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We investigate quantum interference effects in a superconducting Cooper-pair box by taking into account the
possibility of tunneling processes involving one and two Cooper pairs. The quantum dynamics is analyzed in a
framework of three-level model. We compute Landau—Zener probabilities for a linear sweep of the gate charge
and investigate Rabi oscillations in a periodically driven three-level system under in- and off-resonance condi-
tions. It was shown that the Landau—Zener probabilities reveal two different patterns: “step”- and “beats”-like
behaviors associated with the quantum interference effects. Control on these two regimes is provided by change
of the ratio between two characteristic time scales of the problem. We demonstrate through the analysis of a pe-
riodically driven three-level system, that if a direct transition between certain pairs of levels is allowed and fine-
tuned to a resonance, the problem is mapped to the two-level Rabi model. If the transition between pair of levels
is forbidden, the off-resonance Rabi oscillations involving second order in tunneling processes are predicted.
This effect can be observed by measuring a population difference slowly varying in time between the states of

the Cooper-pair box characterized by the same parity.
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1. Introduction

Time-evolution of a quantum mechanical system charac-
terized by a discrete energy spectrum allows energy level
crossings in certain situations. When two levels cross under
a modulation of some external parameter (e.g., magnetic and
electric fields etc.) varying in time, the level crossings may
or may not convert to avoided crossings. If the symmetry of
the quantum mechanical problem permits a cross-talk be-
tween the levels, the levels start to repel each other.

The simplest problem where the avoided level crossing
arises is the Landau-Zener (LZ) problem [1,2], see [3].
The LZ Hamiltonian [1,2] addressing a time evolution of a
two-level system (TLS) has been suggested in 1932 to de-
scribe the crossing of molecular terms aiming to construct
a qualitative theory of a pre-dissociation. The same year,
Majorana considered a completely different problem which
nevertheless falls into the same universality class. Namely,
Majorana [4] investigated the behavior of atoms subject to
the time-dependent magnetic field. The pioneering work of
Majorana [4] has anticipated the revolution in quantum ma-
nipulation of few-level artificially prepared quantum me-
chanical systems well before the era of quantum information
processing began (see, for example, [5]). Quantum interfer-
ence is yet another important phenomenon appearing when
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two levels cross several times under modulation of an exter-
nal field [6]. In particular, a periodically driven two-level
system is characterized by an interference pattern known as
Stickelberg oscillations, see review [7].

There are several realizations of TLS based on
spintronics of quantum dot artificial atoms [8,9], quantum
beats engineered with ultra-cold gases [10,11] and super-
conducting devices [12], see, e.g., reviews [13,14]. Among
the superconducting qubits, the quantum devices built with
mesoscopic Josephson junctions allow an unprecedented
level of control on quantum coherence phenomena [15,16].
The charge qubit based on a Cooper-pair box (CPB) has
been one of the first quantum devices to provide the evi-
dence of quantum interference associated with Landau-
Zener-Stlickelberg—Majorana (LZSM) physics in a non-
atomic system. However, the real CPB can be considered
as the TLS only under certain approximations. The exper-
iments of the Helsinki group [17,18] have clearly demon-
strated that the interference pattern of Stlickelberg oscilla-
tions cannot be fully explained by the two-level models.
On one hand, the models of quantum interferometers con-
structed by adding few extra levels to the two-level system
may provide a suitable explanation of the experimental
puzzles [19-29]. On the other hand, the models describing
multi-level interferometers contain some additional parame-
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ters which can be used for fine-tuning quantum systems to
certain resonance transitions and therefore inspire new ex-
periments.

In this paper we consider a three-level model for describ-
ing the quantum dynamics of the superconducting Cooper-
pair box. The paper is organized as follows: in Sec. 2 we
introduce the CPB model and investigate quantum dynam-
ics associated with Landau-Zener tunneling in three-level
system under a linear-in-time sweep. In Sec. 3 we consider
a periodically driven three-level system and discuss in- and
off-resonance Rabi oscillations. Concluding remarks are
given in the Sec. 4.

