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Abstract
We investigate the instability and dynamical properties of nanoelec-
tromechanical systems represented by a single-electron device containing
movable quantum dots attached to a vibrating cantilever via asymmetric tunnel
contacts. The Kondo resonance in electron tunneling between the source and
shuttle facilitates self-sustained oscillations originating from the strong coupling
of mechanical and electronic/spin degrees of freedom. We analyze a stability
diagram for the two-channel Kondo shuttling regime due to limitations given by
the electromotive force acting on a moving shuttle, and find that the saturation
oscillation amplitude is associated with the retardation effect of the Kondo
cloud. The results shed light on possible ways to experimentally realize the
Kondo-cloud dynamical probe by using high mechanical dissipation tunability
as well as supersensitive detection of mechanical displacement.
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1. Introduction

Recent progress in nanotechnology has made it possible to fabricate nanodevices in which the
mechanical degrees of freedom are strongly coupled not only to the electronic charge
(nanoelectromechanics (NEM)), but also the spin degrees of freedom (nanospintromechanics
(NSM)) [1, 2]. While manipulating the charge degrees of freedom requires the energies/external
voltages determined by the Coulomb interaction in the nanodevice (the charging energy of the
quantum dots), spin manipulation needs much smaller scales of the energy determined by
exchange interaction. Therefore, on the one hand, spin manipulation is free of heating problems,
and on the other, it allows one to achieve very high device efficiency [3].

A special case where the spin degrees of freedom are dominant in quantum transport is the
Kondo effect, which manifests itself as a resonance scattering of electrons on the impurity spin
[4, 5]. The retardation effects in NEM devices result in two-channel Kondo tunneling, which
enhances both spin and charge transport due to maximal overlap of the wave functions of the
electrons in the leads [2, 3]. These processes are mediated by the spin flip of the localized state
in the dot. Another facet of the Kondo effect is the formation of a screening cloud of conduction
electrons, which ‘dresses’ the quantum impurity spin. The typical length scale of the screening
cloud is μ∼1 m [6]. There have been several proposals to detect the size of the Kondo however,
unambiguous results are still not available and there has been no conclusive measurement due
to quantum fluctuations with zero-averaged spin [14].

We are interested in the new effects where a moving quantum impurity is nano-machined
by attaching it to a nano-mechanical device. Such devices are realized as quantum dots
incorporated into a mechanical system that oscillates between two metallic leads. These
mechanical systems include long cantilever nanorelay [15], atomic force microscopy with a tip
[16, 17] and a nanoisland attached either to the cantilever [18] or to one of the leads [16, 17]. A
basic understanding of the NEM/NSM has been achieved in both theoretical [19–25] and
experimental [26, 27] studies of single-electron shuttling. Alternatively, the mechanical system
can itself play the role of one of the contacts when the quantum dot (impurity) is deposited on
top of the metallic cantilever [18]. In these cases, either one or two tunnel barriers change shape
in the mechanical motion process, thus providing a coupling of the mechanical and electronic/
spin degrees of freedom.

The temporal dynamics of the Kondo cloud are governed by two main effects. First, the
cloud adiabatically follows a position of quantum impurity, and second, the size of the cloud
changes in time due to the change in tunnel matrix elements. Both these effects are
accompanied by retardation processes similar to those that determine the polaronic effects due
to strong electron–phonon interaction. But how do the dynamics of the Kondo cloud affect the
mechanical system, and how can one probe these dynamics? Is it possible to control the cloudʼs
size? Some of these questions have been addressed in a recent publication [3]. This study
showed that the mechanical dissipation is controlled by the kinetics of Kondo screening if an
electric dc current is transmitted through the system in the presence of an external magnetic
field. Besides, the characteristic time determining the kinetics of Kondo screening may be
measured through the mechanical quality factor. Thus, the strong coupling of the spin with the
mechanical subsystem allows a superhigh tunability of mechanical dissipation as well as
supersensitive detection of the mechanical displacement.

In this paper, we address the question of whether such a strong coupling between the
mechanics and spintronics can drive the system from an almost adiabatic regime of small
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amplitude mechanical vibrations to a steady-state regime with large-amplitude self-sustained
oscillations. As an example of such a regime, we consider an instability associated with the
appearance of self-sustained oscillations in the system induced by ‘Kondo friction’. It will be
shown that this regime can be controlled by electric (source–drain voltage, gate voltage) and
magnetic fields. We analyse the sensitivity of solutions to the initial conditions and construct a
complete phase diagram of the model. We show that the system possesses reach non-linear
dynamics (Hopf-pitchfork bifurcation), and demonstrate that by controlling the displacements
(velocities) of the mechanical system with a high precision, one can manipulate both the spin
and charge tunnel currents.

