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Abstract. We define modulated replica symmetry breaking (RSB) schemes which combine tree- and wave-
like structures. A modulated scheme and unmodulated RSB are evaluated at 1-step level for a semicon-
ductor model with antiferromagnetic Korenblit-Shender interaction. By comparison of the free energies we
find evidence that a T = 0 phase transition in the ferrimagnetic phase leads to a transition between the
different RSB-schemes. An embedding factor of Parisi block matrices with sublattice-asymmetrical size is
employed as a new variational parameter in the modulated scheme.

PACS. 68.35.Rh Phase transitions and critical phenomena – 75.10.Nr Spin glass and other random models

1 Introduction

Hierarchical tree-structures and replica symmetry break-
ing (RSB) [1,2] are celebrated features in the theory of
magnetic systems with random and frustrated interactions
of infinite range. The role of these symmetry breakings
for short-range spin glasses was hotly debated over recent
years in the work of different groups [3,4].

A puzzling question over many years concerned the
existence of variants or alternatives for the Parisi RSB-
scheme. The latter proved to be very robust however. As
a consequence it appeared to be a difficult task to find
relevant variables which perturb or change the scheme and
in addition lead to new selfconsistent solutions.

In this article we define and apply RSB-schemes which
show a kind of wave-like modulation in addition to the
tree-structure [1,2], the modulation being controlled by
an additional parameter. We work in the context of a
two-sublattice model with infinite-range interactions only
between spins belonging to different sublattices A or B.
We show that a sufficiently strong asymmetry between A-
and B-type sublattices, as for example realized by ferri-
magnetic order, turns out to be the origin of these new
self-consistent solutions with modulated RSB.

Sublattice models with infinite-range frustrated in-
teractions, and allowing spin glass phases for exam-
ple, were first defined and theoretically analyzed in
replica-symmetric (RS)-approximation by Korenblit and
Shender [5] (KS-model). In subsequent papers Fedorov,
Korenblit, and Shender also evaluated the infinite-RSB
theory for a temperature range close to and below Tc.
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These authors described the relevant structure of the
replicated field theory, determined phase diagrams in
external fields, and discussed applications, for exam-
ple to strongly disordered frustrated antiferromagnets
FexMg1−xCl2 [6–8].

The KS-model successfully offers the description of
transitions between spin glass and antiferromagnetic or-
der (or glassy ferrimagnetic order in a field) in spite of
an infinite-range interaction in real space. Spatially stag-
gered order is allowed by letting the interaction work only
between different sublattices. The field of application in-
cludes two-component magnets as well as standard anti-
ferromagnets, where the staggered magnetic order itself
defines sublattices. Moreover, range-free interactions can-
not distinguish spatial positions and consequently unite
the mean field picture of sublattice systems with another
class of systems having just an equal number of mutually
interacting but arbitrarily placed A- and B-spins.

The KS-model effectively mirrors the phase diagram
of the Sherrington-Kirkpatrick (SK-)model [9] to the anti-
ferromagnetic side, still allowing to retrieve ferromagnetic
solutions.

Additional intra-lattice interactions can also be
dealt with in refined models. Fyodorov, Korenblit,
and Shender [10] applied such generalized models to
FexMn1−xTiO3 alloys with purely antiferromagnetic
inter-layer but frustrated intra-layer interactions gener-
ated by alloying ferromagnetic FeTiO3 and antiferromag-
netic MnTiO3-layers.

In this paper we focus on phase transitions from spin
glass to ferrimagnetic order, driven by inter-layer anti-
ferromagnetic interactions. These transitions are frequent
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physical phenomena and concern a wide range of different
microscopic models. Even in cases when quenched disorder
is weak or absent, spin glass models can have the power
to mimic behaviour of clean but geometrically frustrated
systems [11–13].

