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Ginzburg-Landau functional for nearly antiferromagnetic perfect and disordered Kondo lattices
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Interplay between Kondo effect and antiferromagnetic and spin glass ordering in perfect and disordered
bipartite Kondo lattices is considered. The Ginzburg-Landau equation is derived from the microscopic effective
action written in three mode representation~Kondo screening, antiferromagnetic correlations, and spin liquid
correlations!. The problem of the local constraint is resolved by means of the Popov-Fedotov representation of
the localized spin operators. It is shown that the Kondo screening enhances the tendency to a spin-liquid
crossover and partially suppresses antiferromagnetic ordering in perfect Kondo lattices and spin glass ordering
in doped Kondo lattices. The modified Doniach diagram is constructed, and possibilities of going beyond the
mean-field approximation are discussed.
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I. INTRODUCTION

The Kondo lattice~KL ! systems are famous for their un
usual electronic and magnetic properties, including giant
fective masses observed in thermodynamic and de Haas
Alphen measurements,1 unconventional superconductivity2

and a fascinating variety of magnetic properties.3 The great
majority of the metallic KL systems demonstrates antifer
magnetic~AFM! correlations and all types of the AFM orde
may be found in these compounds. There are localized s
in U2Zn17,UCd11,CeIn3,3 quadrupole ordering in CeB6,4 in-
terplay between localized and itinerant excitations in sev
U-and Ce-based compounds,5 puzzling magnetic order o
tiny moments in UPt3 ,URu2Si2 ,UNi2Al3,6 quantum phase
transition in CeCu62xAux ,7 fluctuation-type dynamical or
dering in U(Pt12xPdx)3,8 short-range magnetic correlation
in the astonishingly wide temperature interval of critical b
havior in CeCu6 and CeRu2Si2.9 This list is by no means
exhaustive. The superconducting state in most cases coe
with antiferromagnetism, and, apparently, Cooper pairing
self is mediated by magnetic fluctuations.2,10 The dominant
contribution to the low-temperature thermodynamics is a
given by spin degrees of freedom.11,12

On the other hand, all low-temperature characteristics
KL’s are determined by a Kondo temperatureTK . These
characteristics are Fermi-like, but the energy scale of
‘‘fermion’’ spectrum is renormalized by a factorTK /«F rela-
tive to a conventional electron Fermi liquid.3 Apparently, the
AFM correlations due to Ruderman-Kittel-Kasuya-Yosi
~RKKY ! interactionI partially suppressed by intrasite Kond
effect should be treated as a background for all unusual p
erties of Kondo lattices. The main theoretical challenge is
find a scenario of crossover from a high-temperature reg
of weak interaction~scattering! between localized spins an
conduction-electron Fermi liquid to a low-temperatu
strong-coupling regime where the spins lose their locali
nature and are confined into an unconventional quantum
uid involving spin degrees of freedom of conduction ele
trons.

In the phase diagram of the disordered KL more exo
possibilities such as non-Fermi-liquid regimes arise, wh
were observed, for example, near theT50 quantum critical
0163-1829/2002/65~18!/184410~14!/$20.00 65 1844
f-
an

-

ns

al

-

ists
t-

o

f

e

p-
o
e

d
q-
-

c
h

point in Y1-xUxPd3 ~see, e.g., Ref. 13!. In this family of
ternary alloys the spin-glass~SG! behavior was discovered in
a U concentration range 0.3,x,0.5 with a freezing tem-
peratureTf growing monotonically withx ~see Ref. 14!.
Among other U-based heavy fermion compounds with
behavior, URh2Ge2,15 U2Rh3Si5,16 and U2PdSi3 ~Ref. 17!
should be mentioned. The effects of ‘‘Kondo disorder’’ we
reported for UCu52xPdx in Ref. 18. Later on the competition
between RKKY and Kondo exchange for disordered Ce
loys was discovered experimentally~see Refs. 19–21!. The
magnetic phase diagram of CeNi1-xCux exhibits change of
magnetic ordering from AFM to ferromagnetic~FM! at x
50.8, whereas for 0.2,x,0.8 the SG state appears only
high temperatures above the FM order. Apparently,
Kondo interaction could be considered as the mechan
leading to the reduction of magnetic moments because
creasing Ni contents effectively reduces the strength of
indirect exchange interaction, and then, a larger tempera
stability range of the SG phase appears~see Refs. 19 and 20!.

The competition between the one-site Kondo-type cor
lations and the indirect intersite exchange is visualized
Doniach’s diagram where possible phase transition
crossover energies are plotted as functions of a ‘‘bare’’ c
pling parametera5J/«F characterizing the exchange inte
action between the spin and electron subsystems in KL22

Only Kondo screening and RKKY coupling were competi
in the original Doniach diagram. Later on it was noticed th
the trend to spin liquid~SL! ordering is the third type of
correlation which modifies essentially the magnetic ph
diagram of KL’s in a critical regionTK;I of the Doniach
diagram.23–25

In this paper we present a high-temperature mean-fi
description of transitions from a paramagnetic state to co
lated spin states in KL’s, which does not violate the loc
constraint for the spin-fermion operators. We use the Pop
Fedotov representation of spin operators26 to construct the
effective action for KL’s. In this representation the local co
straint is rigorously fulfilled. We consider the mutual influ
ence of various order parameters~Kondo, AFM, SL, and SG
correlation functions! and derive a Ginzburg-Landau func
tional ~Sec. II!. On the basis of this functional we constru
generalized Doniach’s diagrams that take into account all
©2002 The American Physical Society10-1
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interplays. The Doniach diagram for a perfect KL is pr
sented in Sec. III and the influence of Kondo screening
the SG diagram for a disordered KL is considered in Sec.

All existing theories appeal to mean-field approximatio
that violate the local gauge invariance both in the Kondo a
SL channels.27 As a result, fictitious second-order phase tra
sitions from a free spin~paramagnetic! state to a confined
spin ~Kondo singlet or resonating valence bond SL! state
arise in spite of the fact that neither symmetry is violated
these transformations. A different approach allows us to
rid of the assumption of a Kondo-type ‘‘condensate’’ with
the framework of a mean-field theory. To eliminate the fic
tious phase transition to a SL state one should refrain fro
mean-field approach to the SL mode. We offer a scenari
a continuous crossover from a paramagnetic state of lo
ized spins to the SL state, where the interplay between c
cal AFM fluctuations and Kondo screening clouds in KL
results in ‘‘Fermionization’’ of spin excitations at low tem
peratures~Sec. V!. In Sec. VI the interrelations between th
theory and real heavy fermion systems is briefly discuss

II. DERIVATION OF EFFECTIVE ACTION

The Hamiltonian of the KL model is given by

H5(
ks

«kcks
† cks1J(

j
S Sjsj1

1

4
Njnj D . ~1!

Here the local electron and spin-density operators for c
duction electrons at sitej are defined as

nj5(
j s

cj s
† cj s , sj5(

s

1

2
cj s

† t̂ss8cj s8 , ~2!

wheret̂ are the Pauli matrices andcj s5(kcks exp(ikj). The
SG freezing is possible if an additional quenched rando
ness of the intersite exchangeI j l between the localized spin
arises. This disorder is described by

H85(
j l

I j l ~SjSl !. ~3!

