
Pis'ma v ZhETF, vol. 92, iss. 3, pp. 202 { 207 c 2010 August 10Spin and Charge Correlations in Quantum Dots: An Exact SolutionI. S. Burmistrov+z, Yu. Gefen�, M.N.Kiselev41)+L.D.Landau Institute for Theoretical Physics RAS, 119334 Moscow, Russiaz Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia�Department of Condensed Matter Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel4 International Center for Theoretical Physics, 34014 Trieste, ItalySubmitted 29 June 2010The inclusion of charging and spin-exchange interactions within the Universal Hamiltonian description ofquantum dots is challenging as it leads to a non-Abelian action. Here we present an exact analytical solutionof the probem, in particular, in the vicinity of the Stoner instabilty point. We calculate several observables,including the tunneling density of states (TDOS) and the spin susceptibility. Near the instability point theTDOS exhibits a non-monotonous behavior as function of the tunneling energy, even at temperatures higherthan the exchange energy. Our approach is generalizable to a broad set of observables, including the a.c. sus-ceptibility and the absorption spectrum for anisotropic spin interaction. Our results could be tested in nearlyferromagnetic materials.The physics of quantum dots (QDs) is a focal pointof research in nanoelectronics. The introduction of the\Universal Hamiltonian" [1, 2] made it possible to sim-plify in a controlled way the intricate electron-electroninteractions within a QD. This provided one with aconvenient framework to calculate physical observables.Within this scheme interactions are represented as thesum of three spatially independent terms: charging,spin-exchange, and Cooper channel. Notably, even theinclusion of the �rst two terms turned out to be non-trivial: the resulting action is non-Abelian [3, 4]. At-tempts to account for those interactions in transportinvolved a rate equation analysis [5, 6] and a pertur-bation expansion [4]. Alhassid and Rupp [5] have ana-lyzed some aspects of the problem (see below) exactly.It is known that in the presence of signi�cant spin-exchange interaction such systems can become Stonerunstable. More precisely, one distinguishes 3 regimesof behavior as function of increasing the strength of theexchange interaction: paramagnetic (no zero �eld mag-netization), mesoscopic Stoner regime (�nite magnetiza-tion whose value increases stepwise with the exchange)and thermodynamic ferromagnetic phase (magnetizationis proportional to the volume) [2]. Both the mesoscopicand thermodynamic phases manifest (Stoner) instabil-ities towards ferromagnetic ordering. The presence ofenhanced quantum and statistical uctuations underly-ing such instabilities calls for a full-edged quantum me-chanical treatment of the problem.1)e-mail: burmi@itp.ac.ru, Yuval.Gefen@weizmann.ac.il,mkiselev@ictp.it.

Here we present an exact analytic algorithm to tacklethis challenging problem. We employ our approach toa few physical variables within the mesoscopic Stonerregime, but it can be used to tackle the broad range ofproblems involving spin and charge on a QD, and be ex-tended to the thermodynamic ferromagnetic regime too.As examples we calculate the following quantities: thepartition function, the magnetic susceptibility, the dis-tribution function of the total spin, the tunneling densityof states (TDOS), and the sequential tunneling conduc-tance. Our approach allows us to obtain analytic re-sults as one approaches the Stoner instability. Below welist possible applications of our method to other physicalobservables and extensions beyond the Universal Hamil-tonian. The physics