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solitons, vortices, and topological excitations

Abstract – We propose a universal approach to the Landau-Zener problem in a three-level system.
The problem is formulated in terms of Gell-Mann operators which generate SU(3) algebra and
map the Hamiltonian on the effective anisotropic pseudospin 1 model. The vector Bloch equation
for the density matrix describing the temporal evolution of the three-level crossing problem is also
derived and solved analytically for the case where the diabatic states of the SU(3) Hamiltonian
form a triangle. This analytic solution is in excellent quantitative agreement with the numerical
solution of the Schrödinger equation for a 3-level crossing problem. The model demonstrates
oscillation patterns which radically differ from the standard patterns for the two-level Landau-
Zener problem. The triangle works as an interferometer and the interplay between two paths
results in formation of “beats” and “steps” pattern in the time-dependent transition probability.
The characteristic time scales describing the “beats” and “steps” depend on a dwell time in the
triangle. These scales are related to the geometric size of the interferometer. The possibilities of
the experimental realization of this effect in triple quantum dots and in two-well traps for cold
gases are discussed.

Copyright c© EPLA, 2013

Introduction. – The paradigmatic problem of level
crossing known as Landau-Zener model (LZM) [1–4] is
studied for eight decades (see [5] for a review). Various
manifestations of the LZM are found in all branches of
physical sciences from astrophysics to material science.
Recent progress in nanotechnology and cryogenics allow
observation and application of LZM in quantum trans-
port [6], spintronics [7], nano-magnetism [8], cold gases,
including optical lattices [9], mass transport [10], quan-
tum information processing [11,12], etc.

The standard approach to LZM is based on the univer-
sal SU(2) physics of two energy levels of the same symme-
try which cross by linear variation of a control parameter
(time, coordinate, energy, chemical potential, flux etc).
The two states follow a diabatic basis or adiabatic (hy-
bridized) basis under fast or slow variation of the con-
trol parameter. The probability to find a system in a
given diabatic/adiabatic state at long time after passing
through the crossing point is given by a simple univer-
sal one-parametric equation. Periodic (non-linear) sweep
of the control parameter of LZM resulting in multiple

passages through the crossing point allows manipulation
of interference patterns by controlling the Stückelberg os-
cillations associated with the phases accumulated along
adiabatic and non-adiabatic paths [13]. The two-level
crossing LZ theory is of paramount importance for the
theory of adiabatic quantum computations [11,12]. Re-
cent progress in nanotechnologies opened a new possibil-
ity to use LZ interferometry for qubit manipulations [14].
The charge (Josephson) qubits are manipulated by chang-
ing gate voltage (magnetic flux) [15,16]. The spin qubits
are controlled by magnetic field [11]. Technologically, it
is more convenient to manipulate qubits by electric field
(gate voltages) [17].

In this paper we propose universal tools for the de-
scription of the 3-level LZM describing qutrits rather than
qubits. Instead of Pauli matrices representing the SU(2)
symmetry of the 2-level LZM, we use Gell-Mann matri-
ces forming the basis for the SU(3) group describing the
dynamical symmetry of 3-level systems. We formulate
generic Hamiltonians for all possible symmetric 3-level
configurations and derive the system of Bloch equations
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Fig. 1: (Color online) (a) Triangular (TTQD) and (b) linearly
arranged triple quantum dot (LTQD). Blue and red resistors
control the tunneling between dots. Each dot is gated sep-
arately. (c)–(e): three singlet states for TQD occupied by
two electrons controlled and manipulated by the gate voltage.
(f)–(h): three-level crossing described by Hamiltonians (2)–(4).

describing evolution of density matrix. Numerical solu-
tion of the Schrödinger equation and approximate analyt-
ical solution of the Bloch equation for the density matrix
of the 3-level system demonstrate excellent quantitative
agreement. We show that the fingerprint of the 3-level
LZM is a specific form of interference oscillations which
differ qualitatively from those in the 2-level LZM. The
shape of these oscillations depends both on the geometri-
cal size of the device and on the parameter of adiabaticity.

Modelling three-level systems. – We discuss two
possible experimental realizations of three level systems:
i) spinless cold atoms in a double-well trap (DWT) [10]
and ii) triple quantum dots in a triangular (TTQD) [18]
and linearly arranged (LTQD) [19] geometry.

