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Ginzburg-Landau functional for nearly antiferromagnetic perfect and disordered Kondo lattices
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Interplay between Kondo effect and antiferromagnetic and spin glass ordering in perfect and disordered
bipartite Kondo lattices is considered. The Ginzburg-Landau equation is derived from the microscopic effective
action written in three mode representatigtondo screening, antiferromagnetic correlations, and spin liquid
correlation$. The problem of the local constraint is resolved by means of the Popov-Fedotov representation of
the localized spin operators. It is shown that the Kondo screening enhances the tendency to a spin-liquid
crossover and partially suppresses antiferromagnetic ordering in perfect Kondo lattices and spin glass ordering
in doped Kondo lattices. The modified Doniach diagram is constructed, and possibilities of going beyond the
mean-field approximation are discussed.

DOI: 10.1103/PhysRevB.65.184410 PACS nuni®er75.20.Hr, 71.27a, 75.10.Nr, 75.30.Mb

. INTRODUCTION point in Y;_,U/Pd; (see, e.g., Ref. 23 In this family of
ternary alloys the spin-glasSG) behavior was discovered in
The Kondo lattice(KL) systems are famous for their un- a U concentration range 6<%<0.5 with a freezing tem-
usual electronic and magnetic properties, including giant efperatureT; growing monotonically withx (see Ref. 1%
fective masses observed in thermodynamic and de Haas—v&mong other U-based heavy fermion compounds with SG
Alphen measurementsunconventional superconductivity, behavior, URRGe,,*® U,Rh;Sis,*® and W,PdSj (Ref. 17
and a fascinating variety of magnetic properfléEhe great  should be mentioned. The effects of “Kondo disorder” were
majority of the metallic KL systems demonstrates antiferro-reported for UCy_,Pd, in Ref. 18. Later on the competition
magnetic(AFM) correlations and all types of the AFM order between RKKY and Kondo exchange for disordered Ce al-
may be found in these compounds. There are localized spineys was discovered experimentallyee Refs. 19-21The
in U,Zny7,UCd,4, Celry,® quadrupole ordering in Ce¥ in-  magnetic phase diagram of CglCu, exhibits change of
terplay between localized and itinerant excitations in severaiagnetic ordering from AFM to ferromagneti&M) at x
U-and Ce-based compountipuzzling magnetic order of =0.8, whereas for 02x<0.8 the SG state appears only at
tiny moments in URY URW,Si;,UNi,Al3,° quantum phase high temperatures above the FM order. Apparently, the
transition in CeCgL ,Au,,’ fluctuation-type dynamical or- Kondo interaction could be considered as the mechanism
dering in U(Pt_,Pd)3® short-range magnetic correlations leading to the reduction of magnetic moments because in-
in the astonishingly wide temperature interval of critical be-creasing Ni contents effectively reduces the strength of the
havior in CeCy and CeRuSi,.° This list is by no means indirect exchange interaction, and then, a larger temperature
exhaustive. The superconducting state in most cases coexisitability range of the SG phase appe@ee Refs. 19 and 20
with antiferromagnetism, and, apparently, Cooper pairing it- The competition between the one-site Kondo-type corre-
self is mediated by magnetic fluctuatiom®. The dominant lations and the indirect intersite exchange is visualized in
contribution to the low-temperature thermodynamics is alsdoniach’s diagram where possible phase transition and
given by spin degrees of freedd!? crossover energies are plotted as functions of a “bare” cou-
On the other hand, all low-temperature characteristics opling parametewr=J/er characterizing the exchange inter-
KLs are determined by a Kondo temperatufg. These action between the spin and electron subsystems in #Ls.
characteristics are Fermi-like, but the energy scale of th®nly Kondo screening and RKKY coupling were competing
“fermion” spectrum is renormalized by a factdii /er rela-  in the original Doniach diagram. Later on it was noticed that
tive to a conventional electron Fermi liquiddpparently, the the trend to spin liquidSL) ordering is the third type of
AFM correlations due to Ruderman-Kittel-Kasuya-Yosidacorrelation which modifies essentially the magnetic phase
(RKKY)) interactionl partially suppressed by intrasite Kondo diagram of KL's in a critical regionTx~1 of the Doniach
effect should be treated as a background for all unusual progfiagram?®-2°
erties of Kondo lattices. The main theoretical challenge is to In this paper we present a high-temperature mean-field
find a scenario of crossover from a high-temperature regimeescription of transitions from a paramagnetic state to corre-
of weak interaction(scattering between localized spins and lated spin states in KL's, which does not violate the local
conduction-electron Fermi liquid to a low-temperature constraint for the spin-fermion operators. We use the Popov-
strong-coupling regime where the spins lose their localized edotov representation of spin operafdr® construct the
nature and are confined into an unconventional quantum ligeffective action for KL's. In this representation the local con-
uid involving spin degrees of freedom of conduction elec-straint is rigorously fulfilled. We consider the mutual influ-
trons. ence of various order parametékondo, AFM, SL, and SG
In the phase diagram of the disordered KL more exoticcorrelation functionsand derive a Ginzburg-Landau func-
possibilities such as non-Fermi-liquid regimes arise, whichtional (Sec. I). On the basis of this functional we construct
were observed, for example, near the 0 quantum critical generalized Doniach’s diagrams that take into account all the
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interplays. The Doniach diagram for a perfect KL is pre- To describe all three modes in a unified way one should
sented in Sec. Il and the influence of Kondo screening orderive a free-energy functionaF(T) in a region of T
the SG diagram for a disordered KL is considered in Sec. IV>(Ty,Ax,Ag). First, we integrate out the highest energies
All existing theories appeal to mean-field approximations~e,. Here and below we use the dimensionless coupling
that violate the local gauge invariance both in the Kondo and¢onstants]—J/eg, | —I/eg, etc. Since we are still in a
SL channelg! As a result, fictitious second-order phase tran-weak-coupling limit of Kondo-type scattering, we may re-
sitions from a free spiriparamagneticstate to a confined strict ourselves to the standard high-temperature renormal-
spin (Kondo singlet or resonating valence bond)Sitate  jzation of the one site coupling—J(T) = 1/In(T/Ay) and the
arise in spite of the fact that neither symmetry is violated bysecond-order equation of perturbation theory iior RKKY

these transformations. A different approach allows us to gefyteraction. As a result, one arrives at an effective Hamil-
rid of the assumption of a Kondo-type “condensate” within gnian

the framework of a mean-field theory. To eliminate the ficti-
tious phase transition to a SL state one should refrain from a ~ T ~
mean-field approach to the SL mode. We offer a scenario of H :% 8ka(er(,+J; §S—| ; SS
a continuous crossover from a paramagnetic state of local-
ized spins to the SL state, where the interplay between criti- ez
cal AFM fluctuations and Kondo screening clouds in KL's +gh2 (-1'S;. )
results in “Fermionization” of spin excitations at low tem-
peraturegSec. V. In Sec. VI the interrelations between the  yere all energies are measureddp=1 units, and an
theory and real heavy fermion systems is briefly discussedinfinitesimal staggered magnetic field is introduced that re-
spects the symmetry of the magnetic bipartite lattice in the
Il. DERIVATION OF EFFECTIVE ACTION AFM case g is restored in further calculations wherever it
is necessany
To calculate the spin part of the free energy(T)
1 = —TInZg we represent the partition functia®i in terms of
S+ ZNi”J) ' oy a path integral. The spin subsystem is described by means of