discussed here can be best testedin quantum dots with materials which are close to thethermodynamic Stoner instability, e.g., Co impurities inPd or Pt host, Fe dissolved in various transition metalalloys, Ni impurities in Pd host, and Co in Fe grains,as well as new nearly ferromagnetic rare earth materials[7, 8].The main reason why, in this context of a QD, thetreatment of the exchange term is non-trivial, is the non-Abelian nature of the action. One needs to tackle timeordered integrals of the formA(p) = T exp�i Z tp0 dt0 �ps� : (1)Here �p is a dynamical, quantum �eld operating on thespin s (whose x component is proportional to the Paulimatrix �x etc.); p and  are indices to be elaboratedbelow; T is a time ordering operation. Wei and Nor-202 �¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 3 { 4 2010



Spin and Charge Correlations in Quantum Dots: An Exact Solution 203man [9], addressing the problem of a quantum spin sub-ject to a prescribed classical time-dependent magnetic�eld, have elegantly shown that by preforming a non-linear transformation from �xp ; �yp ; �zp to a set of othervariables (cf. Eq. (15)), Eq. (1) can be written as aproduct of 3 Abelian terms (cf. Eq. (16)). Even so, thatproblem could not be solved. The problem of a quan-tum �eld appears to be even more intricate. To solveit we employ here a generalized Wei-Norman-Kolokolov(WNK) method [10].We consider a quantum dot of linear size L in theso-called metallic regime, whose dimensionless conduc-tance gTh = ETh=� � 1. Here ETh is the Thoulessenergy and � is the (spinless) mean single particle levelspacing. We account for the following terms of the Uni-versal HamiltonianH = H0 +HC +HS ; H0 =X�;� ��ay�;�a�;� : (2)Here, �� denotes the spin (�) degenerate single parti-cle levels. The charging interaction HC = Ec (n̂�N0)2accounts for the Coulomb blockade, with n̂ �P� n̂� ==P�;� ay�;�a�;� being the particle number operator; N0represents the positive background charge. The termHS = �JS2 represents spin interactions within the dot(S = P� s� = 12 P� ay�;����0a�;�0), with the compo-nents of � comprising of the Pauli matrices.The imaginary time action for this system reads:Stot = Z �0 Ld� = Z �0 hX� �	�(@� + �)	� �Hid�:Here � is the chemical potential, � = 1=T , T the temper-ature, and we have introduced the Grassmann variables�	� = (� �"; � �#)T ;	� = ( �";  �#) to represent elec-trons on the dot.Employing a Hubbard-Stratonovich transformationleads to a bosonized formL =X� �	� �@� � �� + �+ i�+ � ��2 �	�+�24J + �24Ec � iN0�; (3)where � and � are scalar and vector bosonic �elds re-spectively. The SU(2) non-Abelian character of the ac-tion poses a serious di�culty. It prevents one from per-forming a gauge transformation [11] which works e�-ciently in the Abelian U(1) (charging only) case [11, 12,13]. Employing the Wei-Norman-Kolokolov trick we areable to overcome this di�culty.

Results. | Below we present our main results. TheTDOS is given by the following exact expression�(") = 1 + e��"Z Xn";#2Ze��Ec(n�N0)2+��n+�Jm(m+1)�X� �h"���+��Ec(2n� 2N0 + 1)� J�m+ 14�i�(2mhZn"(��)Zn# � Zn"+1Zn#�1(��)i+(2m+ 1)hZn"Zn#(��)� Zn"(��)Zn#i): (4)Here " (n#) represents the number of spin-up (spin-down) electrons, the total number of electrons n = n"++ n#, m = (n" � n#)=2. Note that for m > 0 (m < 0)the total spin S = m (S = �m � 1) respectively. Thenormalization factorZ =Xn";#2Z(2m+ 1)Zn"Zn#e��[Ec(n�N0)2��n�Jm(m+1)](5)coincides with the grand canonical partition functionfor the Hamiltonian (2) [5]. The quantity ZN �� R 2�0 d�2� e�i�NQ �1 + ei����� is the canonical parti-tion function of N noninteracting spinless electrons, andZN (��) � R 2�0 