The prototype devices for the 3-level LZM are triple
quantum dots (TQD) confining two electrons in a spin
singlet states [19–24] and double-well traps in optical lat-
tices [18] confining two spinless cold atoms. The basic fea-
tures of our model systems are illustrated in fig. 1. Two
possible quantum transport realizations of this regime are
triangular [18] and linearly arranged [19] (upper panel)
TQD occupied by two electrons. The three singlet states
are formed by pairs of electrons S110, S011 and S101 occu-
pying two of three minima (middle panel). Three possible
schemes of level crossing are shown in the lower panel.

Three states of doubly occupied DWT correspond to
three possible occupations (2,0), (1,1) (0,2) of the left and
right wells. Let us fix the reference energy in the middle
between the left and right levels εl,r, so that the tunable
energy difference is εl−εr = ε(t). Having in mind the anal-
ogy between the three-level system and the S = 1 model
with uniaxial anisotropy, we ascribe the pseudospin pro-
jection values ±1, 0 to the states (2,0), (1,1) (0,2), respec-
tively. Then, the three crossing levels in the LZ problem

enumerated with accordance with this agreement are

E1 = E2,0 = ε(t) + U,

E0 = E1,1 = 0,

E1̄ = E0,2 = −ε(t) + U, (1)

where U is the hard-core repulsion energy of two bosons in
the same well. Time evolution of these levels correspond-
ing to a triangular configuration with ε(t) = vt is shown
in fig. 1(h). The energy U plays the part of the parameter
of the easy-axis anisotropy.

Three possible configurations of the lowest state of
TTQD occupied by two electrons are shown in the upper
panel of fig. 1. If the wells 1,2,3 are inequivalent, i.e. the
energy levels ε1 "= ε2 "= ε3, then, each two-electron configu-
ration is characterized by its own energy E12 "= E23 "= E13.
The spin state of two electrons is always singlet due to the
indirect exchange via excited levels [25]. Applying in ap-
propriate way the gate voltage Vg(t) to corresponding dot,
one may realize the level crossing. For example, changing
ε1(t) one moves the levels E12(t) and E13(t) relative E23

thus realizing the LZ regime shown in fig. 1(g). In case
of LTQD geometry we still have three levels driven by the
gate voltages, but transitions between the states |1〉 and
|1̄〉 are strongly suppressed like in the case of real spin 1.

When considering this system one should remember
about the existence of higher triplet spin states which are
not immune to both external magnetic field and fluctua-
tions of the Overhauser field associated with the hyperfine
interactions. In principle these states may be involved in
LZ transitions, so that the dynamical symmetry of this
system will be described by SO(n) Lie groups [25]. We
leave this problem for future studies.

General classification of three-levels crossing. –
Let us start with the construction of an equivalent spin
Hamiltonian for the 3-level LZ problem. To this purpose
we introduce the pseudospin-1 operator #S and associate
the occupation of three crossing levels with its projec-
tions |1̄〉, |0〉, 1〉. The first possibility is crossing of all the
three diabatic levels at one point (fig. 1(f)) with effective
Hamiltonian

H1 = HLZ = vtSz + ∆Sx, (2)

where 2∆ is a gap separating the lower and upper adi-
abatic states and v is the rate at which energy changes
by external source in the limit ∆ → 0 (we adopt the sys-
tem of units ! = 1). We refer to this model as SU(2)
spin S = 1 LZ model. The properties of this model are
well known (see [26] for the bow-tie model and [27] for
the S = 1 SU(2) model). The probability to remain in
the same diabatic states with Sz = ±1 is determined by
PLZ = exp(−πδ/2), where δ = ∆2/v is the dimensionless
LZ parameter.

The second possibility is crossing of three levels at two
points (fig. 1(g)) with the Hamiltonian

H2 = vt(Sz)2 + ∆Sx + hSz. (3)
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Here h denotes a tunable level splitting h = E1̄ −E1. The
limit h = 0 corresponds to the LZ transition when the
twofold degenerate level crosses the non-degenerate state.
Note that the model is no more linear in terms of the
generators of the SU(2) group (see [28]).