As an application of our asymmetric RSB-scheme we
employ (in section 4) a generalization of a model de-
signed for a CdTe/Cd1−xMnxTe layered system [14]. In
this model magnetic exciton polarons near the interface
provide a confined magnetic field in the spin glass mate-
rial Cd1−xMnxTe. The previous Villain Ising pseudospin
model has been used to explain experimental features for
the pure spin glass phase of x = 0.33 samples [14]. The
generalized form can be used to study as well the com-
petition between glassy antiferromagnetic and pure spin
glass phases; the instability driven by the antiferromag-
netic interaction is known to occur at much higher man-
ganese concentrations. Beyond this transition and in a
field, which breaks the A-B symmetry, our modulated
RSB-scheme (SES) happens to become the favourable
solution (as far as the 1-step symmetry breaking can tell).

Beyond the present application to antiferromagnetic
instabilities and ferrimagnetic glassy phases, our results
suggest that the modulated RSB-schemes could also serve
as a basis to describe excited states in finite-range spin
glasses. This suggestion refers to incorporate not only sim-
ple spatially staggered variations as a characterizing fea-
ture of the present modulated RSB-scheme, but perhaps
also combine more general spatial and time-dependent
fluctuations with replica symmetry breaking schemes.

2 The two-sublattice spin glass model
with competing antiferromagnetic-
and ferrimagnetic order

A class of Hamiltonians, for which the modulated RSB-
scheme is constructed, is given by the KS-model in an
external field h(r)

H = −
N∑

iA=1

N∑

jB=1

JiA,jBS(riA)S(rjB )

+
∑

iA

h(riA )S(riA) +
∑

iB

h(riB )S(riB ), (1)

where the partially frustrated random interaction JiA,jB

is chosen to obey a Gaussian distribution P (JiA,jB) =
exp(−N(JiA,jB +Jaf/N)2/(2J2))

√
N/(2πJ). Centered at

a negative mean coupling 〈JiA,jB 〉 = −Jaf < 0, the sub-
lattice-interaction permits glassy antiferromagnetic order.
Glassy ferrimagnetic order with lifted A ↔ B symmetry
results for example when a homogeneous field is applied
or when spins of different lengths (different spin quan-
tum numbers in quantum models) happen to be located
on different sublattices. Modulated RSB should also be
considered for model classes including interactions of dif-
ferent types of localized spins, for example tight-binding
electron spins coupled to ionic spins S; initially mobile

Fig. 1. Simple examples of modulated saddle point matrices
QAB = QA + QB with mA = 3, mB = 5, and n = 15 (left
figure) and mA = 7, mB = 11, and n = 77 (right figure) in
one-step RSB. Four different regions are shown with entries
q1A + q1B , generated by the overlap-areas of mA × mA- and
mB ×mB-sized block matrices along the diagonal, with q1A +
q2B and q2A + q1B generated by their nonoverlap-regions, and
q2A + q2B belonging to the superposition of off-diagonal A−
and B-elements.

carriers, which localize due to their interaction with ionic
spins, may not be able to fit the RSB glassy order. This
example reaches far beyond the classical model (1). In
the present work we focus exclusively on model (1) with
minimal inequivalence of sites (such as being of A- and
B-type), which requires a hybrid modulated form of RSB
in a solvable classical model and hence reveals a coupling
of replica- and real space.

In replica theory [15], which we use here, all spin vari-
ables acquire a replica-index a, S → Sa. After elimina-
tion of the microscopic spins the corresponding effective
Lagrangian of the replica theory [9] is given in terms of
Hubbard-Stratonovich fields [5]. The SK-model interac-
tion requires one such field [9], Q̃a,b. Its statistical average
Qab ≡ 〈Q̃ab〉 = 〈Sa

i Sb
i 〉 describes glassy order [1,2] in ad-

dition to a homogeneous magnetization M = 〈Sa
i 〉, which

can be finite in case of partial frustration. The KS-model
however involves for each sublattice κ = A, B a magneti-
zation Mκ ≡ 〈Sa

iκ
〉 and Qab

κ ≡ 〈Q̃a,b
κ 〉, and a field Q̃a,b

3
which couples the sublattices [5]. The averaged matrix
QAB ≡ −i Q3 ≡ −i〈Q̃3〉 turns out to be equal to QA+QB,
where QA and QB inevitably show sublattice-splitting of
their entries qA �= qB in ferrimagnetic phases, together
with |MA| �= |MB|. The size of their block-diagonal ma-
trices, characterized in RSB by a Parisi parameter m [1],
may also develop a sublattice-asymmetry. Thus, at 1RSB-
level two order parameters for each sublattice A or B,
hence {q1A, q2A, q1B , q2B}, denoting matrix elements of
QA and QB, and two Parisi-parameters mA, mB need to
be considered.