2. Model

A sketch of the system under consideration is presented in figure 1 (a). A nano-island is
mounted on the metallic cantilever attached to the drain electrode. The distance between the
source electrode and the island, and thus the tunnel coupling between them, depends on the
cantilever motion. An external magnetic field is applied perpendicularly to the cantilever far
from the island. In our consideration, the flexural vibration of the nanowire is restricted to the
dynamics of the fundamental mode only. This is treated as a damped harmonic oscillator with
frequency ω0, and quality factor Q0.

The equation of mechanical motion for the Kondo-NEM coupling device is given by:
ω ω¨ + ˙ + = · · +[ ]u
Q

u u
m

L I B F
1

( ) (1)K
0

0
0
2

where u describes the cantileverʼs displacement of the free end (see figure 1(a)) and m is the
effective mass. The right-hand-side of equation (1) includes the Lorentz force acting on a
metallic cantilever in the presence of the effective magnetic field B and the ‘Kondo force’
associated with the coordinate dependence of the ground-state Kondo energy ∼E T u( )gs K [28]5.
Here, L is the cantilever length and the I current through the cantilever equals

= + +I I I Idc ac emf . Two of the first terms contributing to the tunnel current have been
calculated in the adiabatic approximation in the limit of strong Kondo coupling at ≪T TK ,
where the Kondo temperature TK depends parametrically on time via cantilever vibration in a
reasonable assumption that the mechanical motion of a shuttle is slow in comparison with all
the characteristic times for Kondo tunneling [3]: Idc corresponds to a time-modulated dc
component, Iac is an ac component associated with the modulation of the Kondo cloud located
deeply inside the leads

⎡
⎣⎢

⎤
⎦⎥λ= −−I G V

u t u
2 cosh

( )
(2)dc bias0

2 0
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5 The Kondo force accounts for a universal (cutoff independent) contribution to the ground state energy. However,
there also exists a non-universal (cutoff dependent) part of the ground state energy, see, e.g., [29]. We assume that
this part is absorbed into the definition of ω0 due to the coordinate dependence of the Kondo energy.
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Here, =G e h0
2 is the unitary conductance per spin projection, Vbias is the bias voltage, and λ is

the tunneling length for the source–island tunnel barrier. The Kondo temperature for the moving
island is

⎡
⎣⎢

⎤
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π
Γ Γ≡ = − +k T t k T u t D
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u
( ) [ ( )] exp
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s d
0

where Ec is the charging energy of the dot, Γ Γ=d 0 and Γ Γ λ= −{ }u u u( ) exp 2( )s 0 0 are the
island-drain (d) and island-source (s) tunnel rates, and D0 is the effective bandwidth for the
electrons in the leads. Thus, Idc describes the Ohmic regime where the time dependence is
associated with the λ−− u t ucosh [( ( ) ) ]2

0 Breit–Wigner factor given by the time-dependent
tunnel widths. In contrast to this, the major time dependence of Iac is connected to the time
modulations of the Kondo temperature T t( )K .
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Figure 1. (a) A shuttle with a cantilever: the quantum dot (pink) is deposited on top of a
metallic cantilever. The constant width tunnel barrier between the dot and metallic
reservoir is depicted in green. The source–shuttle barrier changes its width when the
device oscillates. The blue and red arrows indicate an asymmetry of the tunnel barrier
widths. The device is subject to an external source (S), drain (D), voltage Vbias and
external magnetic field B, applied perpendicularly to the plane of oscillations. x denotes
a dimensionless displacement (in units of tunnel length) measured from the equilibrium
position of the shuttle. (b) The evolution of the phase space ˙x x{ , } as a function of
universal parameter α (dimensionless force, see below for discussion). One can see the
appearance of instability at some critical value of this control parameter.



The final contribution to the current I is = − ˙I G uLBemf 0 . This term is related to the voltage
difference = − ˙, uLB between the electrodes induced by the motion of the metallic cantilever in
the effective magnetic field, B. As a result, the velocity dependent current term Iac is modified by
the factor Δ− u1 ( ), where Δ Γ λ ϕ∝ E k T eV LB( )( )( )c B K bias0 0

, ϕ = h e(2 )
0

is a magnetic flux

quanta. Thus, the electromotive force ∼B2 is immaterial in the regime of weak magnetic fields.