We start with a perfect Kondo lattice. The spin corre
tions in KL’s are characterized by two energy scales, i.eI
; J2/«F , andDK;«F exp(2«F /J) ~the intersite indirect ex-
change of the Ruderman-Kittel-Kasuya-Yosida~RKKY ! type
and the Kondo binding energy, respectively!. At high enough
temperatures the localized spins are weakly coupled with
electron Fermi sea having the Fermi energy«F , so that the
magnetic response of a rare-earth sublattice of a KL is
paramagnetic Curie-Weiss type. With decreasing tempera
either a crossover to a strong-coupling Kondo singlet reg
occurs atT;DK or the phase transition to an AFM sta
occurs atT5TN;zI wherez is a coordination number in th
KL. If TN'DK the interference between two trends results
the decrease of both characteristic temperatures or in
pressing one of them. As was noticed in Refs. 24 and 28
this case the SL correlations with characteristic energiesDs
;I may overcome the AFM correlations, and the spin s
system of the KL can condense in a SL state yet in a reg
of weak Kondo coupling.
18441
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To describe all three modes in a unified way one sho
derive a free-energy functionalF(T) in a region of T
.(TN ,DK ,Ds). First, we integrate out the highest energi
;«F . Here and below we use the dimensionless coupl
constantsJ→J/«F , I→I /«F , etc. Since we are still in a
weak-coupling limit of Kondo-type scattering, we may r
strict ourselves to the standard high-temperature renorm
ization of the one site couplingJ→ J̃(T)51/ln(T/DK) and the
second-order equation of perturbation theory inJ for RKKY
interaction. As a result, one arrives at an effective Ham
tonian

H̃5(
ks

«kcks
† cks1 J̃(

j
sjSi2I(

j l
SjSl

1gh(
i

~21! jSj
z . ~4!

Here all energies are measured in«F51 units, and an
infinitesimal staggered magnetic field is introduced that
spects the symmetry of the magnetic bipartite lattice in
AFM case («F is restored in further calculations wherever
is necessary!.

To calculate the spin part of the free energyFs(T)
52TlnZs we represent the partition functionZ in terms of
a path integral. The spin subsystem is described by mean
the Popov-Fedotov trick26

Zs5Tr e2bH5 i NTr e2b[H1 ipNf /(2b)] . ~5!

Hereb5T21, N is the number of unit cells,Nf5( jNj
f , and

the spinS51/2 operators are represented by bilinear com
nations of fermion operators

Sj
z5~ f j↑

† f j↑2 f j↓
† f j↓!/2, Sj

15 f j↑
† f j↓ , Sj

25 f j↓
† f j↑ . ~6!

These operators obey the constraint

Nj
f5(

s
f j s

† f j s51. ~7!

In accordance with Ref. 26, the Lagrange term with a fix
imaginary chemical potential2 ipT/2 is added to the Hamil-
tonian ~1!. We use the path-integral representation for t
partition function,

Z
Z05

E Dc̄DcD f̄D f expA

E Dc̄DcD f̄D f expA0

. ~8!

Then the Euclidean action for the KL is given by

A5A02E
0

b

dtHint~t!,

A05A0@c, f #5E
0

b

dt(
j s

$c̄ j s~t!@]t2«~2 i¹!1m#cj s~t!

1 f̄ j s~t!~]t2 ipT/2! f j s~t!%. ~9!
0-2
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Following the Popov-Fedotov procedure, the imagina
chemical potential is included in discrete Matsubara frequ
cies for semifermion operatorsf j s . As a result the Matsub
ara frequencies are determined asvm52pT(m11/4) for
spin semifermions anden52pT(n11/2) for conduction
electrons. In terms of the temperature Green’s function
Euclidian action has the form

A5A01Aint5(
ks

c̄ksG0
21~k!cks

1(
j s

f̄ j s~vn!D0s
21~vn! f j s~vn!

1
J̃

2 (
j ss8

(
«m ,vn

c̄j s~«1! f j s~v2! f̄ j ,s8~v1!cj ,s8~«2!

3d«12«2 ,v12v2
1I (

j l ,sg
(
vn

f̄ j s~v1!

3 t̂ss8 f j ,s8~v2! f̄ l ,g~v3!t̂gg8 f lg8~v4!dv12v2 ,v32v4
.

~10!

Here the Green’s functions~GF’s! for bare quasiparticles ar

G0~k,i en!5
1

i en2«k1m
,D0s

n ~ ivm!5
1

ivm2sghn/2
~11!

(n is the index of magnetic sublattice that defines the dir
tion of the staggered magnetic field!.

The first interaction term in this equation is responsi
for low-energyKondo correlations, and we will treat it in
conventional manner.29 In the RKKY term two modes should
be considered, namely the local mode of AF
fluctuations30,31and the nonlocal spin liquid correlations.31,32

For these modes we adopt the Ne´el-type antiferromagnetism
and the resonating valence bond~RVB! type spin liquid state,
respectively. In accordance with the general path-integral
proach to KL’s, we first integrate over fast~electron! degrees
of freedom. Then in thes f-exchange contribution to the ac
tion ~10! we are left with the auxiliary fieldf with a statis-
d
rd
de

18441
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tics complementary to that of semifermions.33 The spin cor-
relations in the intersite RKKY term are treated in terms
vector Bose fieldsY ~AFM mode! and a scalar fieldW ~spin
liquid RVB mode!. As a result,Aint is represented by the
following expression:

Aint52
2

J̃
Trufu22Tr

1

I q
YqYÀq2Tr

1

I q12q2

WPq1
WPq2

2Tr f̄ j sf jG0~r !f̄ l f ls . ~12!

When making a Fourier transformation for nonlocal spin l
uid correlations~the third term on the right hand side! we
introduced the coordinatesR5(Rj1Rl)/2 and r5Rj2Rl
for the RVB field, andP,q are the corresponding moment
Below we assumeP50 and omit it in notations for the SL
mode,W0q[Wq .

A consequent mean-field approach demands the introd
tion of three ‘‘condensates,’’ i.e., three time-independe
c-fields for Kondo coupling, AFM coupling, and SL cou
pling, respectively, that arise as a consequence of a sad
point approximation for all three modes. For example,
mean-field description of the interplay between the Kon
and RVB couplings was presented in Refs. 23 and 25.
undesirable consequence of this approximation is the vi
tion of the electromagnetic U~1! gauge invariance, when th
electrical charge is ascribed to an initially neutral spin f
mion field f ~see, e.g., Ref. 12!. According to a scenario
offered in Refs.24 and 32, there is no necessity of introducin
the mean-field saddle point for Kondo coupling because
transition to a correlated spin state occurs atT.TK . In this
case the one site Kondo correlations suppress the Ne´el phase
transition~reduceTN

0 →TN! in favor of the spin liquid state
with a characteristic crossover temperatureT* .TN . There-
fore we refrain from using the saddle-point approximati
for the fieldf but still use it for the fieldsY andW.

