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Scalar and vector Keldysh models in the time domain
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The exactly solvable Keldysh model of disordered electron system in a random scattering field with ex-
tremely long correlation length is converted to the time-dependent model with extremely long relaxation. The
dynamical problem is solved for the ensemble of two-level systems (TLS) with fluctuating well depths having
the discrete Z» symmetry. It is shown also that the symmetric TLS with fluctuating barrier transparency
may be described in terms of the vector Keldysh model with dime-dependent random planar rotations in zy
plane having continuous SO(2) symmetry. Application of this model to description of dynamic fluctuations in

quantum dots and optical lattices is discussed.

PACS: 73.21.La, 73.23.Hk, 85.35.Gv

The model with infinite correlation range of fluctu-
ating fields V' (r) proposed by Keldysh [1] is one of few
exactly solvable problems in the theory of disordered
electron systems. The approximation

D(r—r') =(V(r)V(r')) = W?* 1)

makes identical all diagrams for the electron Green func-
tion (GF) in the order V2*. As a result summation of
diagrammatic series in the ”cross technique” [2] reduces
to the problem of calculation of combinatoric coefficient
A, (number of pairwise coupling of scattering vertices).
In fact A, = (2n — 1)!! is the total number of identi-
cal diagrams in the order 2n. The perturbation series is
summed exactly [1, 3], and one deals with averaging of
ensemble of samples with constant V' but the magnitude
of this field randomly changes from realization to real-
ization. In momentum space the correlation function (1)
transforms into D(q) = (27)*W?26(q). The electron GF
in Keldysh model is averaged with Gaussian distribution
function characterized by the variance W?2.

This model is not widely used in current literature
because it is difficult to propose an experimental de-
vice, where the conjecture (1) could be realized (see,
however, [4]). In the present paper we discuss a realiza-
tion of Keldysh model in time domain. In this case the
analog of infinite spatial correlation is the long memory
effect, which can be realized in many physical situa-
tions (see below). The structure of perturbation series
in time-dependent Keldysh model (TDKM) is the same
as in original one, and the long characteristic times of dy-
namical correlation play the same part as infinite range
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spatial correlation of static random potentials. Since the
time axis is the only coordinate in this problem, its effec-
tive dimension is “0+1”. Moreover, the TDKM admits
natural generalization of original Keldysh model. We
will show that the dynamical fluctuations in time domain
may be both of scalar and of vector character. The kine-
matic constraint existing in the vector TDKM results in
elimination of essential part of diagrams in cross tech-
nique, but the summation of perturbation series is still
exact. It results in 2D Gaussian averaging for the GF
in dynamical random field.

Leaving for the last section the discussion of real
systems, where TDKM arises as a description of generic
disorder, we start with a toy model of an ensemble of
non-interacting two-level systems (TLS) in a randomly
fluctuating environment. In standard realization of TLS,
namely a double-valley well, particles are distinguished
not only by conventional quantum numbers but also
by their position in the well characterized by the in-
dex j = I, 7 of the left (I) or right (r) valley. The barrier
between the valleys is characterized by the tunneling ma-
trix element Ag. The Hamiltonian of isolated TLS has
the form

HO =3 (e5n; + Un2) — Ao(cfe, +he).  (2)
J

te. is the particle occupation number, ¢; is

Here n; = ¢ 5Cj

the discrete energy level in the valley j and U is the in-
teraction parameter for two particles in the same valley.
The condition U > A is usually assumed. We con-
sider spinless particles, having in mind that the theory

can be applied both to interacting bosons and fermions
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(electrons) with frozen spin degrees of freedom. To be
specific we discuss tunneling electrons as an example.
We start with the singly occupied TLS, where the
constraint N = ) .n; = 1 is imposed on the Hamil-
tonian, introduce pseudospin operators o+ = c}cr, o =
cle;, 20, = ny — n,, and reduce (2) to
HY) = —b00, — Doy — po(N — 1) (3)
in the pseudospin subspace. Here the asymmetry para-
meter dg = €, — €; play the role of effective ”magnetic”
field, the Lagrange parameter pg controls constraint.
The scalar fluctuation field is introduced as random
fluctuations of TLS asymmetry, namely as a time depen-
dent field 6,(t) = do + h,(t) determined by its moments

ho(t) =0,  hy(E)hy(t +7) = D(7). (4)
Here the overline stands for the ensemble average.
Thus we reduced the original model to the effective
spin Hamiltonian in magnetic field with random time-
dependent component. The problem can be reformu-
lated as a study of propagation of fermions along the
time axis in the presence of time-dependent random
scalar potential d,(t)(n, —n;)/2, and the cross technique
may be used in calculation of the propagators [5].

