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We investigate quantum interference effects in a superconducting Cooper-pair box by taking into account the 
possibility of tunneling processes involving one and two Cooper pairs. The quantum dynamics is analyzed in a 
framework of three-level model. We compute Landau–Zener probabilities for a linear sweep of the gate charge 
and investigate Rabi oscillations in a periodically driven three-level system under in- and off-resonance condi-
tions. It was shown that the Landau–Zener probabilities reveal two different patterns: “step”- and “beats”-like 
behaviors associated with the quantum interference effects. Control on these two regimes is provided by change 
of the ratio between two characteristic time scales of the problem. We demonstrate through the analysis of a pe-
riodically driven three-level system, that if a direct transition between certain pairs of levels is allowed and fine-
tuned to a resonance, the problem is mapped to the two-level Rabi model. If the transition between pair of levels 
is forbidden, the off-resonance Rabi oscillations involving second order in tunneling processes are predicted. 
This effect can be observed by measuring a population difference slowly varying in time between the states of 
the Cooper-pair box characterized by the same parity. 
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1. Introduction

Time-evolution of a quantum mechanical system charac-
terized by a discrete energy spectrum allows energy level 
crossings in certain situations. When two levels cross under 
a modulation of some external parameter (e.g., magnetic and 
electric fields etc.) varying in time, the level crossings may 
or may not convert to avoided crossings. If the symmetry of 
the quantum mechanical problem permits a cross-talk be-
tween the levels, the levels start to repel each other. 

The simplest problem where the avoided level crossing 
arises is the Landau–Zener (LZ) problem [1,2], see [3]. 
The LZ Hamiltonian [1,2] addressing a time evolution of a 
two-level system (TLS) has been suggested in 1932 to de-
scribe the crossing of molecular terms aiming to construct 
a qualitative theory of a pre-dissociation. The same year, 
Majorana considered a completely different problem which 
nevertheless falls into the same universality class. Namely, 
Majorana [4] investigated the behavior of atoms subject to 
the time-dependent magnetic field. The pioneering work of 
Majorana [4] has anticipated the revolution in quantum ma-
nipulation of few-level artificially prepared quantum me-
chanical systems well before the era of quantum information 
processing began (see, for example, [5]). Quantum interfer-
ence is yet another important phenomenon appearing when 

two levels cross several times under modulation of an exter-
nal field [6]. In particular, a periodically driven two-level 
system is characterized by an interference pattern known as 
Stückelberg oscillations, see review [7]. 

There are several realizations of TLS based on 
spintronics of quantum dot artificial atoms [8,9], quantum 
beats engineered with ultra-cold gases [10,11] and super-
conducting devices [12], see, e.g., reviews [13,14]. Among 
the superconducting qubits, the quantum devices built with 
mesoscopic Josephson junctions allow an unprecedented 
level of control on quantum coherence phenomena [15,16]. 
The charge qubit based on a Cooper-pair box (CPB) has 
been one of the first quantum devices to provide the evi-
dence of quantum interference associated with Landau–
Zener–Stückelberg–Majorana (LZSM) physics in a non-
atomic system. However, the real CPB can be considered 
as the TLS only under certain approximations. The exper-
iments of the Helsinki group [17,18] have clearly demon-
strated that the interference pattern of Stückelberg oscilla-
tions cannot be fully explained by the two-level models. 
On one hand, the models of quantum interferometers con-
structed by adding few extra levels to the two-level system 
may provide a suitable explanation of the experimental 
puzzles [19–29]. On the other hand, the models describing 
multi-level interferometers contain some additional parame-
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ters which can be used for fine-tuning quantum systems to 
certain resonance transitions and therefore inspire new ex-
periments. 

In this paper we consider a three-level model for describ-
ing the quantum dynamics of the superconducting Cooper-
pair box. The paper is organized as follows: in Sec. 2 we 
introduce the CPB model and investigate quantum dynam-
ics associated with Landau–Zener tunneling in three-level 
system under a linear-in-time sweep. In Sec. 3 we consider 
a periodically driven three-level system and discuss in- and 
off-resonance Rabi oscillations. Concluding remarks are 
given in the Sec. 4. 

