(®)(eV).
Similar estimates for Figs.(@) and 2e) give
T2 (w)~33 3] 3] 5v2In%(D/maX w,(eV—6),T}),
2 (w)~I31T ITSr2In(D/maX w,(eV—68),T})
XIn(D/maX w,eV,T}.

ThenI' %) (w)<I'?Y(w) ateV—sé.
Thus, the Kondo singularity is restored in nonequilibrium

(11)

PHYSICAL REVIEW B 68, 155323 (2003

7
o

)

1
NN
“_ Y7 /4
- /////////////////

7,

-
<
eV/T, ol

20

FIG. 4. The Kondo conductance as a function of dc-%T ¢
andT/Tg . The singlet-triplet splittings/ T = 10.

ions containing IpD/(eV)]. The analysis of RG equations
beyond the one loop approximation will be published else-
where.

The solution of the systertl3) reads as follows:

ST
‘]O

T
T ‘JO ST _

Jaa'_T—’ ‘]aa’_T—’
@ 130D T 1-30In(DIT)

In(D/T)

3
R R -1 P St
=I5 770 1—230In(D/T)

(14)

Herea=L, a’'=L,R. One should note that the Kondo tem-
perature is determined by triplet-triplet processes only in
spite of the fact that the ground state is singlet. One finds
from Eq. (14) that Tx=D exp[—l/(ng)]. This temperature

is noticeably smaller than the “equilibrium” Kondo tempera-
ture Ty, which emerges in tunneling through triplet channel
in the ground state, namelyx~T2,/D. The reason for this
difference is the reduction of usual parquet equationsifor

to a simple ladder series. In this respect our case differs also
from conventional Kondo effect at strong bfdswhere the

conditions where the electrons in the left lead acquire addinonequilibrium Kondo temperaturé* ~TZ,/eV arises. In
tional energy in external electric field, which compensatessur model the finite bias does not enfBg because of the

the energy los® in a singlet-triplet excitation. The leading

compensatiore V=~ ¢ in spite of the fact that we take the

sequence of most divergent diagrams degenerates in this caggumentw=eV in the vertex(9).

from a parquet to a ladder series.

The differential conductanc&(eV,T)/Go~|J7x? (see

Following the poor man’s scaling approach, we derive theref. 37 is the universal function of two parameteFT

system of coupled renormalization gro(RG) equations for
Eq. (7). The equations for LL cotunneling are

dJf, ST
dinD (3, dinD vIPL (12)
The scaling equations fo]{_‘R are as follows:
T ST

4 =T g7 R 3STyT
dinD VLLYtR 4InD PILLYLRY

difg 1 1

dinD - 2 v ‘]EE’*"]L%,— + E‘Jfl-_r,z‘]-[g,z . (13

One-loop diagrams corresponding to the poor man’s scalin

andeVITy, Gy=e?/mh:

GIGo~In"2(max{ (eV—6),T]/Tk). (15)

Its behavior as a function of bias and temperature is shown in
Fig. 4. It is seen from this picture that the resonance tunnel-
ing “flashes” ateV~ & and dies away out of this resonance.
In this picture the decoherence effects are not taken into
account, and it stability against various non-equilibrium cor-
rections should be checked.

IV. DECOHERENCE EFFECTS

We analyze now the decoherence ratery associated
with T/S transition relaxation induced by cotunneling. The

procedure are shown in Fig. 3. To derive these equations wealculations are performed in the same order of the perturba-

collected only terms~(J")"In"*Y(D/T) neglecting contribu-

tion theory as it has been done for the vertex renormalization
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repopulation of the triplet state is exponentially small. The

T LR) T T L(R) T corresponding factor in the occupation number is
""" P(eV)=exy — &* (eV)/T]. (20
L{R) R(L)

The effects of repopulation become important only at
a) b) eV> 8 when|5* — 8|~ 6. In that case the quasiequilibrium
approach is not applicable and one should start with the

Keldysh formalisnt.”?8 This regime is definitely not realized
in conditions considered above.

) d) Next second order contribution is the damping of triplet
state itself given by EqgA12), (Al4). It is seen from these
equations that this damping is of threshold character

FIG. 5. Leading diagram&)—(d) for /74 (see text Dashed
line in the sellf-ene.rgy. part stands for the singlet state of a two- 1/TETN(‘]/D)2(@_ 8)6(w—135), (22)
electron configuration in the dot.
where 6(w) is a Heaviside step function. These processes

(see Figs. 2 and)3The details of the calculation scheme areemerge only at»> 8, so unlike the conventional c&dehey
presented in the Appendix. are not dangerous.