d�2� e�i�NQ 6=� �1 + ei����� determinesthe canonical partition function of a system of N non-interacting spinless electrons under the constraint thatlevel � is not occupied.Eqs. (4) and (5) allow us to study a host of physicalobservables for a given spectrum of single-particle levelsf��g. At low temperatures, T . �, these observablesare sensitive to details of the spectrum; their statisticalaverages would depend on the symmetry group of thespectral distribution [14].We now discuss a few quantities of interest. Thestatic spin susceptibility can be computed as � == (1=3)@ lnZ=@J . At high temperatures, � � T �� �= ln(J?=T ), J? = J�=(��J), the average static spinsusceptibility is given by� = 12 1� � J + 112T �2(� � J)2 � 112T : (6)This expression, underlining the divergence at the Stonerinstability point, di�ers from that found by Kurland et�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 3 { 4 2010



204 I. S. Burmistrov, Yu.Gefen, M.N.Kiseleval. [2] 2) and by Schechter [15] 3). Near the Stoner insta-bility, � � J � �, it is the �rst (second) term of Eq. (6)that dominates when T � J? (T � J?). For T � J? thesusceptibility behaves like a paramagnetic Fermi liquid(with an upward renormalized g-factor). As the systemis driven towards the Stoner instability limit one crossesover to the low temperature regime, T � J?, and anon-Fermi liquid (Curie) behavior, sets in, � � hS2i=T ,where the average spin scales as qhS2i � J?=�. Notethat the latter approximates the discontinuous growth ofthe ground state spin of a speci�c single electron spec-trum (e.g. uniformly spaced), when J=� is increased inthe mesoscopic Stoner regime towards 1. No dynamicalspin response �(! 6= 0) exists unless the dot is con-nected to reservoirs, or anisotropic spin interaction isconsidered.The average moments of the total spin can befound from the partition function Z as h[S2]ki == T kZ�1@kZ=@Jk. It can be characterized by the dis-tribution function of S2, PS2(x) which can be foundfrom Eq. (5). Near the Stoner instability � � J � �,and for the same range of temperatures as in Eq. (6),the distribution becomesPS2(x) = 2s ��4�J3? e��J?=4 sinh(��px) e���2x=J? : (8)The broad asymmetric non-Gaussian nature of the dis-tribution becomes manifest in the high temperaturelimit, and is not due to statistical uctuations of thesingle particle levels but rather due to the e�ect of theexchange interaction.We next consider the average TDOS at � � T . Themost interesting regime seems to be that of interme-2)The average static spin susceptibility has been calculated inRef. [2] near the Stoner instability, � � J � �. In our notations,the result of Ref. [2] at T � J? becomes (see Eqs.(4.8), (4.13b),(4.15) of Ref. [2])� = c0� � J �1 + c1pJ?pT + c2 J?T + : : : � ; (7)where numerical coe�cients c0 = 1=3, c1 = p�=4, and c2 � 0:238for unitary ensemble and c0 = 1=3, c1 = p2�=4, and c2 � 0:227for orthogonal ensemble. The result of Ref. [2] contradicts ourresult (6) in which c0 = 1=2, c1 = 0 and c2 = 1=6 are independentof the ensemble statistics of the single-particle levels. Accordingto Ref. [2], at T = 0, (see Eq.(4.19) of Ref. [2]) � / [�=(� � J)]2.As one can see from Eq. (6), our result for T � J? smoothlyinterpolates into the result of Ref. [2] for T = 0.3)Our result for � implies that the magnetic �eld tends to zero�rst (before, e.g., temperature). The result found by Schechter [15]is valid in the limit of vanishing temperature but �nite magnetic�eld (provided an additional coarse graining is performed). Gen-eralization of Eq. (6) to �nite magnetic �eld resembles the resultof Schechter at magnetic �elds larger than temperature [14].