2. Landau–Zener tunneling in a Cooper-pair box 

We consider a superconducting Cooper-pair box — a 
small superconducting island coupled both to a massive 
electrode via resistive Josephson junction and to a electro-
static gate via capacitance. The Hamiltonian describing this 
system is given by 

 2 ˆˆ= ( ) cos .CPB C g JH E n n E− + φ  (1) 

The first term in CPBH  represents the charge states: here 
2= (2 ) / 2CE e C  is a charging energy of superconducting 

island (C  is its capacitance), the operator n̂ accounts for 
the number of Cooper pairs, dimensionless gate charge 

= / 2g g gn C V e−  is the external parameter controlling the 
number of the Cooper pairs on the island via the gate voltage 

gV . The second term in the Hamiltonian (1) describes Jo-
sephson tunneling. Here JE  is the Josephson energy and φ̂ is 
the phase operator canonically conjugated to n̂: ˆˆ = /n i− ∂ ∂φ 
(here we adopt the system of units = 1 ). We assume that 
the value of a superconducting gap S∆  of the island is larger 
compared to the charging energy CE  ( ),S CE∆   which 
allows us to ignore tunneling of the odd number of charges 
to the island. In this paper, we investigate the charge regime 

J CE E , when superconducting CPB operates as an ele-
mentary charge qubit [13,14]. If the Josephson energy is 
negligibly small, 0JE → , a fixed number of the Cooper 
pairs is trapped on the island, while the ground-state energy 
depends periodically on the gate voltage gV . Besides, there 
are special values of the gate voltage, namely, ( ) =g gn V  

1 / 2N= ± , at which N  and 1N ±  charge states become de-
generate. Inclusion of the finite Josephson energy lifts the 
degeneracy and allows us to approximate the CPB at low 
energies by a two-level system model. 

In this paper we go beyond the TLS model by taking in-
to account an additional degeneracy between n and 2n +  
charge states occurring under condition ( ) =g gn V n . The 
minimal model describing this case accounts for three 
charge states only, namely, 1 2 3{ , , } { 1, , 1}n n n N N N≡ − +  
Cooper pairs, see Fig. 1. In the regime C JE E  the Ham-
iltonian is written in the basis formed by the charge states, 
parametrized by the number of Cooper pairs on the island. 
The matrix form of the Hamiltonian in this basis is given by 

 

2
1

2
2

2
3

( )

= ( ) ,

( )

C g

C g

C g

E n n

H E n n

E n n

 − ∆ Σ
 
 ∆ − ∆ 
  Σ ∆ − 

 (2) 

where JE∆ ≡  and Σ  are the amplitudes for tunneling on 
the island of one and two Cooper pairs, respectively. We 
start our analysis of the quantum dynamics by considering 
the case, when the gate voltage is swept linearly in time: 

( ) =gn t N t+α . In order to get simple analytical results we 
first restrict our analysis by imposing = 0Σ  condition (ab-
sence of direct tunneling of two Cooper pairs). In this case, 
it is easy to solve the time-dependent Schrödinger equation 

=i Hψ ψ  with Hamiltonian (2) by using so-called 
Kayanuma's method [30]. The idea behind the Kayanuma's 
ansatz is to exclude all diagonal elements in Eq. (2) by 
performing a transformation with a diagonal operator 

 

( )

( )

2

2

e 0 0
ˆ = e 0 1 0 ,

0 0 e

iE t tC

i t

iE t tC

U

− α +

− θ

− −α +

 
 
 
 
 
 
 

 (3) 

where 2 3= / 3t CE tθ α . 
Transforming the wave function ˆ( ) = ( ) =t U tψ ψ  

3
=1 ( ) |ii C t i= 〉∑ , where the states | i〉  form the compact 

basis of diabatic states of Eq. (2), we rewrite the non-
stationary Schrödinger equation describing the time-
evolution of the three-level system in terms of the system 
of three linear differential equations: 

Fig. 1. (Color online) The energy diagram for the superconducting 
Cooper-pair box model. Dashed lines denote the charging energy 
given by the diagonal term of the Eq. (2) as a function of the di-
mensionless gate voltage, ( )g gn V  (diabatic basis for the Landau–
Zener problem). Solid lines show the adiabatic basis obtained by 
diagonalization of the Eq. (2) for a particular case = 0Σ . Dash-
dotted red curves form a closed loop and denote adiabatic and non-
adiabatic paths resulting in quantum interference. 
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 ( )2

1 2( ) = e ( ),
iE t tCiC t C t

α +
∆   

 ( ) ( )2 2

2 1 3( ) = e ( ) e ( ),
iE t t iE t tC CiC t C t C t

− α + − −α +
∆ + ∆   

 ( )2

3 2( ) = e ( ).
iE t tCiC t C t

−α +
∆  (4) 