To condense the equation for the actionA we introduce a
spinor representation for semifermions

F̄p5~ f̄ p↑ f̄ p↓ f̄ p1Q↑ f̄ p1Q↓!,

and the following definition of the Fourier transform of th
inverse semi-fermionic Green’s function
Dm
21~Wp ,YQ!5S ivm2Wp 0 YQ

z YQ
1

0 ivm2Wp YQ
2 2YQ

z

YQ
z YQ

1 ivm2Wp1Q 0

YQ
2 2YQ

z 0 ivm2Wp1Q

D . ~13!
the
The same function in a lattice representation is presente
Appendix A. This operator arises as a result of the Hubba
Stratonovich transformation decoupling the magnetic mo
Y and the spin-liquid modeW. Then the effective actionAs

acquires the form
in
-
s

As5Tr F̄Dm
21F1Aint . ~14!

Now we integrate over semi-Fermionic fields and obtain
effective action for a KL model,
0-3
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As5Tr ln@Dm
21~Y,W!1f jG0~r !f̄ l #2

2

J̃
Trufu2

2Tr
1

I q
YqY2q2Tr

1

I q12q2

Wq1
Wq2

. ~15!

Here the argumentufu2 appears in the Green’s functionDm
as a result of integration of the last term in Eq.~12! over the
semi-Fermionic fields.

In a mean-field approximation for two independent mod
~neglecting renormalization due to Kondo scattering! Eq.
~15! results in a free energy with two local minima reflectin
two possible instabilities of the high-temperature param
netic state relative to the Ne´el and SL states. To describ
these instabilities one should pick out the classic part of
Néel field,

Y5~bN!1/2
I q

2
Ndq,Qdv,0ez1Ỹq , ~16!

and use the eikonal approximation for the SL field,

WR,r5ID~r !exp~ iu!. ~17!

Here N5^YQ
z & is the staggered magnetization,Ỹq are the

fluctuations around the mean-field magnetization,Q is the
AFM vector for a given bipartite lattice,ez is the unit vector
along the magnetization axis,D(r ) is the modulus of RVB
field, andu5@r•A(R)# is the phase of this field.

It is known for Heisenberg lattices dimensionsd.1 that
TN is higher than the temperatureTsl of the crossover to the
SL state, so that the ordered magnetic phase is the N
phase. Due to Kondo fluctuations that screen dynamic
local magnetic correlations and slightly enhance the inter
semi-Fermionic correlations, the balance between two mo
is shifted towards the spin liquid phase in a critical region
Doniach’s diagram,TK;I . To show this we include in the
free energy the corresponding corrections induced by the
term in Eq.~12!. As was mentioned above we refrain fro
using the mean-field approach to the Kondo field, so that
interplay between the Kondo mode and two other mode
taken into account by including the Ne´el mean-field correc-
tions to the semi-Fermionic Green’s function. Then inste
of Eq. ~13! one has the following equation forD21:

Dm
21~N,D!

5S ivm2DI q 0 NI Q/2 0

0 ivm2DI q 0 2NI Q/2

NI Q/2 0 ivm2DI q 0

0 2NI Q/2 0 ivm2DI q

D .

~18!
The next steps, i.e., calculation of fluctuation corrections
the stationary point mean-field solutions, can be perform
by introducing the auxiliary self-energies,

M ~Ỹ,u!5Dm
21~Y,W!2Dm

21~N,D!

Kf~vn1
,vn2

!52T(
V

fj~vn1
2V!G0~r ,V!f̄ l~vn2

2V!. ~19!
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Then the effective action is approximated by the polynom
expansion

Tr ln@Dm
21~Y,W!1Kf#5Tr ln Dm

21~N,D!

1Tr(
n51

`
~21!n11

n
$Dm~N,D!

3@M ~Ỹ,u!1Kf#%n ~20!

~the Fourier transform of the diagonal part of the Gree
function Kf is calculated in Appendix A!.

Neglecting all fluctuations, i.e., retaining only the fir
term in the right hand side of Eq.~20! together with qua-
dratic terms for the AFM and SL modes~15!, one obtains the
following expression for the free energy per lattice cell:

bF~N,D!5
bzuI uN 2

4
2 ln@2 cosh~bzIN/2!#

1
bzuI uD2

2
2(

q
ln@2 cosh~bI qD!# ~21!

(I Q52I ). The standard self-consistent mean-field equati
for the order parameters are obtained from the condition
minima of the free energy. These are

N5tanhS I QN
2T D ~22!

for the Néel parameter and

D52(
q

n~q!tanhS I qD

T D ~23!

for the real part of the RVB order parameter. Heren(q)
5I q /I 0. The latter equation was first derived in Ref. 34.

Then making the high-temperature expansion of Eq.~21!,
one obtains a Ginzburg-Landau~GL! equation in the ap-
proximation of two independent modes:

bF~N,D!5
buI uzN 2

4
tN1cNN 41

buI uzD2

2
tsl1cslD

4 ~24!

where tN512TN /T and tsl512Tsl /T. The temperatures
of two magnetic instabilities are determined as the tempe
tures of sign inversion in the coefficients in the quadra
terms of the GL expansionTN5zuI u/2 and Tsl5uI u. The
fourth-order GL coefficientscN andcsl are positive and de-
pend only on temperature. Up to this point the theory
formulated for arbitrary dimensiond. In fact, the dimension-
ality enters the RKKY coupling parameter~see below! and
determines the number of nearest neighborsz. We consider
zI as a universal parameter in further calculations.

III. DONIACH’S DIAGRAM REVISITED

To describe the contribution of Kondo scattering to t
magnetic part of the Doniach’s diagram one should integr
A over the auxiliary fieldf and thus find the Kondo correc
tions to both the Ne´el and RVB instability points. One shoul
0-4
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consider two cases:~i! TN.Tsl ~Kondo corrections scree
AFM magnetic moments!, and ~ii ! Tsl.TN ~Kondo correc-
tions enhance nonlocal RVB correlations!.

~i! Kondo screening of AFM order. In this case one take
D50 in the Green’s function~18!. Then adding the last term
of Eq. ~12! to the effective action and integrating over th
semi-Fermionic fields yields the correction to the effect
action in a form of polarization operators given by the fi
diagram in Fig. 1~a!.

Here the external wavy lines stand for the ‘‘sem
Bosonic’’ field f describing Kondo correlations~see Ref.
33!. These semi-Bosonic fields are still bosons from the po
of view of the permutation relations, but unlike true Boson
fields they do not satisfy symmetric boundary conditio
and cannot condense in a state with zero frequency and
mentum. So the Popov-Fedotov formalism gives an adeq
description of the fact that there is no broken symmetry c
responding to the Kondo temperature.35 The polarization
loop is formed by the conduction electron propagatorG0
~solid line! and local semi-Fermionic Green’s functionDm
given by Eq.~18! ~see Appendix A for the explicit form o
these Green’s functions!. As a result the modified effective
action is

Af52(
q,n

F1

J̃
2dP~N!G ufn~q!u2. ~25!