2. Landau—Zener tunneling in a Cooper-pair box

We consider a superconducting Cooper-pair box — a
small superconducting island coupled both to a massive
electrode via resistive Josephson junction and to a electro-
static gate via capacitance. The Hamiltonian describing this
system is given by

Hepg = Ec (fi—ng) + E; cosd. 1)

The first term in Hepg represents the charge states: here
Ec = (2e)2 /2C is a charging energy of superconducting
island (C is its capacitance), the operator A accounts for
the number of Cooper pairs, dimensionless gate charge
ng =-Cy4Vq /2e is the external parameter controlling the
number of the Cooper pairs on the island via the gate voltage
Vg. The second term in the Hamiltonian (1) describes Jo-
sephson tunneling. Here Ej is the Josephson energy and ¢ is
the phase operator canonically conjugated to A: A = —id/ a&>
(here we adopt the system of units z =1). We assume that
the value of a superconducting gap Ag of the island is larger
compared to the charging energy Ec (Ag > Ec), which
allows us to ignore tunneling of the odd number of charges
to the island. In this paper, we investigate the charge regime
E; < E¢, when superconducting CPB operates as an ele-
mentary charge qubit [13,14]. If the Josephson energy is
negligibly small, E; — 0, a fixed number of the Cooper
pairs is trapped on the island, while the ground-state energy
depends periodically on the gate voltage V. Besides, there
are special values of the gate voltage, namely, nq (Vy) =
=N=x1/2, at which N and N *1 charge states become de-
generate. Inclusion of the finite Josephson energy lifts the
degeneracy and allows us to approximate the CPB at low
energies by a two-level system model.

In this paper we go beyond the TLS model by taking in-
to account an additional degeneracy between n and n+2
charge states occurring under condition ng (Vy) =n. The
minimal model describing this case accounts for three
charge states only, namely, {ry,n,,ns}={N-1,N,N +1}
Cooper pairs, see Fig. 1. In the regime E¢c > E; the Ham-
iltonian is written in the basis formed by the charge states,
parametrized by the number of Cooper pairs on the island.
The matrix form of the Hamiltonian in this basis is given by
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Fig. 1. (Color online) The energy diagram for the superconducting
Cooper-pair box model. Dashed lines denote the charging energy
given by the diagonal term of the Eq. (2) as a function of the di-
mensionless gate voltage, Ng (\/g) (diabatic basis for the Landau—
Zener problem). Solid lines show the adiabatic basis obtained by
diagonalization of the Eq. (2) for a particular case X =0. Dash-
dotted red curves form a closed loop and denote adiabatic and non-
adiabatic paths resulting in quantum interference.

Ec(ng —1y)? A "
H = A Ec(ng —np)? A . (2)
z A Ec (ng —n3)2

where A=E; and X are the amplitudes for tunneling on
the island of one and two Cooper pairs, respectively. We
start our analysis of the quantum dynamics by considering
the case, when the gate voltage is swept linearly in time:
Ng (t) = N +at. In order to get simple analytical results we
first restrict our analysis by imposing X = 0 condition (ab-
sence of direct tunneling of two Cooper pairs). In this case,
it is easy to solve the time-dependent Schrédinger equation
iy =Hy with Hamiltonian (2) by using so-called
Kayanuma's method [30]. The idea behind the Kayanuma's
ansatz is to exclude all diagonal elements in Eq. (2) by
performing a transformation with a diagonal operator

e—iEC(at2+t) . .
U=e'% 0 1 0 G
. . e—iEC(—atZH)

where 0, = Eca2t3 /3.

Transforming the wave function \I/(t)zL]w(t)z

:Zf’:lci (t)|i), where the states |i) form the compact

basis of diabatic states of Eq. (2), we rewrite the non-
stationary Schrddinger equation describing the time-
evolution of the three-level system in terms of the system
of three linear differential equations:
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a0 = el e,

&0 = AefiEC((xtzﬁ)Cl(t) . Ae—iEC(—atZH)

iEC (—at2+t)cz o, @

To find a solution of the system of coupled linear differential
equations, it is convenient to rewrite it in the form of linear
integral Volterra equations. For example, it is straightfor-
ward to transform the equation for C,(t) to a self-contained
integral form by excluding C, (t) and C5(t) with the help of
the first an the third equations in (4):

Cs(t),

iC5(t) = Ae

t i
Co(t) = —A% [ dty [ dizCa(t) x

x{exp[—iEC ()2 +iEc (tg)2}+
+exp|iEc (1) ~iEc (5)? ], (5)

where t* =+/at+1/(2Ja). We assume that the initial
condition for Egs. (4) is given by the N-quasiparticle
Cooper pairs state characterized by the occupancy: C, (o) =1
and Cy(—w) = C3(—») = 0.