3. Amplitude dynamics

First, we analyse the amplitude dynamics and stability of the system without the emf term, and
then consider a regime where the emf term plays an important role. It is convenient to introduce
the dimensionless equation of motions using equation (1) scaled by tunnel length λ,
( λ≡x u t( ) ) and dimensionless time scaled with ω −

0
1:

γ α α ατ¨ + ˙ + = +
− − ˙ −βx x x

t

x x
x f x x

( )
cosh ( )

( ), (4)K
2

0
0

In these notations, α = ω λ
G V BL

m

2 bias0

0
2 , α = − π

Γ ω λt( )K
E k T t

m

( )

8
c B K

0 0
2 2 are the dimensionless Lorentz and Kondo

forces, respectively, β = π
Γ
E

4
c

0
is the coupling strength of the electronic states, γ =

Q
1

0
is the

mechanical friction coefficient, and x0 is the dimensionless parameter λ=x u0 0 characterizing
the asymmetry of the system at the equilibrium position such that Γ Γ ≠x( ) 1l 0 0 . The retardation

time associated with the dynamics of the Kondo cloud =τ =β
ω β

k T 2B K
min
0 is parametrically large

compared to the Kondo cloud formation time [3]. The correction to the quality factor Q0 of the
mechanical system due to retardation effects is determined by the functional form of

= − +β
f x e( ) x

x

xtanh ( )

cosh ( )
(1 tanh ( ))

2
2 . The time-dependent Kondo temperature in the strong coupling limit

at ≪T TK
min is given by

β= + −{ }k T t k T x t x( ) exp
2

[1 tanh ( ( ) )] . (5)B k B K
min

0

k TB K
min plays the role of the cutoff energy for the Kondo problem. As mentioned above, we

consider the adiabatically slow motion of the QD, =ω ≪ k TB K
min

0 , provided the condition
μ ≪k T g B eV k T{ , , }B B bias B K

min is fulfilled.
In order to analyse the amplitude dynamics in the regime of the high-quality resonator

= ≪ω Qk T
0

B K

0
, we apply the Krylov–Bogoliubov averaging method [30]. The amplitude dynamics

equations can be obtained by means of the ansatz ω ϕ= +x t A t t( ) ( ) sin ( )0 . In this
approximation, we ignore the dynamics of the phase ϕ. The equation for the amplitude
dynamics for equation (4) is written as:

∫γ ατ
π θ θ θ˙ = − − −β π

A A A f A x d
2 2

cos ( sin ) . (6)
0

2
2

0

The results of the numerical analysis of equation (4) are shown in figure 2(a). At zero bias
(α = 0), equation (4) describes a damped harmonic oscillator with the friction γ. In this case, the
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system is characterized by a single stable attracting fixed point at the origin (black line in
figure 2(a)).

When the finite bias is applied to the system in the presence of a magnetic field
perpendicular to the plane, the increase in the Lorentz force results in the change of the
behaviour of the oscillator at some critical value, α α= c. As a result, the equation for the
amplitude (equation (6)) acquires an additional non-trivial fixed point for ˙ =A 0, indicated by
the red line in figure 2(a). In the regime of α α< c with a single attracting fixed point at A = 0, an
assumption ≈x x0 can still be adopted. Under this approximation, equation (6) can be solved
analytically. Equation (4) can also be solved by applying the Taylor expansion of hyperbolic
functions. Equivalently, the system can be treated as a damped harmonic oscillator with

effective friction coefficient γ γ= − ατ
γ

−β β( )e1
eff

x0 2 . In the α α≳ c regime, the system is

characterized by two attracting and one repelling fixed points in the space of parameters α x{ , }0 ,
determined by the equilibrium position of the shuttle, bias and magnetic field as control
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Figure 2. (a) Amplitude dynamics at different values of the dimensionless force α (see
details in the text). Insets: the time trace of the oscillation at two different fixed points,
indicated by arrows. (b) Saturation amplitude as a function of dimensionless force. The
different colors denote the initial conditions near (black dots) and far (red dots) from the
equilibrium position x0. Insets: the amplitude envelope as a function of dimensionless
time calculated using the last (velocity dependent) term in equation (4) responsible for
the amplitude dynamics (upper inset) and approximate equation (6) (lower inset). The
parameter α varies from α = 0 (black) to α = 0.1 (magenta). The equations are solved
for the following set of parameters: β = 8, γ = −10 5, =x 0.50 and = =ω −10

k T

3

B K
min
0 .



parameters. In this regime, the system shows bi-stability and flows either to the fixed point at
the origin corresponding to damped oscillations or to the regime of self-sustained oscillation
depending on the initial conditions. At α α≫ c, the system falls into the self-sustained
oscillations regime.