To estimate the decoherence effects, one should calculate Corresponding contribution to RE® casts the form
the decay of the triplet state or in other terms to find the
imaginary part of the retarded self-energy of triplet semi-
fermion propagators at actual frequerisge discussion be-
fore Eq. (9)], fi/7q=—2 ImE?(w). The second and third
order diagrams determinint/ 74 are shown in Figs. &)—

5(d). Two leading terms given by the diagrams of Fig&) b . . ; : :
5(b) describe the damping of triplet excitation due to its in- mic corrections modify the estimald?). These corrections

- . . t with the third order terms shown in Figsich 5(d).
elastic relaxation to the ground singlet state. These terms aféar. ; 3
. : : traightforward calculations lead ®V(J/D)~In(D/eV) cor-
calculated in Appendifsee Egs(A8), (A10)]. One finds I$cti0n[see the first term EqA23)]. This leading term like

from these equations that the relaxation rate associated wi{ - X .
g he second order term originates froim- S spin relaxation

ST transition is processes. All other contributions are either of threshold
1/rdST~(JST/D)Zma>{eV,w,TK]. (16) character, or vanish ab—0. As a result, the estimate

(22

RexR2)=—p J 2(5— w)In b

T 2D max (56— w),T]
whereb,~1.

Next, one has to check whether the higher order logarith-

It should be noted that for corrections associated with LL ﬁ/rd~eV(J§‘T/D)2{1+O[vJ In(D/(eV))]}

(RR) diagramgFig. 5(a)], describing cotunneling processes _ ) )
on a left(right) lead, the use of quasiequilibrium technique isNlds. The topological structuresequence of intermediate

fully justified when the leads themselves are in thermal equiSinglet and triplet states and cotunneling processes in the left
librium. We are interested in the zero frequency damping and right Iea}dm. perturbative corrections fo_r the tn_plet self-
resonanceeV~ 8. Neglecting the small difference between €nNergy partis dlfferent from those for. the smgIet—smgIet ver-
J7 andJST (see Ref. 15 we also take) '~ JST=J. Thus the tex (see Appendix Namely, the Ieacjmgjladdeb dlagrams
T— S spin relaxation effect16) does not contain logarithmic for the vertex contain maximal possible number of interme-

enhancement factor in the lowest order. It is estimated as diat€ triplet states, whereas the higher order nonthreshold
log-diagrams for the self-energy part must contain at least

]_/TdSTN(e\/)(‘]/D)Zm‘]:"/DZ. (17 one intermediate singlet state. As it is seen from the Appen-
The repopulation of triplet state as a function of externaldiX [Eas. (A18)—(A23)], the higher order contributions to
bias is controlled by the occupation number for triplet statd™ >T(@) are not universal and the coefficients in front of
modified by the biagV. The latter, in turn, depends on the log have sophisticated frequency dependence. As a result, the

modified exchange spliting* given by solution of the perturbative series for triplet self-energy part cannot be col-
equation lected in parquet structures and remain beyond the leading-

log approximation discussed in the Sec. Ill. There is no
5% — 6=ReXR(5*,eV,T). (19 strong enhancement of the second order term in SO(4) spin
. . rotator model in contrast to SU(2) case discussed in Ref. 27.
The Rex® [Figs. Ha), 5(b)] is given by As was pointed out above, the(m;in reason for differences in
2 D estimates of coherence rate is that in case of QD with/gdd
wln —) the Kondo singlet develops in the ground state of the dot,
max w,eV,T] and decoherence frustrate this ground state. In DQD with
even the triplet spin state arises only as a virtual state in
wherea,~1 is a numerical coefficient. As it is seen, the cotunneling processes, and our calculations demonstrate ex-
perturbative equation for RER is beyond the scope of plicitly that decoherence effects in this case are essentially
leading-log approximation. As a resulif (eV)—6<6 and  weaker.

D

Re3R@(w,eV,T)=-a,
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The third order correction to R& is given by alization of resonance Kondo tunneling driven by external
electric field. Applying the alternate field=V_coswt) to
the parallel DQD, one takes into consideration two effects,
namely, (i) enhancement of Kondo conductance by tuning
) ) ] . the amplitude of ac voltage to satisfy the conditif@V,,
(see Appendix This correction also remains beyond the _ s5/<T, and(ii) spin decoherence effects due to finite de-

leading-log approximation. coherence rattOne can expect that if the decoherence rate
Thus we conclude that the decoherence effects are ngf; s

destructive for Kondo tunneling through T-shaped DQD, i.e.,
the TK>ﬁ/Td is valid prOVIded Gpeak/G0~|n_2(ﬁ/TTK)! (25)

3
ReER(3)(w)~(%> w |n2(% (23

2
6(8ID)"<Ty<4. (24) whereas in the opposite limit/ 7<<Ty,

This interval is wide enough becauséD <1 in the Ander-
son model. Gpea= G(Vaccod wt]) (26)