The integral equation (5) is solved by the iterations. This
procedure is legitimate in the non-adiabatic approximation
under condition & = A? / (aEc ) < 1. By exponentiating the
result of the first iteration we obtain the probability
P, =|Cy I to find the system in the N-charge state at

t — oo:
pz(t)zexp(_gj?z[p(w)w(f—)ﬂ, ©

where the function

2 2
‘o= (3reo) (Jsof| o

is expressed in terms of the Fresnel integrals

S(z) = \Ejdtsintz, C(2)= \/%Idtcostz. (8)
0 0

In Eq. (6) we denote % = [2E; / n[Jat+1/(2V/o)]. We
plot on Fig. 2 the probability P, obtained by analytic solu-
tion of the Eq. (6) for two different sets of parameters (see
details in the figure caption): an orange curve represents
the solution with X = 0, while a black curve corresponds to
the solution with X = 0. The step-like behavior characteris-
tic for the orange curve is originating from an interplay
between two time scales of the LZ problem [31,32]: i) a
Zener time t; ~ (aEc )"Y2 associated with the “individu-
al” Landau-Zener transitions at corresponding avoided
crossings (we consider t, for the non-adiabatic LZ transi-
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Fig. 2. (Color online) Main frames: Time-dependent Landau-
Zener probability P, (t) =|C(t) |2 given by Eq. (4) as a function

of a dimensionless time JoaEct (see definitions and detailed

explanations in the Sec. 2). The inserts show the time evolution
of the probabilities Ri(t) =|Cy(t)[> and Py(t) =|Ca(t)>. All
curves are computed for the non-adiabatic regime & <1. The
orange curves correspond to the analytic solution Eq. (6) with
2 =0. The black curves represent the results of numerical calcu-
lations performed with T = 0. Without any loss of generality we
assume that the transparency at each avoided crossing point can
be fine-tuned independently. We therefore do not rely upon a
smallness of X compared to A. The initial condition for all
curves reads: Co(—w)=1 and Cy(-w)=Cz(-)=0. Upper
panel: tz <tp, parameters &=0.0042, A/Ec =0.004 and
¥/ Ec =0.024. Lower panel: t; >tp, parameters &=0.011,

A/EC =0.2 and Z/EC =0.8.

tion [31]); ii) a dwell time tp ~a ! related to the time
interval between two consequent crossings (see Figs. 1
and 2). Two different regimes correspond to two opposite
limiting cases: (i) two Landau—Zener transitions can be con-
sidered as two consequent (independent) avoided crossings
if t; <tp (see the upper panel in Fig. 2), and (ii) two transi-
tions can not be separated in time if t; >ty and the interfer-
ence from the nearest avoided crossings must be taken into
account (see the lower panel in Fig. 2). This interference
results in a pronounced superstructure in the time evolution
of the probability P,(t). Emergence of the two-energy
scales E; and E, with E; —E, ~ E. leads to the “beats”
pattern characterized by the period tygas ~ Ec‘l. It is con-
venient to consider a “triangle” formed by three parabolas
(see Fig.1) as an Mach-Zehnder interferometer. Each
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avoided crossing point is equivalent to a “mirror” charac-
terized by a transparency determined by LZ probability.
The left avoided crossing therefore splits the state into two
parts (red dash-dotted lines representing adiabatic and non-
adiabatic paths in Fig. 1), while the right crossing can either
play a role of yet another splitter (if £ = 0) or detect an inter-
ference between transmitted (diabatic) and reflected (adia-
batic) paths if £ = 0. The “beats” superstructure is associated
with the repopulation of all three states of the Mach—
Zehnder interferometer due to almost perfect “transmission”
at ng = N (induced tunneling is given by the second order
processes o A%/ Ec ., see [27] for the details).

The interference pattern changes its character when the
“transmission” at ny = N associated with the tunneling of
two Cooper pairs becomes pronounced (black curves in
Fig. 2). The “finite reflection” at the “upper mirror” (split-
ter) ng = N leads to the probability P, deficit (see the dif-
ference between the orange and black curves at the upper
panel of Fig. 2) and modifies the step pattern in the regime
t; <tp. Besides, we emphasize that the probabilities to find
system in N -1, N +1 states are equally distributed in the
absence of X-terms. The reason for equipartition is due to
equivalence of two tunneling rates at two avoided crossing
points t = £1/ (2a). This effect holds in both regimes t; <tp.
Taking into account finite X results in appearance of an
asymmetry between the probabilities P, and P;. Moreover,
this asymmetry becomes even more pronounced in the case
t; >tp, see inserts in lower panel of the Fig. 2.