A simple illustration for the matrix QAB = −i Q3 is
displayed in Figure 1. Note that for simplicity it is not
shown that elements on the diagonal vanish (while, for
example in fermionic spin glasses, these elements equal 1
at half-filling; this detail can trivially be accounted for in
the trace formulas below, but is of no relevance for our
present application).
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Unmodulated replica-symmetry breaking scheme: In the
unmodulated 1RSB scheme one chooses mA = mB.

3 Modulated replica symmetry breaking
schemes

We consider the superposition of two diagonal Parisi-block
matrices with sizes mA × mA and mB × mB such that a
rational embedding factor γ denotes the number of smaller
blocks (let mA < mB) fully embedded inside larger mB-
boxes, i.e. without being intersected by the latter ones,
divided (normalized) by the number of larger boxes inside
the entire (n×n) host matrix (the example of Fig. 1 shows
γ = 1 (left figure) and γ = 5

7 (right figure)).
We distinguish now a single embedding scheme, for

which the host size n is restricted to be the least common
multiple of mA and mB, and multiple embedding schemes,
which align k-times such structures along the diagonal.

For all of n, mA, mB, n/mA, and n/mB integral and
mA < mB, the embedding parameter γ is given by

γ = (n/mA − (n/mB − 1))/(n/mB). (2)

Let us now turn to the important replica limit n → 0.

3.1 Single-embedding modulated scheme (SES)

When the limit n → 0 is approached, as required in replica
theory, equation (2) and the integral constraints associ-
ated with it must be relaxed. This allows to obtain a fi-
nite nontrivial free energy. To this end we choose γ as a
free variational parameter like mA and mB. To obtain the
free energy F for this modulated RSB-scheme we need
the trace of the square of such super-imposed Parisi ma-
trices (see Eq. (6) below). The free energy involves the
limit as n goes to zero of (1/n) times a sum of traces
over the Q2-values. As for standard Parisi matrices [1,2],
tr{Q2

κ} = n(mκ − 1)q2
1κ + n(n−mκ)q2

2κ, κ = A, B, so for
a physical finite free energy one requires that tr{Q3}2 also
scales like n for small n. A set of self-consistent equations
is derived by the condition that mA, mB and γ extremize
the free energy in the replica limit. The idea is thus to find
a function of mA, mB and γ, which agrees with the trace
of Q2

AB for integer-valued parameters mA, mB, n allowed
by the scheme, satisfies the integral constraints ahead of
equation (2), and whose analytical continuation for small
n is linear in n. This goal is achieved by evaluating all
overlap contributions to tr{Q2

3} and reexpressing the re-
sults for each of the four different overlap regions in terms
of the embedding factor γ.

The trace formula for Q2
3 for arbitrary block-sizes

mA < mB, which all nest the host-matrix of size n, for
the single-embedding scheme, is expressible in terms of
γ as

Ξ(γ) ≡ tr{Q2
AB} = n(mA − 1)(q1A + q1B)2

+ n(mB − mA)(q2A + q1B)2 + n(n − mB)(q2A + q2B)2

+ 2(q1A − q2A)(q1B − q2B)φ(γ), (3)

where the dependence on the embedding factor γ is con-
tained in

φ(γ) ≡ n

3m3
B

{(mB − n)(mB − (1 + γ)mA)

× [(mB − 2n)mB + mA(2n(1 + γ) − (4 + γ)mB))]}. (4)

The result represented by equation (3), together with
φ given by equation (4), holds for all integral and non-
integral (rational) values of γ allowed by the construction.
Let us consider a few examples, using this division into
two classes with either integral or non-integral embedding
factors γ:

i) there exists a subset of matrices, where each mB-
block hosts the same (integral) number of mA-blocks. The
left hand side of Figure 1 shows one example with (mA =
3, mB = 5, n = 15, γ = 1). Further examples of this class
are (2, 7, 14, 3), (4, 7, 28, 1), (3, 8, 24, 2);

ii) the right hand side of Figure 1 presents one example
for the matrix-class having non-integral embedding factors
with (mA = 7, mB = 11, n = 77, γ = 5/7). Let us add
further examples by (3, 4, 12, 2/3) and (7, 17, 119, 11/7).