To find a solution of the system of coupled linear differential 
equations, it is convenient to rewrite it in the form of linear 
integral Volterra equations. For example, it is straightfor-
ward to transform the equation for 2 ( )C t  to a self-contained 
integral form by excluding 1( )C t  and 3( )C t  with the help of 
the first an the third equations in (4): 

 
1

2
2 1 2 2 2( ) = ( )

tt
C t dt dt C t

−∞ −∞

−∆ ×∫ ∫   

 { 2 2
1 2exp ( ) ( )C CiE t iE t+ + × − + +    

 }2 2
1 2exp ( ) ( ) ,C CiE t iE t− − + −   (5) 

where = 1/ (2 )t t± α ± α . We assume that the initial 
condition for Eqs. (4) is given by the N -quasiparticle 
Cooper pairs state characterized by the occupancy: 2 ( ) = 1C −∞  
and 1 3( ) = ( ) = 0C C−∞ −∞ . 

The integral equation (5) is solved by the iterations. This 
procedure is legitimate in the non-adiabatic approximation 
under condition 2= / ( ) 1CEδ ∆ α  . By exponentiating the 
result of the first iteration we obtain the probability 

2
2 2=| |P C  to find the system in the N -charge state at 

t →∞ : 

 ( ) ( )
2

2 ( ) exp ,
2 C

P t F t F t
E

+ − π ∆  ≈ − +    α 
   (6) 

where the function 

 
2 21 1( ) = ( ) ( )

2 2
F z C z S z

     + + +    
     

 (7) 

is expressed in terms of the Fresnel integrals 

 2 2

0 0

2 2( ) = sin , ( ) = cos .
z z

S z dt t C z dt t
π π∫ ∫  (8) 

In Eq. (6) we denote = 2 / [ 1/ (2 )]Ct E t± π α ± α . We 
plot on Fig. 2 the probability 2P  obtained by analytic solu-
tion of the Eq. (6) for two different sets of parameters (see 
details in the figure caption): an orange curve represents 
the solution with = 0Σ , while a black curve corresponds to 
the solution with 0Σ ≠ . The step-like behavior characteris-
tic for the orange curve is originating from an interplay 
between two time scales of the LZ problem [31,32]: i) a 
Zener time 1/2( )Z Ct E −α  associated with the “individu-
al” Landau–Zener transitions at corresponding avoided 
crossings (we consider Zt  for the non-adiabatic LZ transi-

tion [31]); ii) a dwell time 1
Dt

−α  related to the time 
interval between two consequent crossings (see Figs. 1 
and 2). Two different regimes correspond to two opposite 
limiting cases: (i) two Landau–Zener transitions can be con-
sidered as two consequent (independent) avoided crossings 
if <Z Dt t  (see the upper panel in Fig. 2), and (ii) two transi-
tions can not be separated in time if >Z Dt t  and the interfer-
ence from the nearest avoided crossings must be taken into 
account (see the lower panel in Fig. 2). This interference 
results in a pronounced superstructure in the time evolution 
of the probability 2 ( ).P t  Emergence of the two-energy 
scales 1E  and 2E  with 1 2 CE E E−   leads to the “beats” 
pattern characterized by the period 1

beats Ct E −
 . It is con-

venient to consider a “triangle” formed by three parabolas 
(see Fig. 1) as an Mach–Zehnder interferometer. Each 

Fig. 2. (Color online) Main frames: Time-dependent Landau–

Zener probability 2
2 2( ) = | ( ) |P t C t  given by Eq. (4) as a function 

of a dimensionless time CE tα  (see definitions and detailed 
explanations in the Sec. 2). The inserts show the time evolution 

of the probabilities 2
1 1( ) = | ( ) |P t C t  and 2

3 3( ) = | ( ) |P t C t . All 
curves are computed for the non-adiabatic regime 1δ . The 
orange curves correspond to the analytic solution Eq. (6) with 

= 0Σ . The black curves represent the results of numerical calcu-
lations performed with 0Σ ≠ . Without any loss of generality we 
assume that the transparency at each avoided crossing point can 
be fine-tuned independently. We therefore do not rely upon a 
smallness of Σ  compared to ∆ . The initial condition for all 
curves reads: 2( ) = 1C −∞  and 1 3( ) = ( ) = 0C C−∞ −∞ . Upper 
panel: <Z Dt t , parameters = 0.0042δ , / = 0.004CE∆  and 

/ = 0.024CEΣ . Lower panel: >Z Dt t , parameters = 0.011δ , 
/ = 0.2CE∆  and / = 0.8CEΣ . 
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avoided crossing point is equivalent to a “mirror” charac-
terized by a transparency determined by LZ probability. 
The left avoided crossing therefore splits the state into two 
parts (red dash-dotted lines representing adiabatic and non-
adiabatic paths in Fig. 1), while the right crossing can either 
play a role of yet another splitter (if = 0Σ ) or detect an inter-
ference between transmitted (diabatic) and reflected (adia-
batic) paths if 0Σ ≠ . The “beats” superstructure is associated 
with the repopulation of all three states of the Mach–
Zehnder interferometer due to almost perfect “transmission” 
at =gn N  (induced tunneling is given by the second order 
processes 2 / CE∝ ∆ , see [27] for the details). 