The analog of Keldysh conjecture in time domain is
a slowly varying random field ~exp(—yt). A very long
relaxation time 7,¢;~ 1/ with small v is presumed, so
that the noise correlation function is given by

_ 2¢%y
D(w) = i 2 e

= 2m(¢*(w) (5)

(the noise correlation function (5) is normalized in such a
way that the corresponding vertices are dimensionless).
In this limit the averaged spin propagator describes the
ensemble of states with a field § = const in a given
state, but this constant is random in each realization.
The “vector-type” TDKM may be derived in a similar
way. For this sake one should introduce a random com-
ponent in the tunneling matrix element, A = Ag+ A, (t)
with A,(t) = 0 and make similar conjecture (5) about
the correlation function F(7) = A,(t)A, (¢t + 7), namely
approximate its Fourier transform by

. 4¢2

F(v) = lim (4}2’57:72 = €26 (w). (6)
Thus, we treat our toy Hamiltonian (3) in the follow-

ing way. First we study the limiting case do > Ag, were

the interdot tunneling is considered as a perturbation to

the longitudinal term affected by stochastization in the

scalar TDKM. This problem may be solved by means of

the standard technique [1, 3, 6] generalized for the time-
domain case. Then we turn to the case of transversal
random tunneling potential and solve this problem by
means of correspondingly modified “vector” TDKM.

We start with the scalar TDKM and treat the term
H |(|0) = do(nr —n;)/2 as a zero order approximation with
electron occupying the level ¢; in the ground state. With-
out stochastic perturbation the role of the tunneling term
H, = —Ayo, is in admixing a charge transfer exciton
to the ground state with the corresponding energy level
shifts, &1, — €1, F A2/do for the ground and excited
states, respectively. The time-dependent perturbation
stochastisizes this simple picture.

Let us introduce the retarded propagators for the
scalar TDKM

—t') = (ej(t)e} (t))r = —i(le;(B)ef()]+)  (7)

and consider their evolution on the time axis under the
influence of random component h;(t) ("random longitu-
dinal magnetic field” in pseudospin notation), first as-
suming y—0, Ag/y — 0. After averaging Gf(t —t') in
accordance with (4) and making the Fourier transforma-
tion by means of (5), we come to the series

1+ Ang%gf.n(s).] 8)

Here g;(¢) = (¢ +in)~! and g, = (¢ + o +in) ! are the
bare propagators, A, = (2n—1)!! is the above mentioned
combinatoric coefficient (see Fig. 1, where several first
irreducible diagrams are shown).

S £y

Fig.1. Irreducible Feynman diagrams for scalar TDQM.
Solid and wavy lines stand for g;(¢) and D(w).

G (t

Gll(e) =

Like in the real space Keldysh model [1], the series
(8) may be summed by means of the integral represen-
tation for (2n—1)!! (see, e.g. [7]). Then changing the
order of summation and integration (Borel summation),
one comes to the following equation for the left valley
GF

712/242 dZ
e—z+in

G, (e)

1
= (9)
(V27

Remarkably, the single electron GF in this model has no
poles, singularities or branch cuts. Similar procedure
may be applied to the Green function GE. As a re-
sult of this Gaussian averaging the “magnetization” &,

Ilucema B ATD® Tom 89

Beim.3—4 2009



Scalar and vector Keldysh models . .. 135

is reduced and the corresponding response to transversal
field is modified accordingly.

Next, we formulate the ”vector” (planar) TDKM for
the bare Hamiltonian H{) (2) with impenetrable bar-
rier Ag — 0 and symmetric valleys, €; = ¢, isolated
from each other. The transverse random perturbation
is introduced by

H,(t) = Ay(t)oT + As(t)o~ (10)

so that the inter-valley tunneling is stochastisized by
means of averaging in time-domain with correlation
function (6). The tunnel matrix element A is trans-
formed as A,—A e~ =%1) under the gauge transforma-
tion ¢; — c¢;e*, and we presume A, to be a complex
variable.