Below we concentrate on the third possibility where the
three levels cross pairwise at three points forming a trian-
gle (fig. 1(h)) with the spin Hamiltonian

H3 = vtSz + ∆Sx + D(Sz)2. (4)

The last term stands for a “single-ion” easy axis anisotropy
D. The Hamiltonian is also non-linear in terms of the
SU(2) basis. The family of Hamiltonians H2 and H3 can
be considered as a single-parametric SU(3) deformation of
the SU(2) LZ Hamiltonian H1. Less symmetric LZ level
crossing diagrams with different velocities vi and tunnel
rates ∆ij can be considered as well. In any case the LZ
Hamiltonian can be expressed via the generators of the
SU(3) algebra. Since the model described by H3 is of
importance for experiments in double- and triple-quantum
dots1 and contains a basic element for LZ experiments
in optical lattices, we discuss below its properties leaving
discussion of the model H2 for [29].

Non-adiabatic transition through a triangular in-

terferometer. – The seeming non-linearity of the model
H3 is easily removed by representing it in terms of the gen-
erators of the SU(3) group, namely, 8 traceless 3×3 Gell-

Mann matrices [30] forming a set #λ = {λα}, α = 1 . . . 8. In
this basis the LZ Hamiltonian casts a simple linear form
describing interaction of #Λ = #λ/2 with time-dependent
magnetic field #B(t):

H3 = #B(t) · #Λ. (5)

In order to minimize the number of non-zero components
of #B(t), it is convenient to use the rotated basis. Two
versions of rotated basis are discussed below. In particu-
lar, only three combinations of λ-matrices enter the scalar
product2 in the basis of Gell-Mann matrices adjusted for
a linear TQD [19], where direct transitions between the
states (110) and (011) are forbidden:

#BT ={∆, vt, −D/
√

3},

#ΛT ={(λ1+λ6)/
√

2, (
√

3λ8+λ3)/2, (−
√

3λ3+λ8)/2}.
(6)

The numerical solution for non-adiabatic transition
probabilities computed from a Schrödinger equation with
the Hamiltonian H3 is given by a blue dashed curves
in fig. 2. Both curves describe a non-adiabatic regime
δ = ∆2/v ' 1. The left panel demonstrates a “beats” pat-
tern in time dependent probability when the size of trian-
gle is small η = D2/v < 1. The right panel shows a “steps”

1The Hamiltonians H1 – H3 can be derived microscopically both
for quantum transport and cold-gases setups. See details in [25].

2Only non-zero components of 8-vector are shown. The constant
term H0 = − 2D

3
Î is omitted from the Hamiltonian to shift the mid-

dle diabatic state to zero energy.

Fig. 2: (Color online) Upper panel: the “beats” calculated at
∆2/v = 0.004, D/

√
v = 0.425. Insert 1: structure of diabatic

(red) and adiabatic (blue) states. Insert 2: zoomed-in part of
the plot indicated by a blue arrow. Insert 3: two-level crossing
probabilities ignoring the interference term. The probability
through the first crossing (magenta) at t0 = 0 is used as the
initial condition for the transition through the second crossing
(green). Lower panel: the “steps” calculated at ∆2/v = 0.004,
D/

√
v = 10. Insert 1: two paths for the SU(3) interferom-

eter built out of three singlet states of the triple quantum
dot. Insert 2: two-level crossing probabilities ignoring the in-
terference term. The asymptotic value of transition probability
through first crossing (magenta) is used as initial condition for
the second crossing (green). For both plots the dashed blue
line stands for the numerical solution of the Schrödinger equa-
tion for diabatic probability P22 in the limit δ = ∆2/v " 1.
The solid red line denotes the approximate analytic solution of
the Bloch equation (8)–(15) for P22 (16) subject to the initial
conditions Q(−∞) = 0, R(−∞) = −2 and W (−∞) = 0. The
solution is valid for arbitrary η = D2/v. The period of “beats”
Tbeats ∼ 1/D, the size of the “steps” plateau is Tsteps ∼ D/v
(see discussion in the text).

pattern when the size of triangle is large η = D2/v > 1.
How can we understand these patterns? What are the
characteristic time scales responsible for this behaviour?