The logarithmic renormalization of the coupling constant
already taken into account inJ̃. Therefore the dimensionles
integral dP includes only contributions due to a nonze
magnetic molecular field,36

dP~N!5Fp2 S 1

cosh~bN!
21D1OS N 2

TeF
D G . ~26!

~see Appendix B for detailed calculations!. This correlation
correction should be incorporated in the equation for the f
energy, so that

bF~N!5bF~N,0!1Tr lnF1

J̃
2dP~N!G . ~27!

FIG. 1. Diagrams for the fluctuation contribution to the effecti
action responsible for Kondo screening corrections to magnetic~a!
and spin liquid~b! correlations.
18441
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Then differentiation of Eq.~27! with respect to the Ne´el
order parameterN gives the following self-consistent equa
tion in the vicinity of the renormalized transition point,

N5tanhS I QN
2T D F12

aN

ln~T/TK!

cosh2~bI QN/2!

cosh2~bI QN!
G ~28!

instead of Eq.~22!. Here the Kondo temperatureTK is de-
fined as the temperature where the coefficient in front
ufn50u2 in Eq. ~25!, i.e., the functionJ̃212dP(N), turns to
zero. It is seen that the screening corrections near the N´el
transition point are negative,dP(N→0)52aN(bN)2,0,
so that Kondo screening effectively increases the magn
free energy, and eventually the logarithmic local-field corre
tions reducethe Néel temperature. The numerical solution
Eq. ~28! is shown by the circles in Fig. 2. The top ins
illustrates the reduction ofTN in comparison with the bare
mean-field Ne´el temperatureTN

0 5z«Fa2/2, wherea5J/«F

is the dimensionless coupling constant for the Doniach’s d
gram.

~ii ! Kondo enhancement of SL transition. Now we assume
N50 in Eq. ~21! and subsequent equations. Following t
same lines as in the preceding subsection, one obtains
modified effective action

Af52(
q,n

F1

J̃
2dP~ I qD!G ufn~q!u2 ~29!

instead of Eq.~25!, and the polarization integral with the us
of the diagram~b! from Fig. 1 is given by

dP~ I qD!5(
k

F 1

coshb~ I kD!
211I kD tanh~bI kD!G

3
1

jk1q
2 1~p/2b!2

, ~30!

FIG. 2. Doniach’s diagram with modifications due to Kond
screening~see text for explanation!.
0-5
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instead of Eq.~26! ~see Appendix B!. Herejp5«p2«F is the
dispersion law for conduction electrons near the Fermi s
face. Inserting the corresponding corrections to the free
ergy,

bF~D!5bF~0,D!1Tr lnF1

J̃
2dP~ I qD!G . ~31!

one obtains the corrected self-consistent equation forD.
When deriving this equation, the spinon dispersion can
neglected sinceD→0 in a critical point. Then one has

D52(
q

n~q!F tanhS I ~q!D

T D1asl

I qD

T ln~T/TK!G . ~32!

Here asl;1 is a numerical coefficient. It is seen from E
~32! that unlike the case of local magnetic order, Kondo sc
tering favors transition to the SL state, because this scatte
means in fact involvement of itinerant electron spin degr
of freedom into spinon dynamics. Mathematically, enhan
ment arises becausedP(I qD→0)5asl(bI qD)2.0, so that
Kondo ‘‘antiscreening’’ effectively decreases the magne
free energy. The results of the numerical solution of E
~31! and ~32! are represented by circles in Fig. 2.

Here filled circles correspond to the region where
AFM order overcomes the SL phase, and the light circ
show unphysical ‘‘suppressed’’ AFM solutions obtained b
yond the region of validity of the mean-field equation~28!.
Two other characteristic temperatures, renormalizedTK and
Tsl , are shown by dashed and solid lines, respectively.
effects of suppression ofTN ~thin and thick solid lines for
bare and renormalized temperatures! andTK ~thin and thick
dotted lines! are illustrated by the upper and lower inse
respectively. As is seen from the modified Doniach’s d
gram, the interplay between three modes becomes signifi
in a critical region where the exchange coupling constan
close to the pointac50.13 whereI 5DK in the conventional
Doniach’s diagram. If the Kondo screening is not taken in
account, thenTsl

(0)(a),TN
(0)(a) ~thin solid and dotted lines

in the lower inset!. The Kondo screening changes this pictu
radically, and as a result, a wide enough interval of the
rametera just to the right of the critical valueac arises,
where the enhanced transition temperatureTsl exceeds both
the reduced Ne´el temperatureTN and the Kondo temperatur
TK . The calculations ofTsl presented in Fig. 2 are performe
for d52. A similar picture exists ford53, although the
domain of the stable SL state is more narrow~for a given
value ofzI). This means that in this region the stable ma
netic phase is, in fact, the spin liquid phase. If one desce
from high temperatures in a hatched region of Doniac
diagram whereTK;TN , the Kondo scattering suppresses t
AFM correlations, but the SL correlations quench the Kon
processes at some temperatureTsl.TK . As a result the
Kondo-type saddle point is not realized in the free-ene
functional in agreement with the assumption made abov
our derivation of Ginzburg-Landau expansion. The prelim
nary version of this scenario was presented in Ref. 24.
more refined mean-field approach described here confi
and enhances this scenario, however, the SL liquid phas
18441
r-
n-

e

t-
ng
s
-

c
.

e
s
-

e

,
-
nt

is

o

-

-
ds
s

o

y
in
-
e
s
is

still described in the mean-field approximation. Although t
local constraint for spin operators is not violated in t
Popov-Fedotov formalism, the gauge phase is still fixed,27 so
the next task is the consideration of fluctuation back flo
described by the higher-order terms of the Ginzburg-Lan
expansion.

IV. ISING SPIN GLASSES IN DONIACH’S DIAGRAM

In this section we consider the interplay between Kon
scattering and magnetic correlations in the case of arandom
RKKY interaction ~3!, where the randomness results in t
formation of a spin-glass phase. We consider disorder
duced by paramagnetic impurities in KL. As was shown
Ref. 37, elastic scattering results in the appearance of a
dom phased(r ) in RKKY indirect exchange parameter,

I i j [I ~r !.2S J2

«F
D cosF2pFr 2

p

2
~d11!1d~r !G

~2pFr !d
, ~33!

where r 5uRi2Rj u and d is the dimensionality of the KL.
This form of random exchange predetermines two poss
scenarios of SG ordering.

~i! Fluctuations take place around a node of the RKK
interaction ~33!. This asymptotic behavior is derived from
the general equation for the RKKY exchange parameter,38,39

I i j 52
J2

«F

p

d21 S pFa0
2

2pr D d

~pFr !2@Jd/221~pFr !Yd/221~pFr !

1Jd/2~pFr !Yd/2~pFr !#.