diate temperatures, T � J?. Under the assumption�� T lnJ?=T , Eq. (4) can be simpli�ed, leading to�(")�0 = Xn;�=�e��Ec(n�N0)2"�1+ J2J?�fF (�"� 2�
��n )� J2J?F ��"� 2�
�kJ? ; �J?�#,Xn e��Ec(n�N0)2 : (9)Here 
�n � Ec(n�N0 + �=2), �0 is the averaged TDOSfor noninteracting electrons, andF(x; y) � 12sgn�cos �x2 � e�y4 (x�1)2+ y�2 cos2 �x2 (10)� �1� ��py� ���cos �x2 �����+ e y2 (x�jxj)� Xm>0(�1)me�yjxjm+ym(m+1)�(jxj � 2m� 1):�(x) is the Heaviside step function (�(0) � 0), and theerror function �(z) � (2=p�) R z0 exp(�t2)dt. As x isvaried for a �xed y, F(x; y) exhibits damped oscilla-tions with a period 4 (equivalent to an energy scale 4J?).In the limit y � 1 considered here, these oscillationsare strongly suppressed, and only the �rst maximum re-mains visible. It leads to the appearance of a maximumin the TDOS as illustrated in Figs.1 and 2. The scal-
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degrees of freedom are almost disentangled in the actionS. The latter involves only the spin-interaction part ofthe Hamiltonian (2). Traces of the charging-interactionare encoded in the variable �0, leading to a small imag-inary shift of the chemical potential. Subsequently, theone-particle Green function can be written asG��(�1 > �2) = �Z�1K��(�i�12;�i�12 + i�);K��(t+; t�) = Tre�it+Hay�;�eit�Ha�;�; (13)and Z(�0) = Tr exp(��H). In order to evaluate thetrace we perform Hubbard-Stratonovich transformationsof the terms e�it�HS in the evolution operators and ob-tain K��(t+; t�) = Yp=� Z D[�p]e� ip4J R tp0 dt0 �2p (14)�Tr"e�it+H0 Y A(+) ay�;�eit�H0 Y� A(�)� a�;�# :Here A(p) is de�ned in Eq. (1). We have de�nedthe bosonic �elds �p, p = �. In order to employ theWNK trick we use a Hamiltonian evolution of our op-erators rather than a path untegral representation ofG. Note that while H is time independent, the factorsA(p) involve time ordering (T ). This is due to the non-commutativity of the spin-operators s .In order to overcome the intricacy of time-orderingwe use the following transformation of variables [16] inthe functional integral in Eq. (14) [10],�zp = �p � 2�pp��pp ; �xp � ip�yp2 = ��pp ;�xp + ip�yp2 = �ip _�pp + �p�pp � (�pp)2��pp ; (15)which recasts the time-ordered exponent as a product ofsimple Abelian ones:A(p) = epŝ�p �pp(tp)eiŝz R tp0 dt0�p(t0) (16)� exp�iŝp Z tp0 dt0��pp (t0)e�ip R t00 d��p(�)dt0� :Here we employ the initial condition �pp(0) = 0 [9], ands� = sx � isy . We stress that Eqs. (15) and (16) arevalid for a general spin operator. In order to preserve thenumber of �eld variables (three) we impose the follow-ing constraints on the otherwise arbitrary new complexvariables: �p = ���p and �+p = (��p )�. The quantityK��(t+; t�) can be then evaluated asK��(t+; t�) = Yp=� Z D[�p; �pp]e� ip4J R tp0 dt(�2p�4ip _�pp��pp )�e ip2 R tp0 dt�p(t)C��(t+; t�)Y 6=�B(t+; t�); (17)�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 3 { 4 2010



206 I. S. Burmistrov, Yu.Gefen, M.N.Kiselevwith C�� and B given in terms of single-particle traces:C�� = trhe�i"�n̂�t+A(+)� (t+)ay��ei"�n̂�t�A(�)� (t�)a��i;B = trhe�i" n̂t+A(+) (t+)e+i" n̂ t�A(�) (t�)i: (18)The expression for Z can be obtained from Eq. (17) bythe substitution of B� for C��. We can now evaluatethe single-particle traces in B and C�� . The �elds ��p ,�+p appear in B . It turns out that the integration over�pp �rst, and then �p, can be performed exactly, yieldingK�"(= K�#),K�"=e� �J4 �2i"�t+Jp��J 1Z�1dh sinh(�h)Y 6=� Y�=�h1+e�(�h�")i�Xs=� ei"�ts+ isJts4 e� (2�h+isJts)24�J (2�h+ isJt�s): (19)Next, we perform the integration over h in Eq. (19),substitute it into Eq. (13) and calculate the exchange-only Green function, G�� . Then, integrating over �0 inEq. (11) we obtain the full Green's function G�� . Em-ploying the general expression [17]�(") = � 2� cosh �"2 X� 1Z�1 dt ei"tG�"�it+ �2� ; (20)we, �nally, �nd the TDOS (4). In a similar way weobtain the partition function Z (5).Within WNK method one may still have some free-dom in selecting regularization of the functional inte-grals. It is thus useful to check the validity of our re-sults against some benchmarks. Our non-trivial checksare: i) Eq.