H=2 &xCh,Cir T I
ko j )
- . the Popov-Fedotov triéR
Here the local electron and spin-density operators for con-

The Hamiltonian of the KL model is given by

duction electrons at siteare defined as Z=Tr e Pi=iNTr g BlH+i7N'/(2B)] (5)
1 _T-1 ; ; f_ f
_ t _ t A Here 3=T" -, N is the number of unit celld\'==;N., and
n;= C.C,, =2, =C: 1Cigr s 2 . R .
! % Jo=lo 3 ; 2 ioToo o @ the spinS=1/2 operators are represented by bilinear combi-

- . . . nations of fermion operators
where are the Pauli matrices am, = 2 Cy,, €xp(kj). The P

SG freezing is possible if an additional quenched random-  sz=(f! f.. —f!f. )/2, S'=ff. , S =flf... (6)
. ; . : i ittt 2 T 2 T LT
ness of the intersite exchange between the localized spins

arises. This disorder is described by These operators obey the constraint

H’:%: 11(§S)- ©) NJ-f=§U: fl f,=1. (7)

In accordance with Ref. 26, the Lagrange term with a fixed
imaginary chemical potentiati 7 T/2 is added to the Hamil-

' tonian (1). We use the path-integral representation for the
partition function,

We start with a perfect Kondo lattice. The spin correla-
tions in KL's are characterized by two energy scales, l.e.
~ Jleg, andAg~ e exp(—eg/Jd) (the intersite indirect ex-
change of the Ruderman-Kittel-Kasuya-Yos{@®KKY) type
and the Kondo binding energy, respectivekt high enough -
temperatures the localized spins are weakly coupled with the z J DcDcDfDf expd
electron Fermi sea having the Fermi energy, so that the 20~ . (8
magnetic response of a rare-earth sublattice of a KL is of f DcDcDfDf expA,
paramagnetic Curie-Weiss type. With decreasing temperature
either a crossover to a strong-coupling Kondo singlet regime-pan the Euclidean action for the KL is given by
occurs atT~Ag or the phase transition to an AFM state
occurs aff = Ty~zI| wherezis a coordination number in the B
KL. If Ty=~Ak the interference between two trends results in A=A0—f d7Hne(7),
the decrease of both characteristic temperatures or in sup- 0
pressing one of them. As was noticed in Refs. 24 and 28, in

this case the SL correlations with characteristic energiges B — .
8es A= Adc.f1= || 47, (61— o(=i7)+ 1o, (7

~| may overcome the AFM correlations, and the spin sub-
system of the KL can condense in a SL state yet in a region .
of weak Kondo coupling. + (7 (0, —imTI2)f,(7)}. 9
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Following the Popov-Fedotov procedure, the imaginarytics complementary to that of semifermiotisThe spin cor-
chemical potential is included in discrete Matsubara frequenrelations in the intersite RKKY term are treated in terms of

cies for semifermion operatoffs,. As a result the Matsub-
ara frequencies are determined @s=27T(m+1/4) for
spin semifermions andc,=2xT(n+1/2) for conduction

vector Bose fieldY¥ (AFM modeg and a scalar fieldV (spin
liquid RVB mode. As a result, A, is represented by the
following expression:

electrons. In terms of the temperature Green’s function the

Euclidian action has the form

A= Agt Aini= 25 €,Go ' (K)Ciis

+j2 fio(@n) Do @) f il p)

J

t3

D 2 Cle) ()] 0 (@1)C) 0 (82)

joo’ €m:@n

X 581—82,w1_0)2+ I E E f_jo'(wl)

oy oq

X T 1o (02) T (@3) Ty 1 (02) By ) 03—
(10
Here the Green'’s function&F's) for bare quasiparticles are
1
iwn—ogh’/2
(12)

(v is the index of magnetic sublattice that defines the direc
tion of the staggered magnetic figld

. 1 :
GO(kvlen):ie _8k+M1D60(|wm):
n

The first interaction term in this equation is responsible

for low-energyKondo correlations, and we will treat it in
conventional mannér In the RKKY term two modes should
be considered, namely the local mode of AFM
fluctuation$®*and the nonlocal spin liquid correlatiofs3?
For these modes we adopt thédiype antiferromagnetism
and the resonating valence boiiVB) type spin liquid state,

respectively. In accordance with the general path-integral ap-

proach to KL's, we first integrate over fa@lectron degrees
of freedom. Then in thef-exchange contribution to the ac-
tion (10) we are left with the auxiliary fieldp with a statis-

2 5 1 1
Aint=—=Tr[¢|*=Tr=Y Y _q— Tr——Wpy Wp,
J lq la,~a, v

—Trf,,Go(N b1 f1- (12)

When making a Fourier transformation for nonlocal spin lig-
uid correlations(the third term on the right hand sideve
introduced the coordinateR=(R;+R)/2 andr=R;—R,

for the RVB field, andP,q are the corresponding momenta.
Below we assum@®=0 and omit it in notations for the SL
mode,Wo,=Wj.

A consequent mean-field approach demands the introduc-
tion of three “condensates,” i.e., three time-independent
c-fields for Kondo coupling, AFM coupling, and SL cou-
pling, respectively, that arise as a consequence of a saddle-
point approximation for all three modes. For example, the
mean-field description of the interplay between the Kondo
and RVB couplings was presented in Refs. 23 and 25. The
undesirable consequence of this approximation is the viola-
tion of the electromagnetic () gauge invariance, when the
electrical charge is ascribed to an initially neutral spin fer-
mion field f (see, e.g., Ref. 12 According to a scenario
offered in Ref$*and 32, there is no necessity of introducing
the mean-field saddle point for Kondo coupling because the
transition to a correlated spin state occur§ atTy . In this
case the one site Kondo correlations suppress te plase
transition(reduceTﬁ,—>TN) in favor of the spin liquid state
with a characteristic crossover temperatlite>Ty,. There-
fore we refrain from using the saddle-point approximation
for the field ¢ but still use it for the fieldsy andW.