The interference pattern changes its character when the 
“transmission” at =gn N  associated with the tunneling of 
two Cooper pairs becomes pronounced (black curves in 
Fig. 2). The “finite reflection” at the “upper mirror” (split-
ter) =gn N  leads to the probability 2P  deficit (see the dif-
ference between the orange and black curves at the upper 
panel of Fig. 2) and modifies the step pattern in the regime 

<Z Dt t . Besides, we emphasize that the probabilities to find 
system in 1N − , 1N +  states are equally distributed in the 
absence of Σ-terms. The reason for equipartition is due to 
equivalence of two tunneling rates at two avoided crossing 
points = 1/ (2 )t ± α . This effect holds in both regimes .Z Dt t  
Taking into account finite Σ  results in appearance of an 
asymmetry between the probabilities 1P  and 3P . Moreover, 
this asymmetry becomes even more pronounced in the case 

>Z Dt t , see inserts in lower panel of the Fig. 2. 

3. Periodically driven CPB 

In this section we consider a periodic modulation of the 
dimensionless gate charge 

 0( ) = cos( )g Dn t N A t+ ε + Ω , (9) 

where DΩ  and A  are the frequency and amplitude of the 
modulation, respectively, and 0ε  is the charge offset. We 
investigate the cases of resonance and off-resonance driving 
and analyze Rabi oscillations [33] in the driven three-level 
system. The system is resonantly driven if the frequency of 
the drive DΩ  coincides with the energy difference between 
two neighboring states (two levels). In that case, known as a 
conventional Rabi problem [33], the probability to occupy 
each of two eigenstates oscillates with the frequency propor-
tional to the amplitude of the drive. When the two-level 
system is driven off-resonance, the oscillation frequency 

o >ff RΩ Ω . We show that the off-resonance driving of the 
three-level system allows a strong violation of this inequality. 

3.1. Mapping three-level systems to = 1S  models 

To analyze the quantum dynamics of a multi-level CPB, 
it is convenient to use an equivalent language of spin-S  
states representing 2 1S + -levels model. In particular, the 
diagonal part of the Hamiltonian describing three-level 

= 1S  system can always be represented in terms of a linear 

(dipole moment) and quadratic (quadrupole moment) com-
binations of ˆ zS . The transitions between the eigenstates of 
ˆ zS  operator are accounted by linear terms in ˆ xS , ˆ yS  opera-

tors and also corresponding bi-linear combinations 
(quadrupole moments). Rewriting the Hamiltonian (2) in 
the basis of linear and bi-linear spin = 1S  operators results 
in the following spin Hamiltonian: 

 2
0

ˆ ˆ ˆ= ( ) = ( ) ( )x z z zH H t S h t S D S− ∆ + + , (10) 

where 0( ) = 2 2 cos( )z
C C Dh t E AE tε + Ω  is a synthetic 

time-dependent magnetic field, = CD E  is an easy-axis 
anisotropy parameter (quadrupole interaction) and 0 ( ) =H t  

2[ ( )] / (4 )z
Ch t E= . Note, that the Eq. (10) describing three-

level system is not linear in terms of the S -operators, in con-
trast to the Hamiltonians describing the quantum dynamics 
of the TLS. However, the Eq. (10) as well as any three-state 
Hermitian Hamiltonians represented by 3 3×  matrices can 
be written down as a linear form in a basis of Gell–Mann 
matrices (generators of SU(3) group) [27]. The linear in 
terms of the = 1S  operators part of the Hamiltonian (10) 
corresponding to = 0D  case falls into a class of SU(2) 
symmetry group. The transitions between the eigenstates of 
ˆ zS  operator, {| 1 ,| 0 ,| 1 }− 〉 〉 + 〉  (which are equivalent to { 1,N −  
N , 1}N +  charge states of the CPB model), are restricted by 

= 1zS∆ ±  condition. Constant (non-oscillating) magnetic 
field applied along z  direction, 0 0= 2z

Ch E ε  lifts the three-
fold degeneracy of the = 1S  states (linear Zeeman effect). 
Since the | ±〉  states are equidistant from the | 0〉  state, the 
driving with 0= z

D hΩ  gives an access to the transitions 
| 1 | 0− 〉 ↔ 〉  and | 0 | 1〉 ↔ + 〉  (see Fig. 3(a)). 