3. Periodically driven CPB

In this section we consider a periodic modulation of the
dimensionless gate charge

g (t) = N +¢g + Acos(Qpt), 9

where Qp and A are the frequency and amplitude of the
modulation, respectively, and ¢ is the charge offset. We
investigate the cases of resonance and off-resonance driving
and analyze Rabi oscillations [33] in the driven three-level
system. The system is resonantly driven if the frequency of
the drive Qp coincides with the energy difference between
two neighboring states (two levels). In that case, known as a
conventional Rabi problem [33], the probability to occupy
each of two eigenstates oscillates with the frequency propor-
tional to the amplitude of the drive. When the two-level
system is driven off-resonance, the oscillation frequency
Qo > Qr. We show that the off-resonance driving of the
three-level system allows a strong violation of this inequality.

3.1. Mapping three-level systems to S =1 models

To analyze the quantum dynamics of a multi-level CPB,
it is convenient to use an equivalent language of spin-S
states representing 2S +1-levels model. In particular, the
diagonal part of the Hamiltonian describing three-level
S =1 system can always be represented in terms of a linear

(dipole moment) and quadratic (quadrupole moment) com-
binations of SZ. The transitions between the eigenstates of
S? operator are accounted by linear terms in $*, S opera-
tors and also corresponding bi-linear combinations
(quadrupole moments). Rewriting the Hamiltonian (2) in
the basis of linear and bi-linear spin S =1 operators results
in the following spin Hamiltonian:

H=H-Ho(t) = AS* +h?©)$? + D($?)?,  (10)

where h?(t) = 2Eceq + 2AE¢ cos(Qpt) is a synthetic
time-dependent magnetic field, D =E; is an easy-axis
anisotropy parameter (quadrupole interaction) and Hg(t) =
:[hz(t)]2 / (4Ec). Note, that the Eq. (10) describing three-
level system is not linear in terms of the S -operators, in con-
trast to the Hamiltonians describing the quantum dynamics
of the TLS. However, the Eq. (10) as well as any three-state
Hermitian Hamiltonians represented by 3x3 matrices can
be written down as a linear form in a basis of Gell-Mann
matrices (generators of SU(3) group) [27]. The linear in
terms of the S =1 operators part of the Hamiltonian (10)
corresponding to D =0 case falls into a class of SU(2)
symmetry group. The transitions between the eigenstates of
§? operator, {| -1),] 0),| +1)} (which are equivalent to {N -1,
N, N +1} charge states of the CPB model), are restricted by
AS? =+1 condition. Constant (non-oscillating) magnetic
field applied along z direction, hj = 2Egq lifts the three-
fold degeneracy of the S =1 states (linear Zeeman effect).
Since the | ) states are equidistant from the | 0) state, the
driving with Qp =hg gives an access to the transitions
| -1) <>/ 0) and | 0) «>| +1) (see Fig. 3(a)).

Finite quadrupole interaction (single-ion anisotropy)
D = 0 lifts out the degeneracy between |0) and | +1) states
(see Fig. 3(b)). Finite synthetic magnetic field hj (aka
charge offset) applied along z-direction eliminates the de-
generacy of | +1) states. Therefore, finite D-term explicitly
breaks the SU(2) symmetry and allows transitions with
unrestricted selection rule AS® =+2. However, the CPB
model Eg. (2) is derived under condition Ec =D > A.
Thus, the SU (2) symmetric point is beyond the validity of
the CPB model.

3.2. Rotating wave approximation

The diagonal elements of the Eq. (2) subject to the peri-
odic drive Eq. (9) explicitly depend on time. We perform
the first (exact) step in transforming the Hamiltonian of the
model by rewriting Eq. (2) in the new rotating frame basis
by applying a transformation:

V= exp(—iEC {ﬂsin(QDt)SAz + (11)
Qp
2 .
+1 a%t+ 280Asin(QDt)+ A (t+sm(2QDt)j .
Qp 2Qp 2
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Fig. 3. Energy spectrum for the S =1 model in the presence of a
single-ion anisotropy parameter D (see the main text for the
discussion of the mapping between the three-level CPB models
and S =1 Hamiltonians). (a) The single-ion anisotropy parame-
ter D = 0. The three-fold degeneracy of the S =1 state is lifted
out by static magnetic field hé = 2Ecgg . Equidistant splitting
of |£1) states is described by a linear Zeeman effect. (b) Finite
single ion anisotropy D = 0 lifts out the degeneracy between
|0y and | +1) states. The states |£1) still remain degenerate in
the absence of magnetic field. (c) Finite synthetic magnetic field
hg # 0 eliminates the degeneracy between |+1) states. When
all degeneracies of the effective S =1 model are lifted out, there
exist three resonances frequencies corresponding to the transi-
tions between three pairs of levels. Conditions for the in- and off-
resonance transitions are discussed in the Sec. 3.

The transformation Eq. (11) results in elimination of the
time-dependence from the diagonal matrix elements of the
Eq. (2) by transferring it to the off-diagonal elements of the

Hamiltonian matrix. In Eq. (11) I denotes the unit 3x3
matrix. Further simplification of the transformed Hamilto-
nian is achieved by rewriting the time-dependent off-
diagonal elements of Hamiltonian matrix with a help of the
textbook identity for the Bessel functions: exp(ixsint) =

:Zme(x)eimt. As a result, the new Hamiltonian

H =V-IHYV —iV W reads as follows:

Ec(1+2ep) Ape™D! 0
|_~| - Z Ame*imQDt O AmelmQDt , (12)
m=e 0 Ape MDY B (1-2¢g)

where Ap, = AJp, (2AE: /Qp). The wave functions ¢(t)
written in the rotated basis are connected to the wave func-
tions wy(t) in the original basis through the equation
(p(t):\f‘lw(t). Note, that the Hamiltonian (12) remains
explicitly time-dependent after the transformation Eq. (11).

The next step is to transform the Hamiltonian (12) to a
time-independent form. It can be done by applying the se-
cond transformation to yet another rotating frame. Unfortu-
nately, as is known, there is no simple way to eliminate ex-
actly the time-dependence from the Eg. (12). However, it

can be done approximately using a reliable ansatz known
as a rotating wave approximation (RWA). The idea behind
RWA is to consider the solution of the Schrédinger equa-
tion as a sum of the kth harmonics:

kOpt 0
eM=>1 0 1 0 |t (13)
k 0 0 e—leDt

For each mth harmonic in Eq. (12) there exists correspond-
ing k = m term in Eq. (13) such a way that the off-diagonal
matrix element of the new Hamiltonian will be given by a
sum of two terms: one is non-oscillating and another one is
fast oscillating. After neglecting the fast oscillating terms
in Eq. (12) we write the Schrddinger equation for mth
harmonic, ™ as follows:

Ec +d0, A 0
™Mty =| A, 0 An 8™ (), (14)
0 Ay Ec —80p

where Sop, = mMQp +2Ecgg. While a general solution of
Eq. (14) is cumbersome, we consider below only some
cases of a special interest.

3.3. Resonance Rabi oscillations in CPB

The matrix form of the time-independent Hamiltoni-
an (14) assumes that only two pairs of the levels, namely
(N, N+1) and (N, N -1), can be fine tuned to the reso-
nance by adjusting dw,,. The resonance between (N -1,
N +1) states typically is not accessible due to the absence
(smallness) of the corresponding matrix elements. Indeed,
the probability for two Cooper pairs to tunnel in CPB is intu-
itively small due to smallness of the phase space for such a
process. Therefore, there are only two resonance Rabi oscil-
lations in the CPB model. If dw,, = +E¢ (which is equiva-
lent to mQp = E¢ (1-2¢3)), the resonance condition for
the transition between (N, N +1) is satisfied. This reso-
nance condition assumes that the three-level system is con-
sidered away from the resonance ng =N +1/2. It provides
a low bound for the offset charge |gq |< (1/2)(1-A/Eg).
The states (N, N —1) stay off-resonance being separated
by a large energy offset 2E.. Under this condition the
transition between (N, N —1) can be neglected and the
Hamiltonian matrix (14) reduced to 2x2 form [20], see,
e.g., [34]. The Rabi oscillations in the TLS are described by
the standard textbook equation [33] (for simplicity we focus
on a single-photon m =1 resonance): the resonance drive
with Qp = =Ec(1-2¢y) results in oscillations with
Qr =2AA/(1-2¢g) if amplitude of the drive A< Qp / Ec
(to obtain the equation for Qg we use an asymptotic of the
Bessel function J;(z <« 1) = z).