In figure 2(b), we plot a saturation amplitude of the system as a function of α. The
hysteresis of the system is originated from the coexistence of two fixed points characterizing a
damped and self-sustained oscillation in the intermediate regime. Moreover, a regime of linearly
increasing saturation amplitude exists. Approximating =x xtanh , for | | <x 1, and

=x xtanh sign[ ] for | | >x 1, we rewrite the condition for ˙ =A 0 as

⎜ ⎟⎛
⎝

⎞
⎠∫π

ξ ξ ξ ξ γ
ατ− + − = −

β ξ

β

β

−

−

A

x

A
e d e

1 1
1 (1 ) ,

1

1
0

2
2

2 2

where ξ θ≡ −A xsin 0. As a result, the saturation amplitude is found as = α= π γβ
ωAsat k T

8 1

B K
min
0 ,

giving rise to the linear slope =∝ ω Γ( )A Qsat k T E0
B K

min
c

0 0 .

4. Stability and phase diagram

Next, we analyse a stability of the system by linearizing the equations in the vicinity of the
stable fixed point describing the stationary states. It is convenient to rewrite equation (4) in the
equivalent form of two coupled first-order differential equations:

α α ατ γ

˙ =

˙ = − + +
− − +β

x y

y x
t

x x
f x y

( )
cosh ( )

( ( ) ) (7)K
2

0

While the position of the fixed point *x can be found from the condition
⎡⎣ ⎤⎦α δ− = + + −* * *β( )( )( ) ( )x x x x xcosh 1 exp 1 tanh2

0 2 0 , the corresponding Jacobian

matrix is given by
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟α ατ γ= −

− − − − −
*
*

*β
J g x x

x x
f x x

0 1
( )

cosh ( )
1 ( )

,0
2

0
0

where ⎡⎣ ⎤⎦δ= − + −β β( )g x x x x( ) 2 tanh ( ) exp (1 tanh ( )) 2 tanh ( )
x2 cosh ( ) 2

and δ is the ratio

between the α and Kondo force at the minimal Kondo temperature. Interestingly, this condition
allows a regime of multiple solutions for *x depending on | |x0 and α. In figure 3(a), we plot the
stability diagram of the Jacobian matrix in the parameter space α x{ , }0 . The linearized system
can be categorized by a stable focus, unstable focus, and a saddle point.

First, we consider a single-solution regime for the fixed point *x . In this case, instability
arises in the absence of a stable focus (a negative quality factor characterizing an increment of
the oscillations). The negative Q corresponds to the pumping regime, where the system is
effectively ‘heated’ in contrast to the damping regime of >Q 0, which may be interpreted as
effective cooling of a shuttling device. The positive values of λ±Re ( ) give rise to the regime of
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instability when both α > 0 and α > γ
τβ f x( )un

are satisfied. The critical values for the instability

are given by a functional shape of f(x) with α γ τ= β f x( )un , (green dotted line in figure 3(b)),

where β≅ + ≈ + − +β β
β

− − + + −( )x x xtanh tanh ( 1 2/ )un 0
1 3 9 ( 2) )

0
1 . Thus, the critical values of α

for the unstable regime depend on the quality factor, which is given by, =α ω≳ ·+ k T Q1un
B K 0 0.

Second, the regime of the multi-valued solution is determined by < α −
−

*
*1 g x x

x x

( )

cosh ( )
0

2
0
(yellow solid

line in figure 3(a)). The saddle point solution leads to a bi-stability of the system under certain
conditions for the Q factor.

The approximate solution determining the boundaries for the instability regime of the
applied magnetic field is given by:

⎡
⎣⎢

⎤
⎦⎥

γ
τ

β α− + <
β

x
4

exp
2

2 , (8)0

This condition is valid for the range of magnetic fields; = <ω λ ϕ
ω B.m

eV L

k T

Q
1

bias

B K0
2

0

0 0
The upper limit of this

domain of validity is determined by the smallest value of two contributions, namely the emf
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Figure 3. (a) Stability diagram in the phase space of asymmetry parameter x0 and
dimensionless force α. The different colors correspond to different classes of stability:
stable focus (gray regime), unstable focus (red and green regimes, depending on initial
conditions), and saddle point (green and blue regimes, see text for details). The weak
out of equilibrium condition used in the calculations is determined by