One can see that Ξ-contributions from all overlap re-
gions can be expressed in terms of mA, mB, γ, while
the number of these overlap regions depends explicitly on
the host matrix size n. This feature guarantees the finite
replica limit of the free energy.

3.2 Multiple-embedding modulated scheme (MES)

We also define a modulated scheme MES which incorpo-
rates a k-fold repeated SES-structure (of size n1 × n1)
along the diagonal of an n × n host matrix, for exam-
ple (4, 6, 24, 3/4) where k = 2. The SES-matrix size
is chosen as a variational parameter, kept finite while
the replica limit n → 0 is taken, and finally varied
to extremize F . Altogether mA, mB, and n1 are varia-
tional parameters, which determine the embedding factor
γ(mA, mB, n → n1) according to equation (2), or mA, mB

and γ are varied and their selfconsistent solutions yield
n1(γ) = mAmB/(mA − mB + mAγ). The free energy is
obtained by means of limn→0 Ξ(n, n1)/n, where

Ξ(n, n1) = Ξ(γ(n1))n/n1 + n(n − n1)(q2A + q2B)2 (5)

or Ξ(n, γ) = Ξ(γ)n/n1(γ) + n(n − n1(γ))(q2A + q2B)2
in case γ is varied. An example for a three-fold embed-
ding is given by Figure 2. Since relation (2) is part of the
definition of the MES and since the replica limit maps
the Parisi-type parameters mA, mB, n1 from [1,∞] into
the interval [0, 1], γ is thus restricted to values γ > −1
in contrast to the SES. The MES also differs essen-
tially from the SES by the fact that the (A,B)-symmetric
limit mA = mB ≡ m reduces it to the unmodulated
1RSB-scheme. Another possible variant of MES, where
the number k = n/n1 of repeated SES-structures is var-
ied, is discarded, since k cannot extremize F .
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Fig. 2. Example of a modulated saddle point matrix belonging
to the multiple-embedding scheme: 〈Q3〉/i = 〈QA〉+〈QB〉 with
mA = 4, mB = 6, and n = 36 in one-step RSB.

3.3 Upgrade of the modulated RSB-schemes

While the modulated RSB-schemes are initially designed
for applications to glassy ferrimagnetic systems, one
should also consider them under a more general point of
view: they can be used in systems without sub-lattices
and even without reference to antiferro- or ferrimagnetic
order. One can upgrade the schemes as an alternative
of the Parisi-scheme provided the traces of higher pow-
ers Qk, k ≥ 3, also yield a non-divergent replica-limit.
This separate point as well as higher order RSB is not
the issue of the present article, where only trQ2

3 is needed
for the KS-model.

4 Application to a layer model
with a confined magnetic field

In order to examine the specific features of the modulated
SES-scheme in comparison with the unmodulated one, we
performed a detailed analysis for the KS-model (1) in a
spatially confined magnetic field Hp. For an equal number
of αN of A- and B-spins we chose h = Hp and h = 0 for
the remaining (1 − α)N spins.
The free energy of this model realization in 1-step RSB
can be decomposed into three parts

F = F0 + αF1(Hp) + (1 − α)F1(Hp = 0), (6)

where

F0 = −JafMAMB − J2

4T

[
lim

n→0

1
n

trQ2 − 2
∑

κ

(1 − q1κ)