The same calculation procedure may be repeated in
Keldysh technique. It is seen immediately that in the leadingis averaged over a period of variation of ac bias. In this case
log approximation the off-diagonal terms in Keldysh matrix the estimat&15) is also valid.
are not changed in comparison with equilibrium distribution  In conclusion, we have provided an example of Kondo
functions because of the same threshold character of repop@ffect, which existonly in non-equilibrium conditions. It is
lation processes, so in the leading approximation the keglriven by external electric field in tunneling through a quan-
diagram Fig. B) (determiningL-R current through the dpt ~ tum dot with even number of electrons, when the low-lying
calculated in Keldysh technique remains the same as Eq§tates are those of spin rotator. This is not too exotic situation
(A8)—(A10). because as a rule, a singlet ground state implies a triplet

In fact, repopulation effects result in asymmetry of theexcitation. If the ST pair is separated by a gap from other
Kondo-peak similar to that in Ref. 28 due to the thresholdexcitons, then tuning the dc bias in such a way that applied
character of InE 11 (see Appendix This asymmetry be- Voltage compensates the energy of triplet excitation, one
comes noticeable a&Vs &, where our quasiequilibrium ap- rea_lches the regime of Kondo peak in conduct_ance. This theo-
proach fails, but this region is beyond our interest, becaustetically predicted effect can be observed in dc- and ac-
the bias-induced Kondo tunneling is negligible at large bi-biased double quantum dots in parallel geometry.
ases(see Fig. 4.
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features of Kondo effect in this specific situation may bewhere v denotes the density of states for conduction elec-
captured within a quasiequilibrium approach. The scalingrons at the Fermi surface.
equations(13), (14) can also be derived in Schwinger-  The second order self-energies have the following struc-
Keldysh formalism(see Refs. 28,33y applying the “poor  ture (the indicesT and ST in exchange vertices are tempo-
man’s scaling” approach directly to the dot conductafice. rarily omitted:

Of course, our RG approach is valid only in the weak
coupling regime. Although in our case the limitations im-
posed by decoherence effects are more liberal than those'” (i) ~J%T? > kEk G—iwy,—ky)
existing in conventional QD, they apparently prevent the full w10z Tt

formation of the Kondo resonance. To clarify this point one X GO wy,Kp) GO wp+iwy+iwy). (A1)
has to use a genuine non-equilibrium approach, and we hope
to do it in forthcoming publications. The Green function§GF) are defined in Eq8). Performing

One should mention yet another possible experimental resummation over Matsubara frequencieg w, and replacing
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the summation ovek, k, by integration oveg, , &, in accordance with standard procedure, we come to following expression:

; A
anﬁ

—tan 2
2T

& Er— A
tam( ﬁ) —coth( >T )

1 D D
@0~ 502 de | de,
—-D —-D

lwp+€&— 61— Ng 1 A2)

Here we assumed that conduction electron’s band has a We start with discussion of self-energy parts determining

width W=2D, ee~D andv=1/D in order to simplify our

the spin relaxation due t&— S transitions shown in Figs.

calculations. This assumption is sufficient for log-accuracys(a), 5(b). AssumingT<D and neglecting temperature cor-

of our theory. The Lagrange multiplieks; 1 are different for
singlet(triplet) GF, namely\s=Eg andAt=E;+i#T/3.
To account for decoherence effects in the same order of
perturbation theory as we have done for the vertex correc-
tions, we focus on the self-enerd$E) part of triplet GF.
This SE has to be plugged in back to a semifermionic propa-
gator to provide a self-consistent treatment of the problem.
We denote the self-energy parts associated with singlet/triplet

rections at low temperatures>T, we get

2R D 0
Im 28 ()~ (35Tn)? fo déy f d&d(ot &= &)

and triplet/triplet transitions astgrand> 111, respectively.

To prevent double occupancy of singlet/triplet states we

take the limit RENg t]>T in the numerator of EQA2). As
a result, Eq(A2) casts the form

. o b n(&)[1-n(€1)]
33 ~J2fdfd. :
(o)~ (Jv) D & -D §2|wn+§2—§1_)\s,T
(A3)
Since all spurious states are “frozen out” we can puf
=0 and\;=8=E;— Es in denominator(in the latter case

we perform a shift\t=\1—i#T/3) and proceed with the
analytical continuationw,— w+i0". Without loss of gen-
erality we assume>0. As a result, we get for retardéR)
self-energies

) D D
|mE(Ts)$(w)N(JSTV)ZJLDdglfiDdfzn(fz)

X[1-n(E)]o(w+é&H—E),  (Ad)
D D
ReS{f(w)~(35Tr)? f & j _dén(&)
1
X[l—n(&)]Pm1 (A5)

2R D D
3@ ~@? [ de, [ denten-nee)

Xo(w+Ey— €1~ 9), (AB)
- D D
ReE(TT)T(w)N(JTV)ZfiDdflfiDdgzn(-fz)
1
X[l—n(fl)]Pm. (A7)

whereP denotes the principal value of the integral.