Finite quadrupole interaction (single-ion anisotropy) 
0D ≠  lifts out the degeneracy between | 0〉  and | 1± 〉  states 

(see Fig. 3(b)). Finite synthetic magnetic field 0
zh  (aka 

charge offset) applied along z-direction eliminates the de-
generacy of | 1± 〉  states. Therefore, finite D -term explicitly 
breaks the (2)SU  symmetry and allows transitions with 
unrestricted selection rule = 2zS∆ ± . However, the CPB 
model Eq. (2) is derived under condition =CE D ∆ . 
Thus, the (2)SU  symmetric point is beyond the validity of 
the CPB model. 

3.2. Rotating wave approximation 

The diagonal elements of the Eq. (2) subject to the peri-
odic drive Eq. (9) explicitly depend on time. We perform 
the first (exact) step in transforming the Hamiltonian of the 
model by rewriting Eq. (2) in the new rotating frame basis 
by applying a transformation: 

 2 ˆˆ = exp sin( ) z
C D

D

AV iE t S
 
− Ω +  Ω

 (11) 

 
2

2 0
0

2 sin(2 )ˆ sin( ) .
2 2

D
D

D D

A tAI t t t
 ε Ω  + ε + Ω + +     Ω Ω     
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The transformation Eq. (11) results in elimination of the 
time-dependence from the diagonal matrix elements of the 
Eq. (2) by transferring it to the off-diagonal elements of the 
Hamiltonian matrix. In Eq. (11) Î  denotes the unit 3 3×  
matrix. Further simplification of the transformed Hamilto-
nian is achieved by rewriting the time-dependent off-
diagonal elements of Hamiltonian matrix with a help of the 
textbook identity for the Bessel functions: exp( sin ) =ix t  

( )eimt
mmJ x=∑ . As a result, the new Hamiltonian 

1 1ˆ ˆ ˆ ˆ=H V HV iV V− −− 

  reads as follows: 

0

=
0

(1 2 ) e 0

= e 0 e ,

0 e (1 2 )

im tDC m
im t im tD Dm m

m im tDm C

E

H

E

Ω

∞
− Ω Ω

−∞ − Ω

 + ε ∆ 
 ∆ ∆ 
 ∆ − ε 
 

∑  (12) 

where = (2 / )m m C DJ AE∆ ∆ Ω . The wave functions ( )tϕ  
written in the rotated basis are connected to the wave func-
tions ( )tψ  in the original basis through the equation 

1ˆ( ) = ( )t V t−ϕ ψ . Note, that the Hamiltonian (12) remains 
explicitly time-dependent after the transformation Eq. (11). 

The next step is to transform the Hamiltonian (12) to a 
time-independent form. It can be done by applying the se-
cond transformation to yet another rotating frame. Unfortu-
nately, as is known, there is no simple way to eliminate ex-
actly the time-dependence from the Eq. (12). However, it 

can be done approximately using a reliable ansatz known 
as a rotating wave approximation (RWA). The idea behind 
RWA is to consider the solution of the Schrödinger equa-
tion as a sum of the kth harmonics: 

 
e 0 0

( ) = 0 1 0 ( ).

0 0 e

ik tD

k
k ik tD

t t

Ω

− Ω

 
 

ϕ ϕ 
  
 

∑   (13) 

For each mth harmonic in Eq. (12) there exists correspond-
ing =k m term in Eq. (13) such a way that the off-diagonal 
matrix element of the new Hamiltonian will be given by a 
sum of two terms: one is non-oscillating and another one is 
fast oscillating. After neglecting the fast oscillating terms 
in Eq. (12) we write the Schrödinger equation for mth 
harmonic, ( )mϕ  as follows: 

 ( ) ( )
0

( ) = 0 ( ),
0

C m m
m m

m m

m C m

E
i t t

E

+ δω ∆ 
 ϕ ∆ ∆ ϕ 
 ∆ − δω 



   (14) 

where 0= 2m D Cm Eδω Ω + ε . While a general solution of 
Eq. (14) is cumbersome, we consider below only some 
cases of a special interest. 