Unlike the scalar TDKM, the noticeable part of di-
agrams in the perturbation series disappears due to the
kinematical restrictions ctoT = 670~ = 0 (see also
[8]). Only the diagrams with pseudospin operators or-
dered as ...ocT0c oto ... survive in the expansion for
the GF of vector model

oo

GFu(e) = gi(e) + D Ba(V28)™"g"(e).  (11)

n=1

The vertices in the cross technique are now “colored” in
accordance with two terms entering the random poten-
tial. The vertices with different colors have to be ordered
in alternating way, and the correlation lines connect only
the vertices of opposite color (see Fig.2).

1

[ S S Se

Fig. 2. First non-vanishing vertex correction to the Green
function self-energies in the vector Keldysh model. Black
and white sites correspond to two terms in the Hamil-
tonian (10); transversal pseudospin correlation functions
F(w) (6) are represented by dashed lines

As a result of the above kinematic restrictions, the
combinatoric coefficient B,, = n!. Then we use the in-
tegral representation for n! (see, e.g. [9]) and transform
the series (11) into

GE,()=gi(¢) {1 2y [ " tat [1v/3g, ("] e—”} :
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Here we substituted #? for the variable z. Then changing
the order of summation and integration, we transform
G} (e) into the integral

GE (e) / Y otg— 91O ¢ (12)
o e) = _— .

A S BT

Taking into account the explicit form of the free propaga-
tor g;(e), we change the integration variable once more,
t = u/v/2¢, and transform (12) into

* udu 1 1 2 o2
A e
G o 28 \e—u+in e+u+in

(13)

Now we introduce the “cartesian” coordinates, * =

wcosp,y = using, so that u = /22 + y2 and dzdy =
ududp. The angle independent integral (13) may be
rewritten as

1 [T dpe—7"/28" [+ g,e—v7 /26
va(f) — _/ dze dye
’ 2)_w &V2m —oo &V2m

. (14)

1 1
X +
L—\/:c2+y2+in e+ Vz2+y?2+in

This result is a natural generalization of the one-
dimensional Gaussian averaging (9) characteristic for
the scalar TDKM to the two-dimensional Gaussian av-
eraging of vector random field with purely transversal
(zy) fluctuations. Only the modulus of random field
r = y/x2 + y? is averaged, whereas the angular variable
remains irrelevant due to the in-plane isotropy of the
system. Like in the scalar model, the averaged GF has
no singularities.

Although the GF lost its pole structure, the stan-
dard Feynman rules for construction of irreducible parts
(Figs.1,2) and corresponding skeleton diagrams [2, 3]
are still valid. However, the important reservation
should be made: the self energy cannot be treated as
a renormalization of bare pole because the bare and
dressed GF are connected by non-local integral oper-
ators (see Egs. (9),(13)). Nevertheless, the ordinary dif-
ferential equation connecting the GF and its derivative
over energy can be obtained for both versions of TDKM.
This equation was found for the scalar Keldysh model
in [3]. Here we derive this equation without appealing
to the Ward identity and then generalize the derivation
procedure for the vector model.

To calculate the derivative dG(g)/de for the scalar
TDKM, we start with expansion (8) (index s is omitted
below for the sake of brevity). It is convenient to count
the energy off the position of chemical potential ug (see
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Eq. (3)) in the middle between the levels & .. So, we
shift the energies e — €4 = & F d¢/2 for the left and
right GR, respectively.

The same procedure, which leads to Eq. (9) for GR
gives the following equation for its derivative:

22
d 2 o o - — 1 3
_G:_M/ . 20 [H_zzi.
de (V2 Joso (Pea—z+in

(@ = F). Calculating the integral and substituting

g*(eq) = €,% we come to the differential equation

dG(e
¢ ;6“) =1—¢e,G(ca) (15)
similar to that obtained for the real space scalar Keldysh

model [3, 6].