~[35Tw(0) 2 f de- (520, (AB)
0
Re2(2>R(w)~(JSTv)2fDdg fo d¢ Lt
st 0o t)p P wtéE—&
D
~(I®)%w In(—). (A9)
w
In the opposite lIMifT> w
Im 238 (w)~(35T)?T, (A10)
ReS AR(4)~(I5Tw) 2w In Dy (A11)
TST 27T)

where Iny=C=0.577 - - is the Euler constant.

Next we turn to calculation of the triplet level damping
due to TT relaxation processfsigs. a), 5(b)]. According
to the Feynman codex, we can pg=0 at the first stage
since the population of triplet excited state is controlled by
finite level splitting 8. The contribution from diagram Fig.
5(a) is given by

Im )= Im SEF~ (35 (0= 6) d(w—9),
(A12)

ReX &P =ReX &P~ (I 1)H(w—6) In

w— 0|

(A13)
Similarly for Fig. 5b),

M3 &R =1m3 &~ (I v)2(0—8) (w—25)
(A14)

and, with logarithmic accuracy

ReX {37 =ReX P~ (351)*(w—6) In

w— 0|

(A15)
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(a (b (c) FIG. 6. Fourth order leading

diagrams (a)—(f) for triplet self-

T R T T

) )

The threshold character of relaxation determined by thavhereLi,(x) is a dilogarithm functiorf’ As we already no-
Fermi golden rule is the source of asymmetry in broadeningiced, the first log correction to IB appears only in third
of triplet line (see the texjt order of the perturbation theory. Thus,

Now we turn to calculation of the third order diagrams
3.3 shown in Figs. &), 5(d).

IM31ssfw)~(I°)%w| 1+a(I%)In %) +.. }
E(3c)(|w )~ 3T32 2 GO(—iwl,—kl) A20)

w123K123

X GOiwy ko) G —i w3, —K3)

Reszsfw)“(JSnOZ wln

D D
—{1+ b(ISv)In|—| +
w w

XGiwntio;+iwy)G (o, +iv,+iwg),

D
1+d(J5)In ‘
w— 0

o)l b
+c(w— )nw—5

SN0 =T X, > Giwy ky)
w123 1,2,3
X GO —iwy,— k)G i w3, ks) e } (A21)

XGiwn+iw+iw)G%(wp+iw,+iws). . o )
(loptiotio)G (1o tlosFiwg) with coefficient a,b,c,d~1. These results are consistent

Evaluation of Matsubara sums gives with the Abrikosov-Migdal theory?° for SU(2) Kondo
model.
(30),+ 5 [P D D We assume now that;=\,=A1=4. It corresponds to
25l wn)~(Jv) j,Ddglj,Ddng,Dd& the situation when both internal semifermionic GF corre-
spond to different components of the triplet. Following the
N(&E)[1-n(ED[1—n(&s)] same routine as for calculation &%) we find
(fogt &= &N (o T &= 61— 0)
(A16) M3 0)~3T)3 (0— d)in|— ‘—(w 5)}
S (i) J”)Sf délf dng dt, X O0(w—5). (A22)
1— Thus, the corrections to the relaxation rate associated with
_ n<§1)n(§3)[_ n(&)] . transitions between different components of the triplet have a
(lopt+ &= &~ N)(logtE1—E—N2) threshold character determined by the energy conservation.
(A17) Finally, we consider a possibility when two internal semi-
fermionic GF correspond to different states, ex=A\g
Let us consider first the case,=\,=\s=0 which corre- =0, whereas\,=\;= 4. Performing the calculations, one

sponds to two singlet fermionic lines inserted in self-energyfinds
part. Analytical continuation leads to following expression
for 3@ =360 1 36 gt T<w

JT D D
ImE(T3S)T1(w)~(JSTV)3J—ST( sln E’—(a—w)m 5 w‘
S D -
Im3 &g fw)~ (JSTV)3 wln( ) w|, (A18) D D
+|61In —‘—wln —’—(5—(1))
1) 1)
@) ST,\3 J° i D
ReX{dsfw)~(3°'p) J—ST(DR Li, s X0(w—05)|. (A23)
NE 3 - D (A19) A similar expression can be derived for B4 ().
D) “ ’ Any insertion of the triplet line in diagrams Figs(&—
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5(d) results in additional suppression of corresponding conef perturbation theory are shown in Figgap-6(f). We point
tribution for w<eV, which, in turn, prevents the effective out that all corrections to IR~ In""%(D/w),
renormalization of the verted® in contrast to the processes Re3 ("2~ In"Y(D/w), and contain an additional power
shown in Fig. 3. The leading corrections in the fourth orderof the small parametef/D<1 asw— §.
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