@a0 is the lattice spacing,Jn(x) and Yn(x) are the Besse
functions of the first and second kind#. In this case FM and
AFM bonds enter the partition function on equal footing, a
quenched independent random variablesI i j can be described
by a Gaussian distributionP(I i j );exp@2Iij

2N/(2I2)#.40 The
magnetic ordering effects also can be included in our
proach by introducing a nonzero standard deviationDIÞ0
into the distributionP(I i j ) that, in turn, results in additiona
competition between SG and AFM~or, in some cases, FM!
states. Recently, the competition between AFM and SG
gimes was considered in Ref. 41.

~ii ! RKKY exchange fluctuates around some negat
value in the AFM domain of exchange parameters. In t
case there is a competition between SG, SL, and A
phases. The third possibility, i.e., fluctuations in the FM d
main is somewhat trivial because in this case Kondo fluct
tions cannot significantly change the freezing scenario.

We start with the case~i!. To understand the situatio
qualitatively we make the following simplifying approxima
tions. First, we consider only a Ising-like exchange in t
Hamiltonian~3!:

H852(̂
i j &

I i j Si
zSj

z . ~34!

This is a usual approximation in the theory of spin glas
that allows one to forget about the quantum dynamics of
0-6
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spin variables.42 In the original paper43 the simplifying as-
sumptions (d5`, separate electron bath for each localiz
spin! were made. Thus the form of the spin-spin correla
was predetermined, and these assumptions allowed the
thors to obtain an exact solution in a framework of dynam
cal mean-field theory. We refrain from using these appro
mations. Second, we confine ourselves with the mean-fi
~replica symmetric! solution of the Edward-Anderson~EA!
model.44 This means that only a pairwise interaction of ne
est neighbors is taken into account. The numberz of nearest
neighbors should be big enough (z21!1) to justify the
mean-field approximation. We consider the interplay b
tween SG and Kondo-type correlations by means of the
lica method. We use the approach developed in Ref. 45
the Sherrington-Kirkpatrick model.46 Both electron and
semifermion variables are replicated (c→ca, f→ f a, where
a51, . . . ,n), and the number of replicas is tended to ze
so that the free energy per cell is given by the limitF
5b21lim

n→0
(12^Z n&av)/(nN). Here the replicated parti

tion function is

^Z n&av5) E dIi j P~ I i j !) D$ci ,s
a f i ,s

a %

3expS A0@ca, f a#2E
0

b

dtHint~t! D ~35!

whereA0 ~10! corresponds to noninteracting fermions.
Averaging over disorder and integrating out high-ene

electronic states by virtue of a replica-dependent Hubba
Stratonovich transformation one arrives at the followi
equation

^Z n&av5) E D$ca, f a,fa%expS A01
zI2

4N
Tr @X2#

1E
0

b

dtTrH fac̄af a1f̄af̄ aca2
2

J̃
ufau2J D

~36!

with

Xab~t,t8!5(
i

(
s,s8

f̄ i ,s
a ~t!s f i ,s

a ~t! f̄ i ,s8
b

~t8!s8 f i ,s8
b

~t8!.

Then following the standard pattern of replica theory for s
glasses45,47one fixes the saddle point in spin space related
the EA order parameterqEA . At this stage the initial problem
is mapped onto a set of independent Kondo scatterers for
energy conduction electrons in external replica dependen
fective magnetic field:

^Zn&av5expS 2
1

4
z~bI !2N@nq̃21n~n21!q2#

1(
i

lnF) E D$ f a,fa%E
x

GE
ya

G

3exp~A$ f a,fa,ya,x%!G D ~37!

where*x
Gf (x) denotes*2`

` dx/A2pexp(2x2/2) f (x),
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A$ f a,ca,ya,x%5(
a,s

f̄ s
a@~Dm

(a)!212sh~ya,x!# f s
a

2
2

J̃
(

n
ufn

au2 ~38!

and h(ya,x)5IAzqx1IAz(q̃2q)ya is an effective local
magnetic field, which depends on the diagonal and o
diagonal elements of the Parisi matrix,q̃5^Si

a(0)Si
a(t

→`)& and q5^Si
a(0)Si

b(t→`)& (aÞb), respectively. The
latter one is the EA order parameterqEA5q. Neglecting all
fluctuations and retaining only the first two terms in the e
ponent in Eq.~37!, one comes to the EA mean-field equatio
for the free energy,

bF5
z~bI !2

4
@~12q̃!22~12q!2#

2E
x

G

ln@2 cosh~bIxAzq!#. ~39!

~see Ref. 47!. Then making the high-temperature expansio
one obtains the Ginzburg-Landau equation in the vicinity
the SG transition,48

bFsg5
z~bI !2

4
q2tsg2csgq

31dsgq
4, ~40!

where tsg512Tf /T and Tf5AzI is a spin-glass freezing
temperature.

Like in the previous case of the ordered KL we incorp
rate the static replica dependent magnetic fieldh in semi-
Fermionic Green’s functions. As a result, the modified effe
tive action for the Kondo fields arises like in Eqs.~25! and
~29!,

A@ya,x#5 ln$2 cosh@bh~ya,x!#%

2(
n

F1

J̃
2dP@h~ya,x!#G ufn

au2. ~41!

Here similarly to Eq.~26!

dP~h!5Fp2 S 1

cosh~bh!
21D1OS h2

TeF
D G . ~42!

Finally, performing the Gaussian average over thef fields
and taking the limitn→0 one obtains the free energy

bF~ q̃,q!5
1

4
z~bI !2~ q̃22q2!

2E
x

G

lnS E
y

G

2 cosh@bh~y,x!#/$1

2JP@0,h~y,x!#% D . ~43!

Corrected equations forq and q̃ are determined from the
conditions]F(q̃,q)/]q̃50, ]F(q̃,q)/]q50. These are
0-7
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1

2
z~bI !2q̃5E

x

G] ln C
]q̃

,
1

2
z~bI !2q52E

x

G] ln C
]q

,

C5E
y

G

2 cosh@bh~y,x!#/$12JP@0,h~y,x!#%. ~44!

Under the conditionh(y,x)<1 a useful approximate
equation forC is obtained:45

ln@CC~x,q̃,q!#52
1

2
ln@11gu2~ q̃2q!#

1
u2

2

@ q̃2q~11gx2!#

11gu2~ q̃2q!

1 lnFcoshS uxAq

11gu2~ q̃2q!
D G . ~45!

Here the following shorthand notations are used:u5bIAz,
C5J/eFln(T/TK) and g52c/ ln(T/TK) with c5(p/412/p2)
;1. We note again that whenJ50, which corresponds to
the absence of Kondo interaction, C(x,q̃,q)

52 exp@ 1
2z(bI)2(q̃2q)#cosh(bIxAzq), and Eq.~44! turns into

the standard EA equation, providing, e.g., an exact iden
q̃51.

In the vicinity of the freezing point Eq.~44! acquires the
form

q̃512
2c

ln~T/TK!
2OS 1

ln2~T/TK!
D ,

q5E
x

G

tanh2S bIxAzq

112cz~bI !2~ q̃2q!/ ln~T/TK!
D

1OS q

ln2~T/TK!
D . ~46!