(5) for Z agrees with the exact derivationin Ref. [5]. ii) The TDOS (4) satis�es the sum rule:R d" �(")fF (") = T@ lnZ=@� [18]. iii) For J = 0 our re-sults for the TDOS coincide with those of Ref. [13]. iv)Our results for Z and �(") agree with a direct calculationfor single and double level QDs.In summary, we have addressed here the interplay ofcharging and spin-exchange interactions of electrons ina metallic quantum dot. Even within the simple Uni-versal Hamiltonian framework, this problem leads to anon-Abelian action, and necessarily requires the evalu-ation of non-trivial time-ordered integrals. Our methodis applicable to the vicinity of the Stoner instability (wellinside the mesoscopic Stoner unstable regime), and couldbe extended to the ferromagnetic regime. Other ex-tensions include the study of anisotropic spin-exchange(where the non-vanishing a.c. susceptibility, absorptionand TDOS are of particular interest), cotunneling con-ductance, and an explicit inclusion of the leads.

As a demonstration of the usefulness of our exactsolution we have calculated several quantities: the par-tition function, the magnetic susceptibility, the distri-bution function of the spin, the TDOS, and the linearand non-linear conductance at the Coulomb peak. Someof these quantities are amenable to experimental tests.Examples: the broad distribution of the spin would im-ply signi�cant sample-to-sample uctuations of the mea-sured susceptibility; the latter can be used to determinethe distance (1 � J=�) from the Stoner instability; therelative magnitude of the predicted non-monotonicitiesin the TDOS and the conductance may exceed 5� 10%in materials close to the Stoner instability such as Pd(J=� = 0:83) or YFe2Zn20 (J=� = 0:94) [8].Previously, Alhassid et al. have calculated exactlythe partition function, matrix elements of ay�� ; a�� [5],and many-body eigenstates which are also eigenstatesof the total spin operator [19]. That approach could beemployed for the calculation of other observables. Ourindependent approach is more manageable for the cal-culation of higher correlators, the inclusion of exchangeanisotropy, as well as to further generalizations, as indi-cated above.We acknowledge useful discussions with I. Aleinerand V.Gritsev. We thank Y. Alhassid for explainingto us his method and the results of his analysis. Weare grateful to I. Kolokolov for providing us with notesof his calculations and a detailed explanation. Thiswork was supported by RFBR Grant #09-02-92474-MHKC, the Council for grants of the Russian Presi-dent Grant #MK-125.2009.2, the Dynasty Foundation,the Russian Ministry of Education and Science undercontact #P296, RAS Programs \Quantum Physics ofCondensed Matter", \Fundamentals of nanotechnologyand nanomaterials", CRDF, SPP 1285 \Spintronics",Minerva Foundation, German-Israel GIF, Israel ScienceFoundation, and EU project GEOMDISS.1. I. Aleiner, P. Brouwer, and L.Glazman, Phys. Rep. 358,309 (2002); Y. Alhassid, Rev. Mod. Phys. 72, 895(2000).2. I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Phys.Rev. B 62, 14886 (2000).3. 50 years of Yang-Mills theory, Ed. G. 't Hooft, WorldScienti�c, Singapore, 2005.4. M.N. Kiselev and Y. Gefen, Phys. Rev. Lett. 96, 066805(2006).5. Y. Alhassid and T. Rupp, Phys. Rev. Lett. 91, 056801(2003).6. G. Usaj and H. Baranager, Phys. Rev. B 67, 121308(2003).7. P. Gambardella, S. Rusponi, M. Veronese et al., Science300, 1130 (2003); G. Mpourmpakis, G. E. Froudakis,�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 3 { 4 2010
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