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Abstract

In the partition function of the Kondo lattice (KL), spin matrices are exactly replaced by bilinear combinations of
Fermi operators with the purely imaginary chemical potential . = — inT/2 (Popov representation). This new repres-
entation of spin operators allows one to introduce new Green’s Functions (GF) with Matsubara frequencies
, = 2nT(n + %) for S = 4. A simple temperature diagram technique is constructed with the path integral method. This
technique is standard and does not contain the complicated combinatoric rules characteristic of most of the known
variants of the diagram techniques for spin systems. The effective action for the almost antiferromagnetic KL problem is

derived. © 1999 Elsevier Science B.V. All rights reserved.
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Many systems in statistical physics are described by
Hamiltonians containing spin matrices. Unfortunately,
the diagrammatic perturbation theory for spin systems
is complicated. Many variants are based on different
representations of the spin matrices by Bose or Fermi
operators. However, unphysical states always arise lead-
ing to constraints and complication of the Feynman
codex. In this paper, we construct a simple diagrammatic
technique (DT) for spin-} that differs from the known
techniques in the form of the GF, but which is standard
in other respects, does not contain the complicated com-
binatoric rules characteristic of spin systems and permits
one to take into account the constraints rigorously.

It is indeed possible to replace exactly spin-} matrices
by bilinear combinations of Fermi operators:

z z __ 1¢,+ + + + +
of; = Si = Z(aiTaiT - aii“il)& o = S; = a;pd;|,

o > S = aiJIaiTa (1)
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by the basic formula shown in Ref. [1]
Z = Sp e P = {NSp ¢~ AU (n2HN) )

where H; is obtained from H by replacement (1), and
N =Z,~(,a,f;a,~,,. There is no constraint but the purely
imaginary chemical potential of pseudofermions
A= —inT/2 leads to the mutual cancellation of the
unphysical states.

We analyze here the KL model which is a periodic
lattice of magnetic atoms modeled by f-orbitals in a me-
tallic background

Hxr = — Z (ty + Wi Vo + Jsfz Vito¥i St

ij.o

+ g (H + he®?)S§, ©)

We add a uniform (H) and a staggered (h) magnetic field
(9 = pusgr, where pg is the Bohr magneton and g; is the
Landeé factor). We consider a simple cubic lattice with the
notation Q = Qur = (w,7,7). Using Popov representation
of spins, the ratio of the partition function of the interac-
ting system to the partition function of the corresponding
free system can be represented in the form of functional
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integrals as follows:

[Dvexp[S — 35 dtd_d; o(7)a; o(7)]

QO

Z/Zy = , 4

[Dvexp[So — 35 dtd i ()i o(7)]

O —

where the Euclidean action for the KL model is

i

B
S = J‘d’r{z [lpi,aarlpi,a' + ai.aarai,a] - %KL(T)}' (5)

We note by Dv the integration over the anticommuting
Grassmann variables ¥,,a,. By making the replacement
a; (1) = aj(r)exp((in/2p)r), etc., which cancels the last
term in both exponents in numerator and denominator
of Eq. (4), we come to the following boundary conditions
for Grassmann fields: ¥ (8) = — P,(0),7,(B) = — ¥,(0),
a*(p) = —ia*(0),a*(p) = 1a*(0). Going over to the mo-
mentum representation for all Grassmann variables and
assuming sy = ¥ , ¥, ,0%¥, we obtain

S=Y ¥ ,Go Wi, + Y @595 a;

k

p

+J sfz Sy + %hgz agoag, 0 (6)
k k

where the inverse GF of WY-fields is Gg!=
2nT(n + 1/2) — & + p with dispersion &, = — Y st;;4 5™
and the inverse GF of a* Grassmann fields is
4ot =12nT(m + §) — SgHoZ, with unusual Matsubara
frequencies. Note that Popov representation can be used
for spins S =1 also. In this case the frequencies are
shifted to w,, = 2nT(m + 1/3). Moreover the method has
been extended to arbitrary spin in Ref. [8].