As a result of the numerical solution of Eqs.~46! we obtain
the analog of Doniach’s diagram for a disordered KL whe
the spin-glass freezing temperatures without and with Ko
screening contributions are shown (Tf

(0) and Tf , respec-
tively!.

HereTf
(0) is obtained from the GL equation~40! neglect-

ing the Kondo screening effect, andTf was defined from
Eqs.~46! under additional condition]2Fsg /]q250. The in-
fluence of Kondo screening on the diagonal element of
Parisi matrixq̃ is illustrated by the inset of Fig. 3~the bare
value ofq̃51 is shown by the dashed line!. Like in the case
of a perfect KL, the screening effect is noticeable wh
Tf

(0);TK
(0) .

The influence of the SG transition on a Kondo tempe
ture for a KL with SG freezing was studied recently in Re
49. Although the Kondo effect in this paper is considered
a mean-field approximation~i.e., Kondo screening is treate
as a true phase transition! and a static ansatz was applied f
18441
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SG, the authors obtained strong reduction of Kondo temp
ture in the same regionTK;Tf

(0) .

V. CORRELATIONS IN THE KONDO LATTICE BEYOND
THE MEAN FIELD

The mean-field Doniach’s diagram even in its improv
form oversimplifies enormously the real picture of the inte
play between three competing modes in the effective ac
~12!. First of all, the proximity of three characteristic tem
peratures,TK , Tsl , and TN means that even when one o
them is dominant, i.e., determines the local minimum of
free energy, two others define the fluctuations around
saddle point. Second, it is clear physically that only the N´el
temperatureTN is a temperature of areal phase transition,
whereasTsl andTK are merely characteristic crossover tem
peratures. The main shortcoming of the mean-field appro
mation is that this approach treats all three modes on e
footing. The method described in the preceding section
lows one to get rid of the artificial phase transition atT
5TK , however, the problems with the description of the S
phase still exist. Meanwhile, it is known that the mean-fie
approximation for the SL state violates the local gau
invariance23,28,27,50and fixes the phaseu of the SL modeW
~17!. The second-order phase transition from paramagnet
the SL state34 is an undesirable corollary of this crude a
proximation, and fluctuation corrections to the mean-field
lution cannot improve this defect of the theory.

In this section we consider several scenarios of mo
mode correlations in a system described by the general e
tions ~9! and ~12! for the effective actionA. First, we offer
the description of acrossoverto a SL state, which allows one
to bypass the mean-field saddle point~23!. It will be demon-
strated that the interplay between fluctuations of the fieldf
and YQ can trigger the transformation of localized critic
relaxation AFM modes into SL-type correlations without lo
of criticality. The main idea of our scenarios is that the hea
fermion state of KL is, in fact, an unconventional AFM sta
with spin excitations changing their character from Bose-l

FIG. 3. Doniach’s diagram for spin-glass transition in a dis
dered KL~see text for explanation!.
0-8
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spin fluctuations or spin waves to Fermi-like spinon mod
Next, we consider the behavior of the Kondo mode bel
Tsl and describe the quenching of Kondo scattering by
fluctuations in a hatched part of Doniach’s diagram~Fig. 2!
where the static molecular field is absent.

We demonstrated above that the Kondo screening
hances SL correlations on a level of the mean-field appr
mation. A similar effect should exist on a more refined lev
of interacting fluctuation modes. To find the correspond
mechanism we refrain from the use of the bilocal repres
tation of the spin mode. Instead of introducing the modeW
associated with the gauge noninvariant U~1! field described
by the phaseu in Eq. ~17!, we consider the effect of inter
ference of Kondo screening modes associated with spins
cated on different sites of the KL. In fact we consider t
high-temperature precursors of the orthogonality catastro
mentioned by Nozieres in his formulation of the ‘‘exhausti
problem.’’51 In a revised scheme we start with the acti
determined by the Hamiltonian~1!. Starting with the integra-
tion over ‘‘fast’’ electronic variables~with energies;«F),
we obtain

Aint52
2

J̃
Trufu22Tr

1

I q
YqYÀq2Tr f̄ j sf jG0~r !f̄ l f ls

2Tr f̄ jf lP4f̄ lf j2Tr Y j f̄ jf lP6f̄ lf jY l . ~47!

Here instead of introducing the scalar modeW we retained
higher-order terms in the Kondo screening fields. Th
terms are illustrated by the diagrams in Fig. 4.

The diagram in Fig. 4~a! describes the interference o
Kondo clouds around the sitesRj andRl . Zigzag lines stand
for the AFM vector mode. Like all screening diagrams
Fermi systems it contains a Friedel-like oscillating factor.
estimate the polarization operator we use the asympt
form of the electron Green’s function ind dimensions at
large distances,32,38

G~r ,V!;
1

~pFr !(d21)/2
expF2

uVu
2«F

pFr

1 i S pFr 2p
d11

4 D sgn V G . ~48!

Inserting this function in a four-tail diagram of Fig. 4~a!, one
comes to

P4;2
1

T«F
2

cosF2pFr 2~d11!
p

2 G
~2pFr !d21

1OS 1

«F
3

lnF T

«F
G D . ~49!

Therefore we expect that this interference correlates w
RKKY-type magnetic order, and the interaction between
corresponding modes represented by the diagram~b! in Fig.
4 influences the magnetic response in a ‘‘critical’’ region
the Doniach’s diagram. This response is determined by
fluctuation corrections to Ne´el effective action,
18441
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dAe f f5
1

4 (
q,a,vn

Ya~q,vn!@ I 21~q!1x0dn,0#Y
a~q,vn!.

~50!

Herea are Cartesian coordinates,x05b/4 is a static Curie
susceptibility of an isolated spinS51/2 @Fig. 5~a!#. The term
in square brackets is, in fact, the inverse Ornstein-Zerni
correlator;a0

2(Q2q)21tN at T*TN and Q2q→0. The
first nonvanishing correction tox0 is given by Fig. 5~b!.
In this diagram the spinsSj and Sl are screened inde
pendently,~the wavy lines represent all parquet vertex ins
tions!. In the mean-field approach the similar effects are

FIG. 5. Diagrams describing local~Curie-type! magnetic sus-
ceptibility x0 ~a! and nonlocal correction taking into account Kond
screening of vertices~b!.

FIG. 4. Diagrams for fourth- and sixth-order polarization ope
torsP4 ~a! andP6 ~b! in the effective action responsible for mode
mode coupling.
0-9
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scribed by Eq. ~28!. Indeed, each vertex correctio
G i 5 j ,l(v,e);^f~e!f̄~e!& gives the contribution;1/ln(e/TK),
and integration over the internal frequencye results in the
1/ln(TN

0/TK) correction in Eq.~28!.24,32

The effects essentially beyond mean field are describe
those diagrams that cannot be cut along a pair of elec
propagators~solid lines! @see Figs. 6 and 7~a!#. The first of
these diagrams@Fig. 6~a!# can be treated as a nonlocal co
rection to the one site spin susceptibility@Fig. 5~a!# induced
by interfering flow and counterflow of two Kondo clouds. A
a result, the spin-fermion propagator becomes nonlocal w
out introducing the mean-field order parameter~17!. The
next diagram@Fig. 6~b!# is a kind of ‘‘exchange’’ by these
clouds in the course of two-spinon propagation. Up to n
we exploited the ‘‘proximity’’ effectsT*TK . A critical AFM
mode given by the Fourier transform of the diagram of F

FIG. 6. Leading diagrams describing interference of Kon
clouds in magnetic susceptibility~see text for details!.