Generalization of this procedure for the symmetric
vector model (§o = 0) is more cumbersome. We start
with differentiating the series (11) over the energy. Then
the analog of Eq. (12) for the derivative has the form

i ) oo 2(2t2 — 1)t2§292(5) —t2
= =90 [1 +/0 2 opege) © t ] '

The subsequent variable change which gave Eq. (13) for
the GF gives for its derivative the following equation

%=—g2(s) [1+%(g—:—§>]v (16)

where

o) Z2
Jo= [ dsamex (= 25 ) lofe = )+ (-1 +.2).

After some manipulations, these integrals are repre-
sented via the GF for the vector model (13):

Jo = 2e€2G — 262, Jy=—4&'+20,. (17)

Substituting these integrals in Eq. (16), we come even-
tually to the differential equation

£2 dc;ia) =1-¢eG(e) (1 - 5—) , (18)

2

which is obviously the generalization of Eq. (15). These
two equation may be rewritten in a unified way:
€aGas — 1= (G2 iG_l,
) a,s de a,s
(19)
1d
ede

eG, — 1 =¢G? [

(6.1

The solutions of these equations satisfying the bound-
ary condition G(e — oo) = €71 is given by (9), (13).

It is worth noting that the differential operator in the
right hand side of the second equation is nothing but
div. in polar coordinates. This form reflects effective
two-dimensionality of Gaussian averaging in the vector
TDKM. Now one may introduce vertex parts using the
analogy with the Ward identities
d 1 -1
r,= EGS , Dy==—(eGy,"). (20)
These vertices, together with equations (19) will be use-
ful for calculation of response functions of our TLS (see
below). Like in the self energy parts (Figs.1,2), the vec-
tor TDKM lacks most of diagrams of scalar model due
to the kinematic restrictions: the sites in the vertices of
triangle are of the same color, black and white sites al-
ternate, and dashed lines connect sites of opposite colors.
First nonvanishing vertices for both models are shown
in Fig.3.

Fig. 3. First non-vanishing vertex diagrams for the I' in
scalar (left) and vector (right) TDKM

The density of states (DoS) in stochastisized TLS is
given by the imaginary parts of GF (9), (13) for scalar
and vector TDKM, respectively:

1 &4 edo
vs(e) = Cﬁ exp ( 2z ) cosh ( R ) ,  (21)
2
n(e) = gglelew (~ ) (22)

In the scalar model v, (€) is a superposition of two Gaus-
sians centered around ¢; and &,, respectively. In the vec-
tor model v, () is represented by a single Gaussian with
a dip “burnt” around zero energy (Fig.4).

Switching on the tunneling term H in scalar model
without random field, we come to the picture of two
levels mutually repulsed due to coherent interdot tun-
neling and broadened due to incoherent time-dependent
intradot fluctuations. The spectrum is still gapful at
small enough ratio ¢/do, If the ¢ < &, the DoS merges
into double hump Gaussian structure. The information
about position of electron in right or left valley is com-
pletely lost at ¢(/dp > 1. In the vector model for sym-
metric TLS instead two-peak structure due to avoided
crossing characteristic for coherent tunneling, we get a

Mucema B TP Tom 89 BHIM.3-4 2009
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Fig.4. Density of states in scalar (left) and vector (right)
model (all units are arbitrary)

pseudogap around zero energy due to stochastic tunnel-
ing, which survives at any variance &.

Our next task is calculation of response func-
tions. In scalar TDKM the longitudinal suscepti-
bility is given by the correlation function x|(w) =
i [ dtexp (iwt)(o,(t)o.(0))r, which is represented by
two loops with vertex corrections (Fig.5). Here both
solid lines correspond either to j =1 or to j = r.

Fig.5. Diagrams for bare loop (transverse susceptibility)
and loop with dressed vertex (longitudinal susceptibility)

We confine ourselves with calculation of static sus-
ceptibility, w — 0. In order to work at finite temper-
atures we turn to Matsubara Green functions functions
G(ie,) and susceptibility

) =T Gj(iwm + i€n)G;(i€n)T (i€n, iwm). (23)

n,j

X (iwm

Then the first of Ward identities (20) provides us
with the exact equation for the vertex

C(GR)TH (e,0) = GE, — 1, (24)

giving an access to the exact evaluation of x(0). Com-
bining (23) with (24) and analytical continuation of (9),
we find

X0 Z/ ydye v/ F<(2y—2;50)4)_

(25)