To condense the equation for the actidrwe introduce a
spinor representation for semifermions

Fo=for fpi forar fpral)
and the following definition of the Fourier transform of the
inverse semi-fermionic Green’s function

| wm—W, 0 Y% Yo
B 0 [ wm—W, Yo -Y5
Dt (W,,Yo)= vz vt . W 0 (13
Q Q lom=Wptq
Yo -5 0 fwm— Wy o
|
The same function in a lattice representation is presented in A=Tr ED;1F+Aim. (14)

Appendix A. This operator arises as a result of the Hubbard-
Stratonovich transformation decoupling the magnetic modes

Y and the spin-liquid mod&V. Then the effective actionl,
acquires the form

18441

Now we integrate over semi-Fermionic fields and obtain the
effective action for a KL model,
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Then the effective action is approximated by the polynomial

— 2
As=Tr In[D (Y, W)+ ¢;Go(r) 1 — 3Tr| &|? expansion
L . Trin[D, (Y, W) +K,]=TrinD,(N,A)
—TFEYqY,q—TI’Hququ. (15) o (_ 1)n+l
, 1% . +TrY, ————{Dn(N,A)
Here the argumeriip|* appears in the Green’s functid, n=1 n

as a result of integration of the last term in Efj2) over the -
semi-Fermionic fields. X[M(Y,0)+K4]}" (20
In a mean-field approximation for two independent mode
(neglecting renormalization due to Kondo scatteyirfgy.
(15) results in a free energy with two local minima reflecting
two possible instabilities o]‘ the high-temperature paramagi,,
netic state relative to the e and SL states. To describe dr

these instabilities one should pick out the classic part of th?ollowing expression for the free energy per lattice cell:

S(the Fourier transform of the diagonal part of the Green’s
functionK , is calculated in Appendix A

Neglecting all fluctuations, i.e., retaining only the first
m in the right hand side of Eq20) together with qua-
atic terms for the AFM and SL modé¢$5), one obtains the

Neel field,
| - Bzl |N?
Y=( ﬁN)l/ZEqN&q,Qéwyoeﬁ Yo, (16) BFN,A)=—,——In[2 costiBzINI2)]
and use the eikonal approximation for the SL field, Bz|1|A2
We, = 1A () exili 0). (17 +— —Eq In[2 coshiBlA)] (21)

Here N'=(Yg) is the staggered magnetizatiovly are the (Io=—1). The standard self-consistent mean-field equations

fluctuations around the mean-field magnetizatiQnis the  for the order parameters are obtained from the condition of
AFM vector for a given bipartite lattices, is the unit vector  minima of the free energy. These are

along the magnetization axid,(r) is the modulus of RVB
field, andé=[r-A(R)] is the phase of this field. I

It is known for Heisenberg lattices dimensiods 1 that J\f=tank(%/‘) (22)
Ty is higher than the temperatufg, of the crossover to the ]
SL state, so that the ordered magnetic phase is the Ne&r the Nesl parameter and
phase. Due to Kondo fluctuations that screen dynamically
local magnetic correlations and slightly enhance the intersite A= 2 v(q)tam(ﬁ 23)
semi-Fermionic correlations, the balance between two modes T
is shifted towards the spin liquid phase in a critical region of
Doniach’s diagramT~1. To show this we include in the for the real part of the RVB order parameter. Her)
free energy the corresponding corrections induced by the last |q/lo- The latter equation was first derived in Ref. 34.
term in Eq.(12). As was mentioned above we refrain from  Then making the high-temperature expansion of &4),
using the mean-field approach to the Kondo field, so that thene obtains a Ginzburg-LandaGL) equation in the ap-
interplay between the Kondo mode and two other modes iffoximation of two independent modes:
taken into account by including the Blemean-field correc-

tions to the semi-Fermionic Green’s function. Then insteaqg}—(NA):'B“ |ZN2 TN+CNN4+'B|I |ZA2 7o+ CgAt (24)
of Eq. (13) one has the following equation f@ ~*: ’ 4 2
D, {(N,A) where 7y=1-Ty/T and ry=1—T,/T. The temperatures
. of two magnetic instabilities are determined as the tempera-
fon—Alq 0 Mqf2 0 tures of sign inversion in the coefficients in the quadratic
0 wom— Al 0 —M/2 terms of the GL expansioy=z|I|/2 and T¢=|l|. The
= Mo/2 0 i o — Al 0 . fourth-order GL coefficientgy andcg, are positive and de-
Q m q pend only on temperature. Up to this point the theory is
0 —Mql2 0 lon—Alg formulated for arbitrary dimensiod. In fact, the dimension-

(18) ality enters the RKKY coupling parametéee below and
dietermines the number of nearest neighboré/e consider

The next steps, i.e., calculation of fluctuation corrections t . . .
4l asa universal parameter in further calculations.

the stationary point mean-field solutions, can be performe
by introducing the auxiliary self-energies,
Ill. DONIACH’S DIAGRAM REVISITED

Y, _n-1 N1
M(Y,0)=Dp (Y, W)= Dp (NA) To describe the contribution of Kondo scattering to the

magnetic part of the Doniach’s diagram one should integrate
K . )=—T (wn, —)Gy(r,Q) —Q). (19 A over the auxiliary fieldp and thus find the Kondo correc-
o Ony Ony) %: $in = WG(r D) i(@n,~ D). (19 tions to both the Nel and RVB instability points. One should
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Dy (N) AFM < SL
, P i L b N 5 T 0 T - 7
S 50 I
45 ¢ 40 F ) fT«n) /I 7
én(a) én(a) 4| o0 TY // 1N I
G pal 20 F 71 /|
@ m+n(P) = 35| 1ol AR / |
a3 %00 o005 0,10//0.15 0,2€N ll
D,, (IPA) W 31 T Tsl // ]
e - £ 25 | *or Ty AN / Tx -
N & 3.0 - i /
E 2+ 20t / T® // 7
¢" (q) ¢n (q) g 15 1.0 | sl //
. [ 00 =2 o B
b Gm+n(p + q) = 0.00 0.05 /
( ) % 1| // i
FIG. 1. Diagrams for the fluctuation contribution to the effective = 05 TN 1
action responsible for Kondo screening corrections to magi@tic 2 s

and spin liquid(b) correlations. 0 0 0.05 0.1 0.15 0.2

: _ _ Coupling constant J/€g
consider two casedi) Ty>Tg (Kondo corrections screen

AFM magnetic momenjs and (i) T¢,>Ty (Kondo correc- FIG. 2. Doniach’s diagram with modifications due to Kondo
tions enhance nonlocal RVB correlations screening(see text for explanation

(i) Kondo screening of AFM ordein this case one takes
A=0 in the Green'’s functio(18). Then adding the last term Then differentiation of Eq(27) with respect to the Nal
of Eq. (12) to the effective action and integrating over the order parameteN gives the following self-consistent equa-
semi-Fermionic fields yields the correction to the effectivetion in the vicinity of the renormalized transition point,
action in a form of polarization operators given by the first

1

diagram in Fig. 1a). | ay  cosH(BINI2)
Here the external wavy lines stand for the “semi- N=tan T (28