FIG. 7. ~a! Next to parquet approximation for Kondo correctio
to the magnetic susceptibility;~b! magnetic fluctuation correction to
single-site Kondo scattering.
18441
by
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5~a! with the wave vectorq.Q also exists in this tempera
ture interval, and, moreover, this mode is dominant in
spin susceptibility atT*TN . This means that the nonloca
contributions of Fig. 6 should be taken also at theseq. Due
to nonlocality, the temperature dependence of the spin po
ization loop will be weaker than the Curie law 1/T, and the
inverse static susceptibility given by these diagrams is

xQ
21~T!5x0

21~T!1xsl
21~T!1 Ĩ Q . ~51!

This deviation from the Curie law results in a depression
the Néel phase transition or, in other words, in extension
critical regime to temperatures well belowTN

0 in accordance
with the scenario described in Ref. 28. Magnetic instabilit
that can emerge atT!TN

0 will be the instabilities of the spin
liquid phase. These instabilities have much in common w
itinerant fluctuational magnetism considered, e.g., in Re
52 and 53.

Diagram~a! in Fig. 7 with bare spinon propagators give
only a local correction to the susceptibility, however atT
!TN

0 where the spinon lines are dressed by the self-ener
shown in Fig. 6~a!, this diagram also becomes nonlocal an
therefore contributes to the nonlocal term on the right-ha
side of Eq.~51!. The processes taken into account in diagr
~b! of Fig. 7 describe the feedback influence of spin fluctu
tions on the Kondo screening. This diagram together w
higher-order terms of the same type results in the dynam
suppression ofTK as a result of the appearance of spin flu
tuation energyvs f;j2z in the logarithmic Kondo contribu-
tion ln(«F /max$T,vsf%). This mechanism is effective not to
close to the realTN where the magnetic correlation lengthj
determining the short-range magnetic order is still com
rable with the lattice spacing~herez is the dynamical critical
exponent!.

This schematic description is only a scenario of the the
of critical phenomena in KL’s. The discussion of fluctuatio
around the SG transitions are beyond the scope of this pa
Some details of modulated replica symmetry break
schemes, which combine treelike and wavelike structure
AFM SG may be found in Ref. 41. A more detailed calcu
tion of the critical magnetic and spin-glass fluctuations in
spin liquid will be published separately.

VI. CONCLUDING REMARKS

We derived in this paper the phase diagram for the Kon
lattice model, starting with a high-temperature expansion
the effective action. As a first step, we succeeded in get
rid of one of the fictitious saddle points, i.e., we avoided t
introduction of ‘‘Kondo-condensate’’ averages^cks

† f is& used
in previous revisions of the Doniach’s diagram.23,25 In our
modified Doniach’s diagram~Fig. 3! the renormalized TK is
the lowest of all characteristic temperatures for all reasona
values of coupling constanta where one can neglect valenc
fluctuations. In fact, the mean-field calculations of Ref.
give a similar picture. The feedback of this result is that t
strong Kondo regime is unachievable in a critical region
Doniach’s diagram, and the real role of Kondo screening
small a whereTN.Tsl.TK is to reduce localized magneti
0-10
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moments and enhance the electronic density of states ar
«F . Thus the moderately heavy fermion systems with re
tively big magnetic moments ordered antiferromagnetica
arise (CeIn3 ,CeAl2 are possible examples!.54

In a critical region of Doniach’s diagram Kondo screeni
changes radically the behavior of KL. According to o
mean-field results the conventional AFM order is suppres
at T;Tsl*TN . The SL phase that arises instead is, nev
theless, close to magnetic instability, and one can expect
the spin subsystem eventually orders magnetically. If

new transition temperatureT̃N is finite the singlet spinon
coupling is incomplete, so that RVB’s have residual ma

netic moments, and these moments are ordered atT5T̃N ~we
emphasize once more thatTN marked by light circles in a
hatched region of the phase diagram of Fig. 3 is not a
transition temperature. It rather designates the tempera
region where critical AFM fluctuations arise!. Of course, the
magnitude of these moments is extremely small, and one
qualify this type of magnetic order as intermediate betwe

localized and itinerant AFM. In the temperature intervalT̃N

,T,TN the critical AFM relaxation mode characterizes t

magnetic response of the system. WhenT̃N50, one deals
with a quantum phase transition, and the caseT̃N,0, appar-
ently, corresponds to short-range correlations existing i
wide temperature interval 0,T,TN . This picture describes
in gross features the magnetic properties of magnetic K
but any kind of quantitative description will be possible on
after realization of the scenarios for the critical behavior
spin liquid briefly sketched in Sec. V.

Now we turn to the discussion of conclusions that co
be derived from our theory concerning the nature of
heavy fermion state. The most important one is that the se
ration of charge and spin degrees of freedom existing in
at high temperatures takes place also in a strong-coup
regime atT!TK . Indeed, at highT exceeding all character
istic temperatures in the KL the spin excitation spectrum
simple structureless peak of the widthT around zero energy
This peak is manifested as Curie-type magnetic susceptib
and trivial high-temperature corrections;1/Tn to all thermo-
dynamic quantities due to weak paramagnetic spin scatte
of the conduction electrons, whose Fermi-liquid continuu
exists as independent charge branch of the elementary
tations. Since all transformations of the spin subsystem oc
at T.TK ~at least in a region ofa,0.2 where the valence
fluctuations are still negligible!, this central peak still exists
in a strong-coupling regime. BelowTsl;TK this peak is
formed by spin liquid excitations. The character of these
citations resembles relaxation modes in a picture of fluct
tion itinerant magnetism52,53 in a wide temperature interva
down toTcoh where the coherent spin liquid regime of Ferm
type is established. The interaction between the SL mode
the conduction electrons is the same exchange-type sca
ing as at high temperatures. This coupling constantJ̃ is,
however, enhanced by the Kondo effect@see Eq.~25!#. The
electrons in a layer of the widthTK around the Fermi leve
interact nonadiabatically with spin fermions at lowT. As a
result the giant Migdal effect arises55 which results in a
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strong electron mass enhancement. So, the heavy ferm
state in accordance with this picture is a two-compon
Fermi liquid where the characteristic energies of the cha
subsystem~slow electrons withe,TK) and the spin sub-
system~spinons withv;Tsl) are nearly the same.