Both “beats” and “steps” are attributed to the inter-
ference processes. The triangle formed by three diabatic
states plays a role of LZ interferometer. Schematically,
the interference processes are shown in the insert 1 of the
lower panel of fig. 2. The left and upper vertices of the
triangle work as two splitters while the right vertex per-
forms mixing. We discuss as an example the transmission
probability to remain in the same (middle) diabatic state
(denoted by P22). One possibility to arrive at this state is
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to come along the middle diabatic state. Another one is
to go through the upper vertex of the triangle responsible
also for a “leakage” from the interferometer. The condi-
tion whether we get “beats” or “steps” should depend on a
dwell time in the interferometer. The existence of this new
pattern is fully attributed to SU(3) symmetry where the
dynamics of the middle adiabatic state is non-trivial (see
the insert 1 in the upper panel of fig. 2), being contrasted
to trivial dynamics for the symmetric bow-tie model where
the diabatic and adiabatic states are the same.

In order to construct a consistent analytic description
of the SU(3) LZ transition we analyse the equation for the
density matrix (DM) in the non-adiabatic limit. The DM
can be parametrized by the set of Gell-Mann matrices

ρ̂(t) =
1

3
Î +

1√
3
#̂λ · #n(t), (7)

here #n is a unit vector in the 8-dimensional space of SU(3)
generators. Following a standard procedure we derive a
system of Bloch (von Neumann) equations

d

dt
#n = #B(t) × #n(t), (8)

where the cross-product is defined as ( #B × #n)α =
fαβγBβnγ and fαβγ are totally antisymmetric under ex-
change of any two indices structure constants of SU(3)
group defined by commutation relations [λα, λβ ] =
2ifαβγλγ

fαβγ =
1

4i
Tr([λα, λβ ] · λγ). (9)

These equations describe non-dissipative dynamics of the
unit vector on a Bloch surface.

In the conventional Gell-Mann basis the generic Hamil-
tonian H3 describing TTQD (fig. 1(a)) with all three non-
zero tunnel matrix elements between dots contains five λ
matrices,

#BT = {vt + D,
√

3vt − D/
√

3, ∆
√

2, ∆
√

2, ∆
√

2},

#ΛT =
1

2
{λ3, λ8, λ1, λ4, λ6}. (10)

Here, the time-dependent level positions E1,2,3(t) are asso-
ciated with the matrices λ3, λ8 and inter-level transitions
are represented by the matrices λ1, λ4, λ6.

The SU(3) LZ Hamiltonian (5) may be also rewritten
in terms of the differences between the energy levels (1),
by means of appropriate combination of the Gell-Mann
matrices [25]. Two of three differences, e.g., E10 = ε(t)+U
and E01̄ = ε(t)−U may be chosen. In this case the effective
field #B and the spinor #Λ are

#BT = {2(vt + U)/3, 2(vt − U)/3, ∆
√

2, ∆
√

2, ∆
√

2},

#ΛT =
1

2
{λ3, λ−, λ1, λ4, λ6} (11)

with λ± = (±λ3 +
√

3λ8)/2.

To minimize the number of components in the model
Hamiltonian, we consider the case of LTQD with sup-
pressed transition |1〉 → |1̄〉, so that the matrix λ4 is ex-
cluded from H3. This model is straightforwardly mapped
on the S = 1 Hamiltonian with easy axis, and one may
use a rotated µ-basis of Gell-Mann matrices by applying
a unitary transformation to the λ-basis:

µ1 = (λ1 + λ6)/
√

2, µ2 = (λ2 + λ7)/
√

2,

µ3 = (
√

3λ8 + λ3)/2, µ4 = λ4,

µ5 = λ5, µ6 = −(λ1 − λ6)/
√

2,

µ7 = −(λ2 − λ7)/
√

2, µ8 = (λ8 −
√

3λ3)/2. (12)

The first three µ-matrices coincide with the SU(2) gen-
erators of the S = 1 representation. All commutation
notations and Casimir operators are preserved. The two-
parametric family of Landau-Zener Hamiltonians corre-
sponds to one-directional SU(3) deformation of SU(2) LZ
model. The “magnetic-field” vector and the spinor #Λ in
this case are

#BT = {∆, vt, −D/
√

3}, #ΛT = {µ1, µ3, µ8}. (13)

In this representations all interlevel transitions are associ-
ated with µ1, the time-dependent level splitting ε(t) is re-
lated to µ3 and the matrix µ8 is coupled to the anisotropy
parameter.