− · ⩽μ 0.1eV

k T

g B

k T
bias

B K
min

B

B K
min , and α δ· = 50.27. The blue solid lines are drawn in accordance

with equation (8), and the yellow solid line determines the boundaries of a multi-valued
solution. (b) The upper panel is a fragment of phase diagram (a), and the green dotted
line represents a condition α γ τ= β f x( )un determined by the eigenvalues of the
Jacobian matrix. The lower panel shows the average current 〈 〉Idc as a function of α at

=x 1.00 . It is seen that the transition from unstable focus to stable focus can be realized
by changing the direction of magnetic field → −B B at given Vbias.



force and the asymmetry condition. Taking into account all necessary constraints for the
stability regimes, we construct the phase diagram of our model (see figure 4). This phase
diagram shows the boundaries for the self-sustained oscillations regime (gray). Two green
dotted lines correspond to two different values of parameter α, while the green arrow moves in a

direction of increasing α. The red line is defined by the condition < Γ
λ ϕ

λB E eV

k T L
x bias

B K
min

0

0
2 (see [3]), and

the black line is determined by the critical value of asymmetry parameter xc as a functions of the

Q-factor and Kondo temperature TK
min: == ωxc

k T

Q
1B K

min

0 0
. Thus, the upper limit of the instability

regime under the condition of fixed asymmetry parameter <x xc 0 is described by

< ΓB B ,E eV

k T0
c bias

B K
min

0
where B0 is the magnetic field corresponding to the flux quanta through the

λ · L square. The periodic splashes of Idc and Iac near the turning points of the shuttle [3] are
shown in the lower and upper insets, respectively. The change in average dc current 〈 〉I t( )dc in
transition from the damping oscillations regime to the self-sustained oscillation regime with
increasing α is illustrated in figure 3(b).

Plugging in some typical values of m, λ, ω0 and Q0 into the conditions for the upper and

lower bounds of the instability regime: = −− −m kg10 1019 21 , λ = Å1 , and ω = − Hz10 100
7 9 ,
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Figure 4. Stability (phase) diagram in a parameter space of μg B
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2 . The α parameter increases for the transition from the

lower to upper green dotted line (see details in the text). The green arrow shows how
one enters the self-sustained oscillation regime by changing the force at a given
anisotropy parameter. Inset: time trace of the tunnel current contribution in the steady-

state regime under the parameters of =x 0.50 , = 0.1eV
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= −Q 10 100
5 7 allows one to estimate the range of magnetic fields and bias voltages for the

self-sustained oscillations in the Kondo shuttling regime: < <T B T1 10 , = 0.1eV

k T
bias

B K
min ,

= =ω −10
k T

3

B K
min
0 . This range of parameters covers cantilever materials from light single-walled

carbon nanotubes to relatively heavy SiN. The range of quality factors refers to the best known
nano-mechanical devices [31].

5. Summary

Summarizing, we analysed a fully fledged stability diagram of the Kondo shuttle device, subject
to both variation in the external dc electric and magnetic fields, and asymmetry of the tunnel
barriers. The Kondo effect, with its anomalously long relaxation dynamical spin screening time,
is an ideal tool for coupling spin and mechanical degrees of freedom. We have shown that the
competition between the mechanical damping of the oscillator at zero field, zero bias and the
contribution coming from the strong resonance spin scattering (Kondo effect) results in the loss
of mechanical stability, manifested in two different regimes of NEM/NSM oscillations.
Namely, if the Kondo force controlled by external fields further damps the oscillator, we obtain
an efficient mechanism of cooling the nano-shuttle. On the other hand, if the contribution of the
Kondo force enhances the oscillations, we arrive at the non-linear steady-state regime of self-
sustained oscillations. We found the critical values of the external fields and asymmetry
parameter determining the instability regimes for adiabatic Kondo shuttling. The phase diagram
of the Kondo shuttle model is constructed by taking into account the limitations given by the
electromotive force, which always contributes to the friction. We have shown that due to the
exponential sensitivity of the Kondo effect to external parameters, and the strong coupling
between the mechanical and electron (spin) degrees of freedom, the device including an element
with localized spin acquires super-high tunability. We suggested an experimental setup to
realize the Kondo shuttling instability and estimated all the necessary conditions for this. We
believe that experiments with such a setup can provide valuable information on the kinetics of
the formation of the Kondo cloud, and eventually the Kondo shuttle can be used for
experimental spin manipulation in nano-spintromechanical devices.
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