An exponentially narrow low-energy peak of predom
nantly spin origin appears practically in all theories
strongly correlated electron systems. In the archetypal H
bard model this peak arises on the dielectric side of Mo
Hubbard transition, and still exists on the metallic sid
where the charge and spin degrees of freedom are alre
coupled. This is the point where the links between Hubb
and Anderson models arise at least on a level of dynam
mean-field theory~DMFT! valid at d→`.56 On the other
hand, the mean-field solution that results in merged cha
and spin degrees of freedom in a central peak becomes e
in the large-N theories for theN5` saddle point.57 Recent
achievements in this direction are connected with confirm
tion of Noziere’s prediction of a second scale in the Kon
lattice51 in the limit of the exhaustion regime of small ele
tron concentration. At this temperature the ‘‘bachelor’’ spi
form a coherent Fermi liquid and lose their localized natu
This anticipation was confirmed by recent calculatio
within the mean-field slave boson approximation ofN→`
theory.58 In our approach the regime of bachelor spins do
not arise, because the Kondo coupling remains weak eve
T!TK ~see above!, but the spin degrees of freedom becom
coherent atT;Tcoh , so that the existence of two coheren
scales is an intrinsic property of the model.

Another aspect of largeN theories is the possibility of
supersymmetric description that allows combined descrip
of spin degrees of freedom in a mixed fermion-boson SU(N)
representation.59 This approach allowed the authors to reta
intersite RKKY interaction in the limit ofN→` in spite of
1/N2 effect of suppression of all intersite magnetic corre
tions in a standard largeN approach. The use of the Popo
Fedotov representation allows the treatment of differ
magnetic modes described by these operators as semife
ons or semibosons in different physical situations.33 In this
paper we appealed to SU(2) symmetry. The general recip
generation of modes with intermediate statistics betw
Fermi and Bose limiting cases for the SU(N) algebra is of-
fered in Ref. 60. In fact, the eventual transformation of t
states with intermediate statistics into true fermions~bosons!
occurs only atT→0. Thus this approach may be extreme
useful for an adequate description of quantum ph
transitions.61

In principle, other collective modes can modify the sc
nario of the AFM phase transition in KL’s. In particular, th
low-lying crystal-field excitations may intervene the ma
netic phase transition in the same fashion as Kondo cloud
our theory. Probably the CeNiSn family of semimetal
Kondo lattices is an example of such an intervention.62
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APPENDIX A:

To evaluate the contribution of the Kondo mode in t
expansion~20! for the effective action, one needs the Four
transform of the Green’s functionKf ~19!. This is
S f̄n~k!G0~q!fn~k! 0 f̄n~k!G0~q!fn~k1Q! 0

0 f̄n~k!G0~q!fn~k! 0 f̄n~k!G0~q!fn~k1Q!

f̄n~k1Q!G0~q!fn~k! 0 f̄n~k1Q!G0~q!fn~k1Q! 0

0 f̄n~k1Q!G0~q!fn~k! 0 f̄n~k1Q!G0~q!fn~k1Q!

D
~A1!
s

-

-
ant

he
The componentsDms(q) of the semi-Fermionic Green’
functionD in Eq. ~20! are determined by inverting the matr
~18!. There are normal and anomalous components,

2E
0

b

dteivmt^Tt f s~q,t! f̄ s~q,0!&5
ivm2Wq

~ ivm2Wq!22Y2
~A2!

and

2E
0

b

dteivmt^Tt f s~q,t! f̄ s~q1Q,0!&5
Yt̂ss

z

~ ivm2Wq!22Y2
,

~A3!

respectively. HereY5NI Q/2 andWq5I qD.
To perform calculations in real space, one should kn

the inverse Green’s function~13! in coordinate representa
tion:

Dm
21~W,Y!

5S ivm1Yj
z Yj

1 Wjl 0

Yj
2 ivm2Yj

z 0 Wjl

Wl j 0 ivm2Yl
z Yl

1

0 Wl j Yl
2 ivm1Yl

z

D .

~A4!

It should be noted that the nonlocal termWjl in Eq. ~A4!
responsible for SL correlations transforms into diagonal te
Wq in momentum representation~13!, whereas the local stag
gered fieldY i has nondiagonal matrix elements in mome
tum space corresponding to AFM correlations atq5Q.

APPENDIX B:

The sum of polarization integrals presented in Fig. 1
given by the following equation:
-

s

Pn~Y,Wq!52T (
m,s,p

Dms~p!Gm1n
0 ~p1q! ~B1!

Only the normal component~A2! survives in this equation a
a result of spin summation. The Neel loop@Fig. 1~a!# after
performing frequency summation acquires the form

P~Y,0!5(
p

H tanhS jp

2TD F jp2Y

~jp2Y!21l2
1

jp1Y

~jp1Y!21l2G
1

l

cosh~Y/T! F 1

~jp2Y!21l2
1

1

~jp1Y!21l2G
2tanhS Y

TD F jp2Y

~jp2Y!21l2
2

jp1Y

~jp1Y!21l2G J .

~B2!

Here jp5«p2«F , l5pT/2. This integral is an even func
tion of the order parameter,P(Y)5P(2Y). Using the in-
equalityY!eF , two last terms can be simplified, and intro
ducing the integral over the electron band with const
density of statesr0, one has

P~Y,0!5
1

4
r0E

2eF

eF
djH tanhS jp

2TD
3F jp2Y

~jp2Y!21l2
1

jp1Y

~jp1Y!21l2G J
1

pr0

2cosh~Y/T!
1

r0Y

eF
tanhS Y

TD . ~B3!

Incorporatingr0 in dimensionless variables, one has in t
vicinity of the Néel point whereY!T,
0-12



ed

d

te

.
e

GINZBURG-LANDAU FUNCTIONAL FOR NEARLY . . . PHYSICAL REVIEW B65 184410
P~Y,0!5
1

2 F lnS eF
2

4T2D 1pG2aNS Y

TD 2

1OS Y2

TeF
D . ~B4!

The logarithmic term is, in fact, included in the renormaliz
coupling constantJ̃ in Eq. ~25! for the effective action, and
the remaining terms give Eq.~26! for dP. Deeper in the
magnetic phase whereY@T, the Kondo effect is quenche
by the molecular field, so that

P5 lnS eF

Y D1bNS T

YD 2

1OS T2

eF
2 D . ~B5!

The numerical coefficientsaN ,bN arising from approximate
estimates of the integrals in Eq.~A3! are of the order of
unity.

The SL loop@Fig. 1~b!# can be estimated forq50. After
frequency summation it is presented by the following in
gral:
y

re

ii,

.
te

:

n

ja
gn

r-

a-
b

18441
-

P~0,D!

5
1

2 (
p

jptanhS jp

2TD1I pDtanhS I pD

T D1
l

2 cosh~ I pD/T!

jp
21l2

.

~B6!

This function is also even,P(D)5P(2D). Extracting from
Eq. ~B6! the logarithmic term ln(«F/2T), one comes to Eq
~30! for dP. In a critical region of Doniach’s diagram wher
D!T, one has

dP~0,D!5asl

D2

2T2 (
p

np
2

jp
21l2

, asl;1. ~B7!
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