Here np(z) is the Fermi distribution function. The as-
ymptotic behavior of static susceptibility x(0) is

X@N{lﬁaT>@%) (26)

1/¢, ¢> (T, )
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There is no vertex correction to transverse susceptibil-
ity x.(0) = {(04+,0-)r- It is given by the bare loop
formed by the left and right GF. In case of symmetric
TQD (8o = 0) and big variance ¢ > Ay this function
is as smooth as x| (0) with changing ¢ and 7. TIts as-
ymptotic behavior is given by the same Eq. (26). The
physical sense of these results in obvious: the informa-
tion about position of electron in a given well is lost at
strong enough stochastization ¢ > T.

Next, we calculate the susceptibility for vector model
in case of symmetric TLS with §o = 0. In this case x (0)
differs from x|(0) by factor 2, so that it is enough to
calculate the latter one. Now we appeal to the second
equation from (19) with T, defined in (20). Then like
in previous case the calculation of X (0) is reduced to
finding the combination i€,G, (i€,) — 1. Straightforward
computation gives

x (0 £ / zdye_y /2 tanh (y;) . (27)

The behavior of x| as a function of T and ¢ is close to
that for scalar model, including the asymptotic depen-
dence (26).

The toy model of noninteracting TLS under dynam-
ical stochastization demonstrate some generic proper-
ties of TDKM: (i) the loss of characteristic spin or
pseudospin behavior at variance exceeding temperature;
(ii) the effective two-dimensionality of Gaussian averag-
ing in vector TDKM as its main distinction from scalar
model. These features survive also in more realistic sit-
uations. One of possible applications of this theory is
the problem of electron tunneling through double quan-
tum dot in a regime of strong Coulomb blockade, where
the source of stochastization is a random time-dependent
gate voltage applied to one of the valleys [5]. The case
of N = 2 was considered, where the starting Hamil-
tonian H(®) is that of Eq. (2) with added spin index. In
this case the scalar TDKM may be used in the limit of
slow fluctuations (5), the double quantum dot looses its
spin characteristics at low 7', and the Kondo-type zero
bias anomaly is smeared accordingly [10]. The impor-
tant difference between spinful and spinless TLS mod-
els is in their symmetry. The symmetry of TLS with
N = 2 considered in [10] is SO(5), which is reduced
to SO(3) for low-energy part of excitation spectrum, so
the Lie algebra is non-abelian. However, it was possible
to introduce scalar TDKM due to abelian character of
time-dependent random gauge field.

The symmetry of the scalar TLS with N = 1 is given
by the discrete group Z» with abelian algebra. In the
vector model one deals only with the planar (zy) ro-
tations, so the relevant symmetry is SO(2) with still
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abelian algebra. The natural generalization of our ap-
proach is a combination of scalar and vector Keldysh
models where cross technique diagrams include sites of
both types. This problem is definitely non-abelian, and
its solution is beyond the scope of this letter and will be
published elsewhere [11].

One may mention several more physical systems,
where the scalar and/or vector TDQM is useful. One
of such models is the big quantum dot with charge fluc-
tuations accompanied by longitudinal and transversal
spin fluctuations [12]. The class of Gaussian ensembles
corresponds to infinite-range correlations in the charge
and spin sectors of the model. Both spin and charge
interactions contain stochastic component [13], leaving
a room for original formulation of the Keldysh model.
The gauge field theory, based on functional bosonization
being formulated in the time-domain, opens a possibil-
ity of stochastic treatment of dynamic processes. As is
shown in [12], the transverse spin correlation function for
anisotropic spin exchange contains both short-time and
long-time correlation parts. While the short-time (white
noise) correlations dominate away from the Stoner in-
stability, the (infinitely) long-time correlations become
important as one approaches the regime of strong fluc-
tuations of the magnetization. The long-time part of the
model is equivalent to the vector TDKM.

Another interesting object is the optical superlattice
consisting of biased double wells [14]. The bias is ran-
dom, but the number of atoms in the same in all TLS
in this experimental setup due to the “interaction block-
ade”. One may expect that the well population in these
TLS could be stochastized in accordance with Fig.4, pro-
vided the Keldysh-type fluctuations (5) or (6) with long
relaxation times were realized experimentally.
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