If the TLS is driven near the ng = N £1/2 resonance,
we expand the dimensionless gate charge across the reso-
nance as follows:
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Ng (t) = N £1/2+&; + Acos(Qpt). (15)

The resonance condition reads Qp = A and Qg o« A in
accordance with the standard theory of the Rabi oscillations.

If do, =—-Ec (which is equivalent to mQp =
=—E¢ (1+2¢p)), the resonance condition for a transition
between (N, N —1) is satisfied and the states (N, N +1) stay
off-resonance. Analyzing corresponding Rabi oscillations in
the TLS under the resonance condition Qp = —Ec (1+ 2¢p)
for the single-photon processes m =1 we obtain the Rabi
oscillations with a frequency Qg =—-2AA/(1+2¢;). The
analysis of the multi-photon resonances and periodic driving
near the ng = N £1/2 resonance the can be performed simi-
larly to the analysis of (N, N +1) Rabi oscillations consid-
ered above.

If  # 0 direct tunneling of two Cooper pairs is allowed,
the third Rabi resonance between (N —1) <> (N +1) states
is possible. In that situation the N state is separated from
(N £1) states by the large energy gap Ec and therefore can
be neglected. The resonance condition for the Rabi oscilla-
tions in the TLS reads as Qp =X and the Rabi frequency
is proportional to the amplitude of corresponding drive.

3.4. Off-resonance Rabi oscillations in CPB

As we have pointed it out in the previous subsection, the
matrix element describing tunneling of two Cooper pairs is
negligible compared to the Josephson energy. Therefore,
without loss of any generality we assume that ~ =0 and
there is no direct transition between N +1 and N —1. How-
ever, such transition arises as a second order tunneling pro-
cess. We are referring to Rabi oscillations associated with
indirect (N +1) <> (N —1) transition as the off-resonance
Rabi effect. The degeneracy of N+1 and N —1 levels (in
the absence of direct tunneling) is restored under condition
Sy =0 or mQp = -2Ec¢gp. The solution of Eq. (14) is
written down in the form

§™ () = Zexp(-iEct/ M 3(0), (16)
where matrix M is given by
Ec Ect
e 2 +0_ 144y n(gj e 2 +0
2
N =| - 148m sin(gj 2, _144y sin(gj .an
&n 2 &n 2
-Ect . .Ect
= 4N, —i—-
- 2 +0_ '%2m sm(%] e 2 +0_

For parametrization of the matrix M in Eq. (17) we use the
shorthand notations 6, =cos(&t/2)+i(Ec /&)sin(Et/2)

and §:\/Eé +8Aﬁ1. In case of small driving amplitude
A< Q/Eg, the Bessel function J,(z < 1) ~z™ /m! and

therefore A, ~ ARAE: /Qp)™ / ml. The transition proba-

bility between |i) (occupied at t =—o0) and | j) (empty if

j #1) states PI(_”:)J =| (p(jm) t) |2 for the m-photon resonance

is straightforwardly obtained from Eq. (16) and Eq. (17).
Assuming that either N —1 or N +1 charge state was occu-
pied at t = —o we find that the time-depended population
difference (equivalent to the time evolution of the expecta-

tion value of S? (t) operator) is given by a slowly varying
oscillating function

R =16 1) 2 -1 (™ t) [P~ (18)
2 2 2
~ COS 24t 1- 2A2m + ZAZ”‘ cos(Ect).
Ec Ec ) EC

If the initial condition in Eq. (16) and Eq. (17) assumes
that the N -charge states is occupied while N +1 states are
empty, the oscillations in the population difference (preces-
sion of the expectation value of §Z) are absent Pl(f;) =0.
It is convenient to define a Fourier transform of the
probability
+00
AP () = [ R me ™t (19)
—00
This function for the indirect (N +1) <> (N —1) transition
contains two Lorentzian peaks (in the presence of deco-
herence): one main peak at the frequency o=Qpg =
= 2Aﬁ1 !/ Ec with a height 1-2(A,, / EC)2 and one satellite
peak at w = Ec with a height Z(Am/EC)Z. The Fourier
transform of the total transition probability obtained by
summation over all multi-photon processes will have a
characteristic shape of a frequency comb.