3.3. Resonance Rabi oscillations in CPB 

The matrix form of the time-independent Hamiltoni-
an (14) assumes that only two pairs of the levels, namely 
( , 1)N N +  and ( , 1)N N − , can be fine tuned to the reso-
nance by adjusting mδω . The resonance between ( 1,N −  

1)N +  states typically is not accessible due to the absence 
(smallness) of the corresponding matrix elements. Indeed, 
the probability for two Cooper pairs to tunnel in CPB is intu-
itively small due to smallness of the phase space for such a 
process. Therefore, there are only two resonance Rabi oscil-
lations in the CPB model. If =m CEδω +  (which is equiva-
lent to 0= (1 2 )D Cm EΩ − ε ), the resonance condition for 
the transition between ( , 1)N N +  is satisfied. This reso-
nance condition assumes that the three-level system is con-
sidered away from the resonance = 1/ 2gn N ± . It provides 
a low bound for the offset charge 0| |< (1/ 2)(1 / )CEε − ∆ . 
The states ( , 1)N N −  stay off-resonance being separated 
by a large energy offset 2 CE . Under this condition the 
transition between ( , 1)N N −  can be neglected and the 
Hamiltonian matrix (14) reduced to 2 2×  form [20], see, 
e.g., [34]. The Rabi oscillations in the TLS are described by 
the standard textbook equation [33] (for simplicity we focus 
on a single-photon = 1m  resonance): the resonance drive 
with =DΩ  0(1 2 )CE= − ε  results in oscillations with 

0=2 /(1 2 )R AΩ ∆ − ε  if amplitude of the drive /D CA EΩ  
(to obtain the equation for RΩ  we use an asymptotic of the 
Bessel function 1( 1)J z z≈ ). 

If the TLS is driven near the = 1/ 2gn N ±  resonance, 
we expand the dimensionless gate charge across the reso-
nance as follows: 

Fig. 3. Energy spectrum for the = 1S  model in the presence of a 
single-ion anisotropy parameter D  (see the main text for the 
discussion of the mapping between the three-level CPB models 
and = 1S  Hamiltonians). (a) The single-ion anisotropy parame-
ter = 0D . The three-fold degeneracy of the = 1S  state is lifted 
out by static magnetic field 0 0= 2z

Ch E ε . Equidistant splitting 
of | 1± 〉  states is described by a linear Zeeman effect. (b) Finite 
single ion anisotropy 0D ≠  lifts out the degeneracy between 
| 0〉  and | 1± 〉  states. The states | 1± 〉  still remain degenerate in 
the absence of magnetic field. (c) Finite synthetic magnetic field 

0 0zh ≠  eliminates the degeneracy between | 1± 〉  states. When 
all degeneracies of the effective = 1S  model are lifted out, there 
exist three resonances frequencies corresponding to the transi-
tions between three pairs of levels. Conditions for the in- and off- 
resonance transitions are discussed in the Sec. 3. 
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 0( ) = 1/ 2 cos( ).g Dn t N A t± + ε + Ω

  (15) 

The resonance condition reads =DΩ ∆ and R AΩ ∝   in 
accordance with the standard theory of the Rabi oscillations. 

If =m CEδω −  (which is equivalent to =DmΩ  
0(1 2 )),CE= − + ε  the resonance condition for a transition 

between ( , 1)N N −  is satisfied and the states ( , 1)N N +  stay 
off-resonance. Analyzing corresponding Rabi oscillations in 
the TLS under the resonance condition 0= (1 2 )D CEΩ − + ε  
for the single-photon processes = 1m  we obtain the Rabi 
oscillations with a frequency 0= 2 / (1 2 )R AΩ − ∆ + ε . The 
analysis of the multi-photon resonances and periodic driving 
near the = 1/ 2gn N ±  resonance the can be performed simi-
larly to the analysis of ( , 1)N N +  Rabi oscillations consid-
ered above. 

If 0Σ ≠  direct tunneling of two Cooper pairs is allowed, 
the third Rabi resonance between ( 1) ( 1)N N− ↔ +  states 
is possible. In that situation the N  state is separated from 
( 1)N ±  states by the large energy gap CE  and therefore can 
be neglected. The resonance condition for the Rabi oscilla-
tions in the TLS reads as =DΩ Σ  and the Rabi frequency 
is proportional to the amplitude of corresponding drive. 