Bosonic” field ¢ describing Kondo correlationésee Ref. In(T/T) COSH('BIQN)

33). These semi-Bosonic fields are still bosons from the point,siead of Eq(22). Here the Kondo temperatufi is de-
of view of the permutation relations, but unlike true BosoniCfined as the temperature where the coefficient in front of
fields they do not satisfy symmetric boundary conditions 2. . o~

) . Tédn=0|7 In EQ. (25), i.e., the function)™ *— SII(N), turns to
and cannot condense in a state with zero frequency and mi)‘-z?ooht i sgeg ﬁ)mt the screening correctio(rf\s/)near fred Ne
mentum. So the Popov-Fedotov formalism gives an adequa ?anéition point are negativesTI(NV—0)= — ay(BN)2<0
description of the fact that there is no broken symmetry cor-SO that Kondo screening effectively increasgs the maé]netic
responding to the Kondo temperatdreThe polarization

loop is formed by the conduction electron propagaBy free energy, and eventually the logarithmic local-field correc-

P IS y . S ,p bag tionsreducethe Neel temperature. The numerical solution of
(solid line) and local semi-Fermionic Green's functi@,, Eq. (28) is shown by the circles in Fig. 2. The top inset
given by Eq.(18) (see Appendix A for the explicit form of 9. y 9. 2 b

these Green’s functiopsAs a result the modified effective |IIustrat§ s thgz reduction Ty (;n compzarlson with the bare
mean-field Nel temperaturél = zera“/2, wherea=J/s¢

action is is the dimensionless coupling constant for the Doniach’s dia-
1 gram.
AQFZE == SIL(N) || ()% (25) (i) Kondo enhancement of SL transitidow we assume
an | J N=0 in Eqg.(21) and subsequent equations. Following the

same lines as in the preceding subsection, one obtains the

The logarithmic renormalization of the coupling constant IS odified effective action

already taken into account th Therefore the dimensionless

integral 611 includes only contributions due to a nonzero 1
magnetic molecular fielf A¢=22 3—5H(IqA) | dn(Q)]? (29
q,n
1 2 . N .
51-[(]\/):{2 — — ____1l+0 —) ) (26) instead of Eq(25), and the polarization integral with the use
2\ coshBN) Ter of the diagram(b) from Fig. 1 is given by

(see Appendix B for detailed calculationg his correlation
correction should be incorporated in the equation for the free STI(1,A) = E
energy, so that a

1
m—l‘HKA tanl’(,Bh(A)}

1

I — 30
><g§+q+(77/2,8)2 80

BFN)=BFN,0)+TrIn . (27)

Py
j (
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instead of Eq(26) (see Appendix B Hereé,=¢,—&er isthe  still described in the mean-field approximation. Although the
dispersion law for conduction electrons near the Fermi surlocal constraint for spin operators is not violated in the
face. Inserting the corresponding corrections to the free erPopov-Fedotov formalism, the gauge phase is still fiesh
ergy, the next task is the consideration of fluctuation back flows
described by the higher-order terms of the Ginzburg-Landau

expansion.

BF(A)=BF(O0A)+Trin . (31

1
5= ollgA)
IV. ISING SPIN GLASSES IN DONIACH'S DIAGRAM

one obtains the corrected self-consistent equation Xor

When deriving this equation, the spinon dispersion can be [N this section we consider the interplay between Kondo
neglected sinc& —O0 in a critical point. Then one has scattering and magnetic correlations in the case @inalom

RKKY interaction (3), where the randomness results in the
[(q)A a formation of a spin-glass phase. We consider disorder in-
tanh —— | tag=——==|. (32 duced by paramagnetic impurities in KL. As was shown in
T TIn(T/Tk) ; . :
Ref. 37, elastic scattering results in the appearance of a ran-

Hereag~1 is a numerical coefficient. It is seen from Eq. dom phasej(r) in RKKY indirect exchange parameter,
(32) that unlike the case of local magnetic order, Kondo scat-

[4A

A=—§ v(q)

tering favors transition to the SL state, because this scattering ) cos{ZpFr — —(d+1)+8(r)
means in fact involvement of itinerant electron spin degrees =11 )~ — J_ 2 33
of freedom into spinon dynamics. Mathematically, enhance- i =1(r)= e (2pgr)? . (33

ment arises becau&ﬂ](lqA—>O)=a3|(,8lqA)2>0, so that
Kondo “antiscreening” effectively decreases the magneticwherer=|R,—R;| andd is the dimensionality of the KL.
free energy. The results of the numerical solution of EqsThis form of random exchange predetermines two possible
(31) and(32) are represented by circles in Fig. 2. scenarios of SG ordering.

Here filled circles correspond to the region where the (i) Fluctuations take place around a node of the RKKY
AFM order overcomes the SL phase, and the light circlesnteraction(33). This asymptotic behavior is derived from
show unphysical “suppressed” AFM solutions obtained be-the general equation for the RKKY exchange paranmétét,
yond the region of validity of the mean-field equati(28).

Two other characteristic temperatures, renormalizgdand _ 3 7 [pead ‘ 23 v

T,, are shown by dashed and solid lines, respectively. Théll ~ s d—1\ 271 (Per)TJarz-1(Per) Yarz-1(Per)
effects of suppression dfy (thin and thick solid lines for

bare and renormalized temperatyraad T (thin and thick +Jar2(PEN) Y ar2( PEF) ]

dotted lines are illustrated by the upper and lower inset, [a, is the lattice spacing],(x) and Y,(x) are the Bessel
respectively. As is seen from the modified Doniach's dia-fnctions of the first and second kihdn this case FM and
gram, the interplay between three modes becomes significajgiep honds enter the partition function on equal footing, and
in a critical region where the exchange coupling constant I{uenched independent random variabijesan be described

closc_e to the.point:zczo.lB wherd = Ay in.the.conventionall by a Gaussian distributiorﬁ’(lij)~exp:—|i2-N/(2|2)].4° The
Doniach’s d|ag(r(%m. If th(%)Kondo screening is not tak(_an 'ntomagnetic ordering effects also can be i:’lcluded in our ap-
account, thenl'g)’() <Ty"(a) (thin solid and dotted lines noach by introducing a nonzero standard deviatidr: 0

in the lower insett The Kondo screening changes this pictureiny the distributionP(1;;) that, in turn, results in additional
radically, and as a result, a wide enough interval of the Pazompetition between SG and AFKr, in some cases, FM

rametera just to the right of the critical valuey. arises, giates. Recently, the competition between AFM and SG re-
where the enhanced transition temperafligeexceeds both gimes was considered in Ref. 41.