The eight coupled linear differential equations (8) can be
transferred into a system of three coupled linear integral
equations as follows:

Q(t) = Q(−∞) −
∆2

2

∫ t

−∞

dt1

∫ t1

−∞

dt2(K
+
r (t1, t2)Q(t2)

+ K−
r (t1, t2)R(t2)) +

∆

2

∫ t

−∞

dt1Φ−(t1),

R(t) = R(−∞) −
3∆2

2

∫ t

−∞

dt1

∫ t1

−∞

dt2(K
+
r (t1, t2)R(t2)

+ K−
r (t1, t2)Q(t2)) +

3∆

2

∫ t

−∞

dt1Φ+(t1),

W (t) = W (−∞) + ∆

∫ t

−∞

dt1(K
+
i (t, t1)R(t1)

+ K−

i (t, t1)Q(t1)) + Φ0(t), (14)

where

Φ±(t) = −
∆

3

∫ t

−∞

dt1

∫ t1

−∞

dt2
(

[K20
r · K±

r − K20
i · K±

i ]

×
d

dt2
R(t2)+

3∆

2
[K20

r · K±

i +K20
i · K±

r ]W (t2)
)

,

Φ0(t) =
∆

3

∫ t

−∞

dt1

∫ t1

−∞

dt2
(

[K20
r · K+

i + K20
i · K+

r ]

×
d

dt2
R(t2)−

3∆

2
[K20

r · K+
r −K20

i · K+
i ]W (t2)

)

.

(15)
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Here we used the notations Kξ
r = Re exp(i(ξ(t)−ξ(t1)),

Kξ
i = Im exp(i(ξ(t) − ξ(t1)), K±

r/i = KΩ+

r/i ± KΩ−

r/i , K20
r/i =

K2Ω0

r/i , and Ω0 = vt2/2 , Ω± = v
2
(t± D

v )2 − η
2
. The product

Kβ
α · Kδ

γ = Kβ
α(t1, t2)Kδ

γ(t, t1). The fact that only three
real functions are sufficient for complete parametrization
of the DM has very simple explanation. Let us take the
limit D → ∞. In that case we consider three indepen-
dent SU(2) s = 1/2 LZ transitions accounting also that
the tunnel matrix element in the upper vertex of the tri-
angle scales as ∆2/D (see footnote 3). Since the Bloch
equations for each of the two-level crossings are the equa-
tions for transition probabilities conserved in each vertex
separately, we have just 3 real functions to describe this
limit. Since the SU(2) limit D = 0 is also parametrized
by 3 real functions [27], the upper and lower bound for
the number of functions coincide and is equal to 3. This
reduction is related to some hidden dynamical symmetry
connected with a higher Casimir invariant of the SU(3)
group [29].

The transition probabilities (diagonal elements of the
density matrix) depend only on Q and R: ρ11 =
1
3

(

1 + R
2

+ 3Q
2

)

, ρ22 = 1
3
(1 − R) ρ33 = 1

3

(

1 + R
2

− 3Q
2

)

.

The initial conditions for the lower state occupied at
t = −∞ reads Q(−∞) = R(−∞) = 1, W (−∞) = 0.
The initial condition for middle state occupied at t = −∞
is Q(−∞) = 0, R(−∞) = −2, W (−∞) = 0. The initial
conditions for upper state occupied reads: −Q(−∞) =
R(−∞) = 1, W (−∞) = 0. We also notice a symmetry
ρ11→ρ33 when Q→−Q which can be used for mapping of
LZ transitions with first and third initial conditions4.

Results and discussion. – The system of equations
can be solved by iterations in the non-adiabatic limit. The
analytic solution for diabatic probability P22 in the limit
δ = ∆2/v ' 1 is given by

P22(t) ≈ 1 − πδ

[

F

(

t −
D

v

)

+ F

(

t +
D

v

)]

+ O(δ2), (16)

where

F (t) =
1

2

[

(

1

2
+ C

(
√

v

π
t

))2

+

(

1

2
+ S

(
√

v

π
t

))2
]

and C(z) and S(z) are cosine and sine Fresnel integrals,
respectively. The exact solution can be obtained by ex-
ponentiation of the first order expression with correction
function calculated by means of the method elaborated
in [27]. The eq. (16) shows two “waves”: one comes from
the first splitting at t− = −D/v and another one comes
from the second splitter/mixer at t+ = D/v. If the period

3All three gaps between adiabatic states scale as ∆ in the limit
D # ∆.