3.4. Off-resonance Rabi oscillations in CPB 

As we have pointed it out in the previous subsection, the 
matrix element describing tunneling of two Cooper pairs is 
negligible compared to the Josephson energy. Therefore, 
without loss of any generality we assume that = 0Σ  and 
there is no direct transition between 1N +  and 1N − . How-
ever, such transition arises as a second order tunneling pro-
cess. We are referring to Rabi oscillations associated with 
indirect ( 1) ( 1)N N+ ↔ −  transition as the off-resonance 
Rabi effect. The degeneracy of 1N +  and 1N −  levels (in 
the absence of direct tunneling) is restored under condition 

= 0mδω  or 0= 2D Cm EΩ − ε . The solution of Eq. (14) is 
written down in the form 

 ( ) 1 ˆ( ) = exp( / 2) (0),
2

m
Ct iE t Mϕ − ϕ   (16) 

where matrix M̂  is given by 

2 2

2 2

4
e sin e

2
4 4ˆ = sin 2 sin .

2 2

4
e sin e

2

E t E tC Ci im

m m

n n
E t E tC Ci im

i t

i it tM

i t

− −
− −

+

− −
− −

 
∆ ξ  + θ − − + θ  ξ   

∆ ∆ξ ξ    − θ −    ξ ξ    
 

∆ ξ  − + θ − + θ  ξ   

 (17) 

For parametrization of the matrix M̂  in Eq. (17) we use the 
shorthand notations = cos( / 2) ( / )sin( / 2)Ct i E t±θ ξ ± ξ ξ  

and 2 2= 8C mEξ + ∆ . In case of small driving amplitude 

/ CA EΩ , the Bessel function ( 1) / !m
mJ z z m≈  and 

therefore (2 / ) / !m
m C DAE m∆ ≈ ∆ Ω . The transition proba-

bility between | i〉  (occupied at =t −∞) and | j〉  (empty if 

j i≠ ) states ( ) ( ) 2=| ( ) |m m
i j jP t→ ϕ  for the m-photon resonance 

is straightforwardly obtained from Eq. (16) and Eq. (17). 
Assuming that either 1N −  or 1N +  charge state was occu-
pied at =t −∞ we find that the time-depended population 
difference (equivalent to the time evolution of the expecta-
tion value of ˆ ( )zS t  operator) is given by a slowly varying 
oscillating function 

 ( ) ( ) ( )2 2
1 3 1 3=| ( ) | | ( ) |m m mP t t− ϕ − ϕ ≈   (18) 

 
2 2 2

2 2
2 2 2

cos 1 cos( ).m m m
C

C C C

t
E t

E E E

  ∆ ∆ ∆
≈ − +    

  
  

If the initial condition in Eq. (16) and Eq. (17) assumes 
that the N -charge states is occupied while 1N ±  states are 
empty, the oscillations in the population difference (preces-
sion of the expectation value of ˆ zS ) are absent ( )

1 3 = 0mP− . 
It is convenient to define a Fourier transform of the 

probability 

 ( ) ( )
1 3 1 3( ) = ( )e .m m i tP P t dt

+∞
− ω

− −
−∞

ω ∫  (19) 

This function for the indirect ( 1) ( 1)N N+ ↔ −  transition 
contains two Lorentzian peaks (in the presence of deco-
herence): one main peak at the frequency = =Rω Ω  

22 /m CE= ∆  with a height 21 2( / )m CE− ∆  and one satellite 
peak at = CEω  with a height 22( / )m CE∆ . The Fourier 
transform of the total transition probability obtained by 
summation over all multi-photon processes will have a 
characteristic shape of a frequency comb. 