the reduced Na temperaturd,, and the Kondo temperature (i) RKKY exchange fluctuates around some negative
Tk . The calculations of ¢, presented in Fig. 2 are performed 51ue in the AEM domain of exchange parameters. In this
for d=2. A similar picture exists fod=3, although the ¢ase there is a competition between SG, SL, and AFM
domain of the stable SL state is more narrfer a given  phases. The third possibility, i.e., fluctuations in the FM do-
value ofzl). This means that in this region the stable mag-main is somewhat trivial because in this case Kondo fluctua-
netic phase is, in fact, the spin liquid phase. If one descendgons cannot significantly change the freezing scenario.
from high temperatures in a hatched region of Doniach's \we start with the caséi). To understand the situation

diagram wherd'~ Ty, the Kondo scattering suppresses theqajitatively we make the following simplifying approxima-
AFM correlations, but the SL correlations quench the Kondajons, First, we consider only a Ising-like exchange in the

processes at some temperatig>Tyx. As a result the Hamiltonian(3):

Kondo-type saddle point is not realized in the free-energy

functional in agreement with the assumption made above in , ez

our derivation of Ginzburg-Landau expansion. The prelimi- H'=-2 1;SS]. (34)
nary version of this scenario was presented in Ref. 24. The 0

more refined mean-field approach described here confirmBhis is a usual approximation in the theory of spin glasses
and enhances this scenario, however, the SL liquid phase that allows one to forget about the quantum dynamics of the
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spin variabled? In the original papéf the simplifying as- _

sumptions (=, separate electron bath for each localizedA{f® #2.y2 x} =2, Ta[(D) 1 - oh(y?x)]f2

spin) were made. Thus the form of the spin-spin correlator &

was predetermined, and these assumptions allowed the au- 2

thors to obtain an exact solution in a framework of dynami- —= > |32 (38
cal mean-field theory. We refrain from using these approxi- Jon

mations. Second, we confine ourselves with the mean-field a o ~ < a . .
(replica symmetrig solution of the Edward-AndersofEA) and h(y?x)=1\zqx+1vz(q—q)y? is an effective local

model** This means that only a pairwise interaction of near_magnetlc field, which depends on the diagonal and off-

est neighbors is taken into account. The numibef nearest  diagonal elements of the Parisi matrixj=(S7(0)S(t
neighbors should be big enouglz ¢<1) to justify the —=)) andq=(S}(0)S’(t—=)) (a#b), respectively. The
mean-field approximation. We consider the interplay belatter one is the EA order parametg,=q. Neglecting all
tween SG and Kondo-type correlations by means of the regluctuations and retaining only the first two terms in the ex-
lica method. We use the approach developed in Ref. 45 foponent in Eq(37), one comes to the EA mean-field equation
the Sherrington-Kirkpatrick modéf. Both electron and for the free energy,

semifermion variables are replicated—c?,f—f®, where

2
a=1,...n), and the number of replicas is tended to zero, BF= z(B1) [(1-9)%—(1-q)?]
so that the free energy per cell is given by the linfit 4
=Bfllimnﬁo(l—<3”>av)/(nN). Here the replicated parti- G
ton function is - [Cmizcostpxzal. @9
<Z”>aU:H f d|ijP(|ij)H D{c? 2 } (see Ref. 4¥ Then making the high-temperature expansion,
Y one obtains the Ginzburg-Landau equation in the vicinity of

i 48
><ex;{ Ao[Ca,fa]—fOﬁdTHint(T)) (35 the SG transitiorf’ 2
2(B1)

where A, (10) corresponds to noninteracting fermions. BFsq=— 0 7sg— Csgl°+ dsga”, (40)
Averaging over disorder and integrating out high-energy

electronic states by virtue of a replica-dependent Hubbardwhere 74,=1—T/T and T;= Jzl is a spin-glass freezing

Stratonovich transformation one arrives at the followingtemperature.

equation Like in the previous case of the ordered KL we incorpo-
J12 rate the static replica dependent magnetic fielth semi-
Zny = J D{c? 2, p2vexp Ao+ —Tr[X2 Fermionic Green'’s functions. As a result, the modified effec-
(20 11 { ¢ F{ 0" 4N [X7] tive action for the Kondo fields arises like in Eq5) and
(29),
A a~afa_ rafan~a 2 al2
] g gretees e Bl Aly* x]=In{2 cosliBh(y*x)]}
(36 1
with -2 5 —olih(y* 0] |lgfl% (4D
X2(7,7) =2, > TR (7)ot ( T)??J,(T’)U'f?,,,(r’)- Here similarly to Eq{(26)
I zr,(r'
Then following the standard pattern of replica theory for spin | 1 2
glasse®*" one fixes the saddle point in spin space related to oIl (h)= 2 cosh gh) -1/+0 T_eF : (42

the EA order parametejz 5. At this stage the initial problem ) ] ]
is mapped onto a set of independent Kondo scatterers for lofyinally, performing the Gaussian average over #héields
energy conduction electrons in external replica dependent efnd taking the limitn— 0 one obtains the free energy

fective magnetic field:

- 1 -
BF(0,q)= ZZ(ﬁI)Z(qZ—qZ)

- jfm(

<Z”>av:exp( - %Z(ﬁl )PNING?+n(n—1)?]
IGZ coshgh(y,x) /{1

y

31t foran

—JH[O,h(y,x)]}). (43
X explA{f?, 6%, y? X)) ) (37) -~
Corrected equations fogq and q are determined from the
where [$f(x) denotesf” .dx/y2mexp(—x32)f(x), conditionsdF(q,q)/9q=0, 97(q,q)/dq=0. These are

184410-7



M. KISELEYV, K. KIKOIN, AND R. OPPERMANN PHYSICAL REVIEW B65 184410

1( 7 feamc 1( )2 fsamc 3
_Z e —_—, _Z = — , 1.1
2 Al x dq 2 Al x 09 T R
: 5 :;:/
C=f 2 costigh(y,x)1/{1—=JI[0h(y,x)]}. (44 : 2:q ]
y w 06
2 )
Under the conditionh(y,x)<1 a useful approximate o 1.5 - oy
equation forC is obtained® 2
g 17
- 1 ,~ =
In[CC(x,9,0)]= — 5 IN[1+ yu*(q—q)] 5
2 L
= 05
u? [g—q(1+yx?)]
- 0 -

2 1+yu?(q—q) o 0.65 011 0.15
Coupling constant J/€

,( uxyq )
cosh ————=——1|.