We now confine ourselves to the limiting case
Ty~ Tg ~ Ty [2] assuming the same energy scale for
antiferromagnetic (AF) and Kondo correlations. It
allows us to integrate over the fast ¥ fields with energies
e~ u> Ty using the bare electrons GF. We can also
integrate over the fast fields a* (w > T,) taking into
account one-site Kondo renormalization of vertices
(Jgs = ) and self-energy parts (Go — G) [3]. As a result,
a simple DT is constructed. Contrary to other DT (see,
e.g. Refs. [4,5]) the constraint on the spin subsystem is
taken into account exactly. The new action which is
written in terms of slow ¥ and a* variables contains an
additional AF Heisenberg interaction between spins due
to the indirect RKKY exchange [3.,4]:

Sere =), PRo"G PR + ). Fusi™S -k + Sh. (7)
k k

The last term in (7) can be analyzed separately and repre-

sented by auxiliary three-component Bose fields ¢’(k) [1]

I A
Su= ) @.[90 "Oxp. + 07hdy, + or.]ak,
kik2o

— 2 [EST i + miSe + mSi1 + So[¢] ®)

with the following notation: So = — 1) W(IF*<Y) "1 id™ s,
M = (m)* and my = (px —i¢g)/2. In the case Tx < Tx
only magnetic terms in the effective action are important.
We note by W the matrix of the quadratic form in
a” variables. Integrating over all a” fields one can find the
nonpolynomial action of the AF Heisenberg model in
terms of Bose fields [6]:

Su = So[¢*n] + logdet W[¢?n]. ©)

In the case considered, namely Ty ~ Tx ~ T, the pro-
cedure of derivation of the effective action is a little bit
complicated. Taking into account the second term in
Eq. (7) one has to replace ¢” — ¢” — 2 #sii™ in Eq. (9).
As a result, the effective action can be rewritten as
follows:

Serr = ), PRGTIWY + So[¢* ]

k
+ logdet W[} — 2.7 4s7]. (10)

Egs. (7)«(10) are the key result of the present work. This
effective action describes the low-energy properties of the
KL model. The last term in Eq. (9) takes into account the
mutual influence of conduction electrons and spins. Mag-
netic instabilities of both kind of electrons could then be
casily analyzed.

Let us concentrate on the former problem (8). The
spin subsystem undergoes a phase transition with
T, = T, corresponding to the appearance of a non-
zero staggered magnetization p as h — 0. This problem
is related to the Bose-condensation of the field
o2 = @2 + p(BN)'25; 90, and in one-loop approxima-
tion results in the usual mean-field equation for AF order
parameter [6] in the presence of Kondo-scattering
processes [3]. Note that a magnetic transition in the
localized system may induce a magnetic transition in the
itinerant system.

Taking into account the compensation equation
[3,6] and calculating the logdet W[¢3,5] approximately
by the method of stationary phase the following expres-
sion for the spin subsystem effective action can be
obtained:

SH =Y i e+ Y, i as
k k
— 1/4Y (TR 1gpe,, (11)
k

where y, and y, are transverse and longitudinal suscep-
tibilities, respectively. As usual, the transverse suscepti-
bility describes the AF magnons excitations. At the
temperature range T > T, when the condensate solution
is absent the effective action has the same form except
that the transverse and longitudinal susceptibilities de-
scribe the paramagnon excitations which can result in
some untrivial effects in heavy-fermion compounds [7].
These excitations introduce a new energy scale corre-
sponding to the critical behavior.
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Summarizing, we constructed a simple diagrammatic
technique which allows one to analyze the effective
action of the KL model when the energy scales for AF
and Kondo correlations are the same. This effective ac-
tion describes the slow electron subsystem interacting
with the spin fluctuations of either magnon or paramag-
non type.
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