4. Summary and discussions

The standard investigation of a Cooper-pair box model
describing a charge Josephson qubit assumes projection onto
a TLS near the degeneracy points when the dimensionless
gate charge ng takes the half-integer values ng = N £1/2.
The degeneracy is lifted out by including a tunneling of
one Cooper pair. As a result, the Landau—Zener transition
with a probability controlled by the Josephson energy and
Zener tunneling rate takes place. In this paper we extended
the CPB model by including an additional degeneracy
point between N —1 and N +1 Cooper pairs. The minimal
model accounting for this degeneracy is formulated in
terms of the three-level system. We investigated the Lan-
dau-Zener transition associated with linear sweep of ng in
the three-level model by solving the Schrédinger equation
using Kayanuma's method. It is shown that the LZ probabil-
ities demonstrate a behavior characterized by either “step”
structure or “beats” pattern. We have formulated the condi-
tions for the formation of the steps and beats in terms of
the parameters of the three-level model. We introduced the
mapping between the three-level model describing the
CPB and the models describing quantum dynamics of S =1
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system in the presence of the single-ion anisotropy
(quadrupole interaction). Analysis of the Rabi oscillations
in the periodically driven three-level system is performed in
the framework of the rotating wave approximation for two
important limiting cases of resonance and off-resonance
drives. It is shown that if the direct transition between cer-
tain pairs of the levels is allowed by the symmetry, then the
resonance Rabi oscillations are well-described by the two-
level model. In that case the resonance condition assumes
driving at the frequency equal to the energy offset. If, how-
ever, the direct transition between the two levels is forbid-
den by the symmetry (when the corresponding matrix ele-
ment is zero), the Rabi oscillations nevertheless occur as
the second order in tunneling process at the off-resonance
frequency which scales quadratically with the Josephson
energy. It is well known that for the two-level models any
detuning from the resonance increases the frequency of the
oscillations. The resonance condition gives a low bound
for the Rabi oscillations frequency: it is equal to the ampli-
tude of the drive. The off-resonance Rabi oscillations in
the three-level CPB Hamiltonian are predicted to be char-
acterized by a much smaller frequency determined by the
second-order in tunneling process. These Rabi oscillations
correspond to the precession of S projection (the popula-
tion difference between N +1 and N -1 states character-
ized by the equal odd or even parity) described by the ef-
fective S =1 Hamiltonians.
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Landau-Zener transitions and Rabi oscillations in a Cooper-pair box: beyond two-level models

Mepexoan JlaHaay—3uHepa i ocumnsuii Pabi
B TPaH3UCTOPI HAa OCHOBI KynepiBCbKUX nap:
3a MexaMu OBOpiBHEBOI Moaeni

A.B. Mapadino, M.H. Knucensos

BuBueHo kBaHTOBI iHTepdepeHuiiiHi eGexTn B HaANIPOBIAHO-
MY TPaH3UCTOPI 3 ypaxyBaHHIM MOXKIUBOCTI TYHEIIOBAHHS OfIHi-
€i abo IBOX KymepiBChbKHX map. KBaHTOBY AHHAMiKy CHCTEMH
NpOaHaTi30BaHO B paMKax TPHUpiBHEBOi Mozeni. Po3paxoBaHo
WmoBipHocTi Jlannay-3unepa B pasi JiHIHHOI 3a YacoM 3MiHH
3apsiay Ha 3aTBOPIi, @ TaKOX AOCHiKeHo ocuunsiuii Pabi B Tpu-
piBHEBiil cHCTEMH 3 NEpiOJMYHMM HaKauyBaHHSIM B YMOBaX pe-
30HaHCy i mo3a pe3onancy. [Tokasano, o iimosipaocti Jlanmay—
3uHepa MOXKYTh OyTH PO3IIISHYTI B ABOX PEXKUMaX, L0 XapakKTe-
PH3YIOTBCS CTYMIHYACTO- Ta OUTTSINOAIOHOIO MOBEIIHKOI HMOBIp-
Hocti. Ilepexin MDK peXMMaMM 3HIHCHIOETBCS 3a JJOIMOMOTOIO
KOHTPOJIIO BIJHOIIGHHA MiX JBOMa XapaKTepHUMH 4YacaMu B
3agadi. [IpogeMoHcTpOBaHO, IO B TPUPIBHEBIH cucTeMu 3 mepio-
JUYHUM HAKa4yBaHHSAM 3a YMOBH, KOJM HPSMi IEPEXOIH Mix
MIeBHUMH IIapaMH PiBHIB JJO3BOJIEHO, Npobiema Moxke OyTH 3Be-
JeHa 10 JBopiBHeBol Mojeni Pabi. V pasi, komu npsmi nepexoau
MDK TapaMH piBHIB 3a00poHEHO, mHependadeHo Hepe3OHAHCHI
ocumsAnii Pabi, siki BKIFOYAIOTh MPOLIECH TYHEIIOBAHHS JPYroro
nopsaky. Ilepenbauenuii edext Moxe OyTH BUSBICHHMIT 3a OMO-
MOT'OI0 BUMIPIOBaHHSI BiTHOCHOI 3aCEIEHOCTI CTaHiB TPAH3UCTOPA
3 TI€IO0 XK MAPHICTIO.