1+yu(q—Qq)
Here the following shorthand notations are usee:gl/z, _ .
C=JlecIn(T/ITy) and y=2¢/In(T/Ty) with c= (m/d+ 2/72) SG, 'Fhe authors obta_med str(()or;g reduction of Kondo tempera-
~1. We note again that whed=0, which corresponds to tUre in the same regiomi,~T;™".
the absence of Kondo interaction, C(x,q,q)
-2 exp[%z(ﬂl)z(a—q)]cosh((le\/Z]), and Eq.(44) turns into V. CORRELATIONS IN THE KONDO LATTICE BEYOND

. o . . THE MEAN FIELD

the standard EA equation, providing, e.g., an exact identity

+In (45 FIG. 3. Doniach’s diagram for spin-glass transition in a disor-

dered KL(see text for explanation

q=1. The mean-field Doniach’s diagram even in its improved
In the vicinity of the freezing point Eq44) acquires the form oversimplifies enormously the real picture of the inter-
form play between three competing modes in the effective action

(12). First of all, the proximity of three characteristic tem-
peratures, Ty, Tg, and Ty means that even when one of
) them is dominant, i.e., determines the local minimum of the
free energy, two others define the fluctuations around the
saddle point. Second, it is clear physically that only thelNe
G 2 ,le\/Zq temperaturely is a temperature of geal phase transition,
a= L tan 1+2¢2(B)AG—q)/In(T/Te) whereasT, and Ty are merely c_:haracteristic crossover tem-
peratures. The main shortcoming of the mean-field approxi-
q mation is that this approach treats all three modes on equal
+O(2— . (46)  footing. The method described in the preceding section al-
In*(T/Tx) lows one to get rid of the artificial phase transition Tat
As a result of the numerical solution of Eqg6) we obtain = 1. however, the problems with the description of the SL
the analog of Doniach's diagram for a disordered KL whergPhase _st|II exist. Meanwhile, it is kn_own that the mean-field
the spin-glass freezing temperatures without and with Kond(‘?‘pprc_’x'm"",;5'23”27“5%r the SL state violates the local gauge
screening contributions are showd{{) and T;, respec- invariancé®**2"*%and fixes the phasé of the SL modew
tively). (17). The seéaqnd—order phgse transition from paramagnetic to
HereT%O) is obtained from the GL equatidd0) neglect- the .SL stat 'Sdaf? unde_swable COTO”aW Or: this crugek;ap—
ing the Kondo screening effect, ari} was defined from proximation, and fluctuation corrections to the mean-field so-
Egs.(46) under additional conditio@®F,,/dq?=0. The in- lution cannot improve this defect of the theory.
flueﬁce of Kondo screening on the disaggonal elément of th In this section we consider sevr—_zral scenarios of mode-
o o . ) ¥node correlations in a system described by the general equa-
Parisi mfltrlxq is illustrated by the inset of Fig. @he bare  {jgns (9) and (12) for the effective actionA. First, we offer
value ofq=1 is shown by the dashed lind.ike in the case the description of @rossoverto a SL state, which allows one
of a perfect KL, the screening effect is noticeable whento bypass the mean-field saddle pdi28). It will be demon-
TO~TO strated that the interplay between fluctuations of the fields
The influence of the SG transition on a Kondo temperaand Y, can trigger the transformation of localized critical
ture for a KL with SG freezing was studied recently in Ref. relaxation AFM modes into SL-type correlations without loss
49. Although the Kondo effect in this paper is considered inof criticality. The main idea of our scenarios is that the heavy
a mean-field approximatiofi.e., Kondo screening is treated fermion state of KL is, in fact, an unconventional AFM state
as a true phase transitipand a static ansatz was applied for with spin excitations changing their character from Bose-like

o1 2c o 1
a In(T/Ty) IN(T/Tyx)
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tation of the spin mode. Instead of introducing the mdde

J
I,
J
associated with the gauge noninvariarn(iLlfield described @
J

l
¢ ¢*
{ o)
\ Y
\ /
M\
l
by the phase& in Eq. (17), we consider the effect of inter- I
¢ ¢*
/ \
4d 5\

spin fluctuations or spin waves to Fermi-like spinon modes.
Next, we consider the behavior of the Kondo mode below
T, and describe the quenching of Kondo scattering by SL
fluctuations in a hatched part of Doniach’s diagréfig. 2)
where the static molecular field is absent.

We demonstrated above that the Kondo screening en-
hances SL correlations on a level of the mean-field approxi-
mation. A similar effect should exist on a more refined level
of interacting fluctuation modes. To find the corresponding
mechanism we refrain from the use of the bilocal represen-

ference of Kondo screening modes associated with spins lo-
cated on different sites of the KL. In fact we consider the
high-temperature precursors of the orthogonality catastrophe

mentioned by Nozieres in his formulation of the “exhaustion
problem.”®® In a revised scheme we start with the action v 6 v
determined by the Hamiltoniail). Starting with the integra- i MW WM I
tion over “fast” electronic variablegwith energies~eg), ! I

we obtain

\ 4
2 , 1 o - M
Aini=— =Tr| ¢ —TrI—YqY_q—Tr fi00;Go(r) ifi 4 ¢ é
! ’ (b) g :

—Tr ¢;pllahp;—Tr Y llgh ;Y . (47) ) ) o
FIG. 4. Diagrams for fourth- and sixth-order polarization opera-
Here instead of introducing the scalar modlewe retained torslIl, (a) andIls (b) in the effective action responsible for mode-
higher-order terms in the Kondo screening fields. Thesénode coupling.
terms are illustrated by the diagrams in Fig. 4.
The diagram in Fig. @) describes the interference of 1 o
Kondo clouds around the sit& andR, . Zigzag lines stand 6Aett=7 q;w Y, wn)[17(a) + X06n0] Y*(Q, @)
for the AFM vector mode. Like all screening diagrams in e (50)
Fermi systems it contains a Friedel-like oscillating factor. To

estimate the polarization operator we use the asymptotigjere o are Cartesian coordinateg,= /4 is a static Curie
form of the electron Green’s function id dimensions at susceptibility of an isolated spi= 1/2 [Fig. 5a)]. The term

large distance¥;** in square brackets is, in fact, the inverse Ornstein-Zernicke
correlator~a§(Q—q)2+ v at T=Ty and Q—g—0. The
|Q| first nonvanishing correction tg, is given by Fig. Bb).
G(r'Q)NT(d—l)/zeX’{_z_stFr In this diagram the spinsS; and S, are screened inde-
Pr pendently,the wavy lines represent all parquet vertex inser-
d+1 tions). In the mean-field approach the similar effects are de-
+i pFr—wT sgn Q. (48
Y ~-P~<_ Y
Inserting this function in a four-tail diagram of Fig(a}, one i W MW
comes to pRirag

(@)
coS 2per —(d+1 il J !
1 Per—(d+1)5 1 [T
H4"’——2 -1 +0 —3|n— . (49) . Y \ Y
Tef  (2pgr) sf LeF i WWé W 1
Therefore we expect that this interference correlates with \ /
J l
(b)

RKKY-type magnetic order, and the interaction between the

corresponding modes represented by the diagianm Fig.