4. Summary and discussions 

The standard investigation of a Cooper-pair box model 
describing a charge Josephson qubit assumes projection onto 
a TLS near the degeneracy points when the dimensionless 
gate charge gn  takes the half-integer values = 1/ 2gn N ± . 
The degeneracy is lifted out by including a tunneling of 
one Cooper pair. As a result, the Landau–Zener transition 
with a probability controlled by the Josephson energy and 
Zener tunneling rate takes place. In this paper we extended 
the CPB model by including an additional degeneracy 
point between 1N −  and 1N +  Cooper pairs. The minimal 
model accounting for this degeneracy is formulated in 
terms of the three-level system. We investigated the Lan-
dau–Zener transition associated with linear sweep of gn  in 
the three-level model by solving the Schrödinger equation 
using Kayanuma's method. It is shown that the LZ probabil-
ities demonstrate a behavior characterized by either “step” 
structure or “beats” pattern. We have formulated the condi-
tions for the formation of the steps and beats in terms of 
the parameters of the three-level model. We introduced the 
mapping between the three-level model describing the 
CPB and the models describing quantum dynamics of = 1S  
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system in the presence of the single-ion anisotropy 
(quadrupole interaction). Analysis of the Rabi oscillations 
in the periodically driven three-level system is performed in 
the framework of the rotating wave approximation for two 
important limiting cases of resonance and off-resonance 
drives. It is shown that if the direct transition between cer-
tain pairs of the levels is allowed by the symmetry, then the 
resonance Rabi oscillations are well-described by the two-
level model. In that case the resonance condition assumes 
driving at the frequency equal to the energy offset. If, how-
ever, the direct transition between the two levels is forbid-
den by the symmetry (when the corresponding matrix ele-
ment is zero), the Rabi oscillations nevertheless occur as 
the second order in tunneling process at the off-resonance 
frequency which scales quadratically with the Josephson 
energy. It is well known that for the two-level models any 
detuning from the resonance increases the frequency of the 
oscillations. The resonance condition gives a low bound 
for the Rabi oscillations frequency: it is equal to the ampli-
tude of the drive. The off-resonance Rabi oscillations in 
the three-level CPB Hamiltonian are predicted to be char-
acterized by a much smaller frequency determined by the 
second-order in tunneling process. These Rabi oscillations 
correspond to the precession of zS  projection (the popula-
tion difference between 1N +  and 1N −  states character-
ized by the equal odd or even parity) described by the ef-
fective = 1S  Hamiltonians. 
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Landau–Zener transitions and Rabi oscillations in a Cooper-pair box: beyond two-level models 

Переходи Ландау–Зинера і осциляції Рабі  
в транзисторі на основі куперівських пар:  

за межами дворівневої моделі 

А.В. Парафіло, М.Н. Кисельов 

Вивчено квантові інтерференційні ефекти в надпровідно-
му транзисторі з урахуванням можливості тунелювання одні-
єї або двох куперівських пар. Квантову динаміку системи 
проаналізовано в рамках трирівневої моделі. Розраховано 
ймовірності Ландау–Зинера в разі лінійної за часом зміни 
заряду на затворі, а також досліджено осциляції Рабі в три-
рівневій системи з періодичним накачуванням в умовах ре-
зонансу й поза резонансу. Показано, що ймовірності Ландау–
Зинера можуть бути розглянуті в двох режимах, що характе-
ризуються ступінчасто- та биттяподібною поведінкою ймовір-
ності. Перехід між режимами здійснюється за допомогою 
контролю відношення між двома характерними часами в 
задачі. Продемонстровано, що в трирівневій системи з періо-
дичним накачуванням за умови, коли прямі переходи між 
певними парами рівнів дозволено, проблема може бути зве-
дена до дворівневої моделі Рабі. У разі, коли прямі переходи 
між парами рівнів заборонено, передбачено нерезонансні 
осциляції Рабі, які включають процеси тунелювання другого 
порядку. Передбачений ефект може бути виявлений за допо-
могою вимірювання відносної заселеності станів транзистора 
з тією ж парністю. 

Ключові слова: трирівнева система, надпровідний транзистор 
на основі куперівських пар, перехід Ландау–Зинера, осциля-
ції Рабі. 

Переходы Ландау–Зинера и осцилляции Раби  
в транзисторе на основе куперовских пар:  

за пределами двухуровневой модели 

А.В. Парафило, М.Н. Киселев 

Изучены квантовые интерференционные эффекты в 
сверхпроводящем транзисторе с учетом возможности тунне-
лирования одной или двух куперовских пар. Квантовая ди-
намика системы проанализирована в рамках трехуровневой 
модели. Рассчитаны вероятности Ландау–Зинера в случае 
линейного по времени изменения заряда на затворе, а также 
исследованы осцилляции Раби в трехуровневой системе с 
периодической накачкой в условиях резонанса и вне резо-
нанса. Показано, что вероятности Ландау–Зинера могут быть 
рассмотрены в двух режимах, характеризуемых ступенчато- 
и биениеподобным поведением вероятности. Переход между 
режимами осуществляется с помощью контроля отношения 
между двумя характерными временами в задаче. Продемон-
стрировано, что в трехуровневой системе с периодической 
накачкой при условии, когда прямые переходы между опре-
деленными парами уровней разрешены, проблема может 
быть сведена к двухуровневой модели Раби. В случае, когда 
прямые переходы между парами уровней запрещены, пред-
сказаны нерезонансные осцилляции Раби, которые включают 
процессы туннелирования второго порядка. Предсказанный 
эффект может быть обнаружен с помощью измерения отно-
сительной заселенности состояний транзистора с той же чет-
ностью. 

Ключевые слова: трехуровневая система, сверхпроводящий 
транзистор на основе куперовских пар, переход Ландау-
Зинера, осцилляции Раби.
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