Kutro4oBi ciioBa: TpupiBHEBa cucTeMa, HAIPOBIAHUN TPAH3UCTOP
Ha OCHOBI KyIepiBCbKUX nap, nepexia Jlannay—3uHepa, oCuuis-
wii Pa6i.
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Mepexoabl NlaHgay—3uHepa n ocumnnaummn Padu
B TPAH3UCTOPE Ha OCHOBE KYMepOBCKMX Nap:
3a npegenamu ,EI,ByxyDOBHeBOVI moaenun
A.B. Mapadwmno, M.H. Kucenes
N3yuyeHbl KBaHTOBbIE MHTEp(EpCHIUOHHbIE 3(eKThl B
CBEPXIMPOBOALIEM TPAH3UCTOPE C YYETOM BO3MOKHOCTH TYHHE-
JHMPOBAaHUS OJHON WIM JIBYX KyHepoBCkuX map. KBanrtoBas nu-
HaMHKa CHUCTEMbI MPOAHAIU3UPOBAHA B PaMKaX TPEXypPOBHEBOM
mognenn. Paccumraner BepositHoctH Jlammay—3uHepa B ciydae
JMHEHHOTO MO BPEMEHU W3MEHEHUs 3apsja Ha 3aTBOPE, a TaKKe
HCCIIENOBaHbl OCIULIIINU Pabu B TpeXypOBHEBOH cHCTEME C
MEPUOANYECKON HAKAYKOM B YCIOBMSAX PE30HAHCA U BHE pE30-
HaHca. [Toka3zano, uto BeposiTHOCTH Jlannay—3unepa MOryT OBITH
paccCMOTpPEHBI B BYX PEXKHMaX, XapaKTepPU3yeMbIX CTyINEeHYaTo-
1 OMeHMeTI0JOOHBIM TOBeIeHHEM BeposiTHOCTH. [lepexon Mexy
pPEeXMMAMH OCYILIECTBIISIETCS] C MOMOLIBIO KOHTPOJISI OTHOLIEHHS
MEXIy IBYMs XapaKTepHBIMH BpeMeHaMu B 3amaude. [Ipomemon-
CTPUPOBAHO, UTO B TPEXYPOBHEBOW CUCTEME C NEPHOAMUYECKOU
HaKa4YKoll IPH yCIOBHH, KOTJa MPSMBIE IIEPEXO0JbI MEXTY OIpe-
JeTeHHBIMH TapaMH YPOBHEH paspelleHsl, mpobiemMa MOKET
OBITH CBEJICHAa K JByXypoBHEBOH Monenu Pabu. B ciydae, korma
IpsIMbIE NEPEXOAbl MEKAY TMapaMH YpOBHEW 3amlpelieHsl, Mpef-
CKa3aHbl HEPEe30HAHCHbIE OCHMILIAINH Pabu, KOTOphIe BKIIOYAIOT
MpoLECCH TyHHENUpPOBaHUs BTOoporo nopsaka. IlpenckasaHHsrit
s dexT MoxkeT OBITh OOHAPYKEH C MOMOIILI0 U3MEPEHHs OTHO-
CUTEJIbHON 3aCEJIEHHOCTH COCTOSIHUM TPAaH3UCTOPa € TOH Ke ueT-

HOCTBIO.

KiroueBbie ciioBa: TpexXypOBHEBasi CHCTEMa, CBEPXIIPOBOISIIHUIA
TPaH3UCTOP HA OCHOBE KYIEPOBCKUX Map, mepexon Jlanmay-
3unepa, ocumnsiuuu Padu.
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