4 influences the magnetic response in a “critical” region of  FIG. 5. Diagrams describing loc&Curie-type magnetic sus-
the Doniach’s diagram. This response is determined by theeptibility x, (@) and nonlocal correction taking into account Kondo
fluctuation corrections to N effective action, screening of verticefb).
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5(a) with the wave vectog=Q also exists in this tempera-
ture interval, and, moreover, this mode is dominant in the
spin susceptibility alf=Ty. This means that the nonlocal
contributions of Fig. 6 should be taken also at thgs®ue

to nonlocality, the temperature dependence of the spin polar-
ization loop will be weaker than the Curie lawTl/and the
inverse static susceptibility given by these diagrams is

X0 (M =xo (M + x5 (T +Tg. (51)

This deviation from the Curie law results in a depression of
the Neel phase transition or, in other words, in extension of
critical regime to temperatures well beIo]?ﬂ, in accordance

with the scenario described in Ref. 28. Magnetic instabilities
that can emerge éit<T,?, will be the instabilities of the spin

liquid phase. These instabilities have much in common with
itinerant fluctuational magnetism considered, e.g., in Refs.

FIG. 6. Leading diagrams describing interference of Kondo52 and 53.

clouds in magnetic susceptibiligee text for details

Diagram(a) in Fig. 7 with bare spinon propagators gives
only a local correction to the susceptibility, howeverTat

scribed by Eq. (28). Indeed, each vertex correction <Tﬁ where the spinon lines are dressed by the self-energies

Fi:j,|(w,6)~<¢(6)$(e)) gives the contribution- 1/In(e/Ty),
and integration over the internal frequeneyesults in the

1/In(TS/Ty) correction in Eq(28).2432

shown in Fig. 6a), this diagram also becomes nonlocal and,
therefore contributes to the nonlocal term on the right-hand
side of Eq.(51). The processes taken into account in diagram

The effects essentially beyond mean field are described b{P) Of Fig. 7 describe the feedback influence of spin fluctua-
those diagrams that cannot be cut along a pair of electrofons on the Kondo screening. This diagram together with

propagatorgsolid lineg [see Figs. 6 and(@)]. The first of

higher-order terms of the same type results in the dynamical

these diagramgFig. 6a)] can be treated as a nonlocal cor- suppression of ¢ as a result of the appearance of spin fluc-

rection to the one site spin susceptibilffyig. 5a)] induced

tuation energywgs~ & % in the logarithmic Kondo contribu-

by interfering flow and counterflow of two Kondo clouds. As tion In(er/maxT,ws). This mechanism is effective not too
a result, the spin-fermion propagator becomes nonlocal withclose to the real’y where the magnetic correlation lenggh

out introducing the mean-field order parametéir). The
next diagram[Fig. 6(b)] is a kind of “exchange” by these

determining the short-range magnetic order is still compa-
rable with the lattice spacingherez is the dynamical critical

clouds in the course of two-spinon propagation. Up to noweXponent

we exploited the “proximity” effectsT=T . A critical AFM

This schematic description is only a scenario of the theory

AL
i VW P

\\ ,’
(@) T
¢ / \ ¢
J J
(b)

around the SG transitions are beyond the scope of this paper.
Some details of modulated replica symmetry breaking
schemes, which combine treelike and wavelike structures in
AFM SG may be found in Ref. 41. A more detailed calcula-
tion of the critical magnetic and spin-glass fluctuations in the
spin liquid will be published separately.

VI. CONCLUDING REMARKS

We derived in this paper the phase diagram for the Kondo
lattice model, starting with a high-temperature expansion of
the effective action. As a first step, we succeeded in getting
rid of one of the fictitious saddle points, i.e., we avoided the
introduction of “Kondo-condensate” averagés, f;,) used
in previous revisions of the Doniach’s diagr&i?> In our
modified Doniach’s diagranFig. 3) the renormalized T is
the lowest of all characteristic temperatures for all reasonable
values of coupling constamt where one can neglect valence
fluctuations. In fact, the mean-field calculations of Ref. 25
give a similar picture. The feedback of this result is that the

FIG. 7. (a) Next to parquet approximation for Kondo corrections Strong Kondo regime is unachievable in a critical region of
to the magnetic susceptibilityh) magnetic fluctuation correction to Doniach’s diagram, and the real role of Kondo screening for

single-site Kondo scattering.

small @ whereTy>T4> Tk is to reduce localized magnetic
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moments and enhance the electronic density of states aroustrong electron mass enhancement. So, the heavy fermion
er. Thus the moderately heavy fermion systems with relastate in accordance with this picture is a two-component
tively big magnetic moments ordered antiferromagneticallyFermi liquid where the characteristic energies of the charge
arise (Celp,CeAl, are possible examples* subsystem(slow electrons withe<Ty) and the spin sub-

In a critical region of Doniach’s diagram Kondo screeningSystem(spinons witho~Tg) are nearly the same.
changes radically the behavior of KL. According to our An exponentially narrow low-energy peak of predomi-
mean-field results the conventional AFM order is suppressefantly spin origin appears practically in all theories of
at T~T,=Ty. The SL phase that arises instead is, neverStrongly correlated electron systems. In the archetypal Hub-
theless, close to magnetic instability, and one can expect thi2rd model this peak arises on the dielectric side of Mott-

the spin subsystem eventually orders magnetically. If theHUbbard transition, and .St'” exists on the metallic side,
- - - . where the charge and spin degrees of freedom are already
new ftransition temperaturgy is finite the singlet spinon .o ied. This is the point where the links between Hubbard

coupling is incomplete, so that RVB's have residual mag-yng Anderson models arise at least on a level of dynamical
netic moments, and these moments are order@d-aty (we  mean-field theory(DMFT) valid at d— .5 On the other
emphasize once more th@f marked by light circles in a hand, the mean-field solution that results in merged charge
hatched region of the phase diagram of Fig. 3 is not a reahnd spin degrees of freedom in a central peak becomes exact
transition temperature. It rather designates the temperatuig the largeN theories for theN=o saddle point’ Recent
region where critical AFM fluctuations ariseOf course, the achievements in this direction are connected with confirma-
magnitude of these moments is extremely small, and one cdiPn of Noziere's prediction of a second scale in the Kondo
qualify this type of magnetic order as intermediate between@ttice’" in the limit of the exhaustion regime of small elec-
localized and itinerant AFM. In the temperature inter¥al tron concentration. At this temperature the “bachelor” spins