4In the SU(2) limit D = 0 and Φ
−

= K− = 0. The equation for
Q represents the vector SU(2) S = 1 Bloch equation being decou-
pled from the second and third equations which form a tensor Bloch
equation [31].

Fig. 3: (Color online) Non-adiabatic transition probability
P22 as a function of dimensionless time t/τ and dimension-
less uni-axis anisotropy Dτ (LZ time τ = 1/

√
v) computed

at δ = 0.004. The symmetry D → −D reflects the symme-
try between the “easy axis” and “easy plane” anisotropy of
the zero-dimensional system. Insert: Transition probability
P22 at t

√
v = 100 as a function of dimensionless dwell time√

vtD = D/
√

v computed at δ = 0.004 by eq. (16).

of non-adiabatic oscillations τ ∼ 1/
√

v [32] is large com-
pared to a dwell time tD ∼ D/v, which is proportional
to linear geometric size of the triangle, the two waves in-
terfere constructively forming the “beats” pattern (fig. 2,
upper panel). In that case

F (t − t+) + F (t − t−) − 2F (t) ∼ sin(πDt)G

(
√

v

π
t

)

,

where G(z) = cos(z2)(S(z) + 1/2) − sin(z2)(C(z) + 1/2).
The period of “beats” is therefore Tbeats ∼ 1/D. Compari-
son of these results with the probabilities for two indepen-
dent two-level crossings without interference term (insert 3
in fig. 2, upper panel) unambiguously demonstrates the
key role of the interference processes. If, however, the pe-
riod of non-adiabatic oscillations is small compared to the
dwell time τ < tD, the double splitting of initial state (two
consequent LZ transitions, see the insert 2 of fig. 2, lower
panel) leads to formation of the “steps” pattern (fig. 2,
lower panel). The characteristic time for the “steps” (the
size of a plateau) is the dwell time Tsteps ∼ D/v. One
can see that there are pronounced non-adiabatic oscilla-
tions in the plateau of the steps. In order to see both
“beats” and “steps” the system should be prepared in any
pure state (we showed in fig. 2 and fig. 3 the results corre-
sponding to initial conditions given by occupied middle di-
abatic state) and the state S101 should be used as a probe
for the interference pattern. The analytic solution of the
Bloch equation (14), (15) shown by solid red curve demon-
strates remarkable agreement with corresponding numer-
ical solution of the Schrödinger equation (blue dashed
curve). The approach based on solution of Bloch equa-
tions allows one to consider effects of classical fast and slow
noise [27] by either ensemble averaging the equation [31]
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if the noise is fast or averaging its solution in given re-
alization if the noise is slow [27]. The noise is associ-
ated with fluctuations of the Overhauser field (double- and
triple- quantum dots experiments), fluctuations of electric
field (Immanuel Bloch experiments) and fluctuations of
both charge and flux in superconducting qubits. Besides,
the Bloch equation approach allows the treatment of pe-
riodically driven LZ systems involving mixed quantum-
mechanical states. We leave these problems for future
studies [29]. The results of SU(3) LZ interference are sum-
marized in fig. 3. The pattern shows the oscillations due
to the two-path interference in the non-adiabatic limit.
Transition probability at long times t + tD also shows
pronounced “beats” structure characteristic for two-path
interference (see insert of fig. 3). Equations (8)–(15), the
“beats” and “steps” shown in fig. 2 and the interference
pattern (fig. 3) represent the central results of this letter.

Conclusions. – We analysed general models of 3-level
crossing in the space of SU(3) generators (5) or pseudospin
S = 1 with anisotropy (2)–(4) and presented both numer-
ical solution of the Schrödinger equation and approximate
analytical solution of the Bloch (von Neumann) equa-
tion. Excellent agreement between the two approaches
is demonstrated. If the diabatic states of linearly driven
3-level system form a triangle, it acts as an interferometer
with qualitatively new pattern of interference oscillations.
Depending on the dwell time in the triangle, the interfer-
ence pattern shows the “beats” due to constructive inter-
ference of two paths or “steps” when two separated in time
non-adiabatic LZ transitions take place. Both “beats” and
“steps” are the manifestations of SU(3) symmetry. We be-
lieve that the interference pattern predicted in this work
can be experimentally observed both in quantum trans-
port (TQD) and in ultra-cold bosons experiments.
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