<T<Ty the critical AFM relaxation mode characterizes thefor.m a C‘?h.eref“ Fermi liquid .and lose their localized nature.
This anticipation was confirmed by recent calculations

magnetic response of the system. Wh‘EmiO, one deals jthin the mean-field slave boson approximationNofsc
with a quantum phase transition, and the cage 0, appar-  theory® In our approach the regime of bachelor spins does
ently, corresponds to short-range correlations existing in @ot arise, because the Kondo coupling remains weak even at
wide temperature intervalQOT<Ty. This picture describes T<Ty (see abovg but the spin degrees of freedom become
in gross features the magnetic properties of magnetic KL'scoherent aff ~T,,,, S0 that the existence of two coherence
but any kind of quantitative description will be possible only scales is an intrinsic property of the model.
after realization of the scenarios for the critical behavior of  Another aspect of larg& theories is the possibility of
spin liquid briefly sketched in Sec. V. supersymmetric description that allows combined description
Now we turn to the discussion of conclusions that couldof spin degrees of freedom in a mixed fermion-boson I$)J(
be derived from our theory concerning the nature of therepresentatior’ This approach allowed the authors to retain
heavy fermion state. The most important one is that the sepantersite RKKY interaction in the limit oN— in spite of
ration of charge and spin degrees of freedom existing in KL1/N? effect of suppression of all intersite magnetic correla-
at high temperatures takes place also in a strong-couplingons in a standard largd approach. The use of the Popov-
regime atT<Ty . Indeed, at high exceeding all character- Fedotov representation allows the treatment of different
istic temperatures in the KL the spin excitation spectrum ismagnetic modes described by these operators as semifermi-
simple structureless peak of the widfraround zero energy. ons or semibosons in different physical situatidh#n this
This peak is manifested as Curie-type magnetic susceptibilitpaper we appealed to SU(2) symmetry. The general recipe of
and trivial high-temperature correctionsl/T" to all thermo-  generation of modes with intermediate statistics between
dynamic quantities due to weak paramagnetic spin scatteringermi and Bose limiting cases for the U)( algebra is of-
of the conduction electrons, whose Fermi-liquid continuumfered in Ref. 60. In fact, the eventual transformation of the
exists as independent charge branch of the elementary excitates with intermediate statistics into true fermiéimsson$
tations. Since all transformations of the spin subsystem occuccurs only affT—0. Thus this approach may be extremely
at T>Ty (at least in a region ofv<<0.2 where the valence useful for an adequate description of quantum phase
fluctuations are still negligible this central peak still exists transitions®!
in a strong-coupling regime. BelowWw ~ Ty this peak is In principle, other collective modes can modify the sce-
formed by spin liquid excitations. The character of these exnario of the AFM phase transition in KL's. In particular, the
citations resembles relaxation modes in a picture of fluctuatow-lying crystal-field excitations may intervene the mag-
tion itinerant magnetisf>%in a wide temperature interval netic phase transition in the same fashion as Kondo clouds in
down toT.,, where the coherent spin liquid regime of Fermi our theory. Probably the CeNiSn family of semimetallic
type is established. The interaction between the SL mode arklondo lattices is an example of such an intervenffon.
the conduction electrons is the same exchange-type scatter-

ing as at high temperatures. This coupling constaris,
however, enhanced by the Kondo eff¢see Eq.(25)]. The
electrons in a layer of the widti around the Fermi level Authors thank A. Mishchenko for fruitful collaboration in

interact nonadiabatically with spin fermions at Io0wAs a  the early stages of this work, A. Luther, D.Aristov, and G.
result the giant Migdal effect aris®swhich results in a  Khaliullin for valuable discussions, and A. Tsvelik for useful
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hospitality. transform of the Green’s functiok ;, (19). This is
|
$n(K)G(q) (k) 0 $n(K)G%(Q) n(k+Q) 0
0 $n(K)G(q) (k) 0 $n(K)G(q) ¢n(k+Q)
$n(k+Q)G%q) pn(K) 0 $n(k+Q)G%q) pn(k+Q) 0
0 $n(k+Q)G(q) ¢n(K) 0 ¢n(k+Q)G%q) pn(k+Q)

The component® ,,,(q) of the semi-Fermionic Green’s 0
functionD in Eq. (20) are determined by inverting the matrix (Y, W)= —TmZ Dimg(P)Gmin(p+a) (B
(18). There are normal and anomalous components, P

Only the normal componeltfA2) survives in this equation as

B — wm— Wy a result of spin summation. The Neel lofpig. 1(a)] after
_ iomT, - . .
fo dre'n"(T.f,(q,7)7,(a.0)) (i o= Wq)2— Y2 (A2) performing frequency summation acquires the form
and
-Y +Y
(Y, 0= tanl‘(é) & ——+ & —
5 B vz b 2T/ (&= Y)2 N2 (£+Y)%+N
— | drelem™(T f (9,7, (q+Q,0)=——"——,
fo (T.f,(a.1f,(q+Q,0) (o W22
! (A3) + A ! + !
i COSHY/T) | (£,—Y)2+N2  (£,+Y)2+\2
respectively. Here/ =M /2 andWy=14A.
To perform calculations in real space, one should know v _y Ly
the inverse Green’s functiofil3) in coordinate representa- —tan)’(—) & _ b )
tion: TI(&=Y)2 N2 (£,+Y)2+\2
D (W,Y) (B2)
i wm+ sz Yi+ W, 0 Here §,=e,—&r, A=nT/2. This integral is an even func-
tion of the order parametef](Y)=II(—Y). Using the in-
Y iom— Y] 0 W equalityY<eg, two last terms can be simplified, and intro-
= . . ducing the integral over the electron band with constant
W, 0 ion—YF Y, density of stateg,, one has
0 le Y|_ iwm+Y|Z 1 - §
- =P
(A4) I(Y,0= 4pof_EFd§Itanl‘( ZT)
It should be noted that the nonlocal teii; in Eq. (A4)
responsible for SL correlations transforms into diagonal term &Y EtY
W, in momentum representati¢h3), whereas the local stag- > 2 > 2
(&= Y)"+N" (& Y)+N

gered fieldY; has nondiagonal matrix elements in momen-
tum space corresponding to AFM correlationgatQ.

T Y Y
Po +po tanl‘(f). (B3)

+
APPENDIX B: 2cosliY/T) e

The sum of polarization integrals presented in Fig. 1 isincorporatingpg in dimensionless variables, one has in the
given by the following equation: vicinity of the Neel point whereY<T,
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ey, =~/ i Y oYZ) (B4) s
YO =z|Inl—|+7m|—ay|=| +tO|=—]. B4
( 2 4T2 NI T Teg oy "( APY ’_(IpA)_’_ )N

anh —= anh — |+ s——+——
The logarithmic term is, in fact, included in the renormalized ~ _ 1 D i 2T) ° T ] 2coshilpA/T)
coupling constand in Eq. (25) for the effective action, and 2% §S+ \? '

the remaining terms give Ed26) for SI1. Deeper in the
magnetic phase wheré>T, the Kondo effect is quenched
by the molecular field, so that

(B6)

This function is also eved ] (A)=1I(—A). Extracting from
_ (B5) Eq. (B6) the logarithmic term In{:/2T), one comes to Eq.
(30) for SI1. In a critical region of Doniach’s diagram where
A<T, one has

2
+0

€ 2

Y

Y

IT=In >
€F

+by

The numerical coefficientay ,by arising from approximate
estimates of the integrals in E¢A3) are of the order of
unity.

The SL loop[Fig. 1(b)] can be estimated faq=0. After
frequency summation it is presented by the following inte-
gral:

2 2
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SII(0A)=ag— > ——2—,
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