]
,

(7)
and

F1(Hp) = −
∑

κ=A,B

T

mκ

∫ G

z2κ

ln
∫ G

z1κ

coshmκ

{
1
T

H̃κ(Hp)
}

(8)
with

∫ G

z
≡ ∫ ∞

−∞ dz e−z2/2/
√

2π, and Q ≡ (QA, QB, Q3).
The effective field H̃κ on sublattice κ depends on the order

parameters of the complementary sublattice κ̄. It is given
in terms of 1. the confined polaron field Hκ, 2. in terms of
the magnetization field of the complementary sublattice κ̄,
and 3. spin fields representing the spin glass field zk,κ (in
the 1RSB-discretized approximation), by the expression

H̃κ(Hp) = Hp − JafMκ̄ + J
√

q2κ̄ z2κ + J
√

q1κ̄ − q2κ̄ z1κ,
(9)

The motivation for choosing this specification of the KS-
model is essentially twofold:

1) by scanning the full range 0 < α < 1 we found
that the phase diagram is not only marked by a contin-
uous spin glass–ferrimagnet transition. At slightly higher
ratios Jaf/J , a subsequent small flop transition from fer-
rimagnet to an (what might be called) antiferrimagnetic
phase occurs, which provides an ideal test-ground for the
SES-scheme:

the A ↔ B-symmetries are strongly broken, since solu-
tions are far away from either MA = MB or MA = −MB.
The main features of the phase diagram for all α at se-
lected characteristic polaron fields Hp and temperatures
is analyzed below in 5.

2) CdTe/Cd1−xMnxTe-layers are well described by
the present model, where Hp represents a confined po-
laron field created by polarized exciton-hole spins being
localized at the interface. The penetration depth of the
hole-wavefunction defines the portion α of the CdMnTe-
layer which is exposed to the field Hp. The magnetic
CdMnTe-layer employs Villain-Ising pseudo-spins S [16]
representing tetrahedra of manganese Heisenberg-spins
which retain only two orientational degrees of freedom.
All pseudospins of the magnetic layer are then coupled
by a long-range partially frustrated interaction with an-
tiferromagnetic mean value. This model (with α = 0.5)
provided optimal fits for experiments in the spin glass
regime at x = 33% [14]. Increasing Mn-concentration x
enhances the antiferromagnetic bias and eventually leads
to a transition from spin glass to antiferromagnetic or fer-
rimagnetic order (in a homogeneous polaron- or external
field) at a critical concentration xc. Scaling and numeri-
cal analysis on the basis of anisotropic Heisenberg models
were also provided [17,18]. The virtue of the Pseudo-Ising
concept lies in the smaller lower critical dimension when
compared to Heisenberg systems.

We explore at T = 0 the difference between the SES-
scheme and the unmodulated one. For its demonstration
we choose a polaron-field strength Hp = 4J and a confine-
ment-fraction α = 0.5 (half-penetrated layer). Our 1-step
RSB-results are obtained by solving up to seven coupled
selfconsistent integral equations (SES-scheme) which ex-
tremize F . Thanks to the T → 0-limit one integration can
be solved exactly, simplifying the selfconsistent set of ten
coupled double-integral equations for finite T considerably
(while q1A = q1B = 1 at T = 0, both q1κ(T ), κ = A, B,
and the hole polarization too must be determined selfcon-
sistently for finite T ). The T = 0-results of Figures 3, 4
show a continuous SG-ferrimagnetic transition with order
parameter MA − MB to occur at r ≡ Jaf/J ≈ 3.25, fol-
lowed by a discontinuous transition to antiferrimagnetic
order near r ≈ 4.02. As Figure 3 shows, q2A and q2B
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Fig. 3. Solutions for T = 0 and α = 0.5 in 1-step unmodu-
lated RSB: Parisi parameter aA = aB , aκ = mκ/T , sublattice
magnetizations MA, MB , spin glass order parameters q2A, q2B ,
and δq2 ≡ q2B − q2A, as a function of r ≡ Jaf/J and finite
confined field Hp = 4J . Dash-dotted lines locate the 1st-order
transition, dashed lines show unstable solutions.

Fig. 4. Corresponding results in the modulated RSB-scheme
SES showing (aA, aB), (MA, MB), (q2A, q2B), and the SES-
embedding parameter γ. It is seen that aκ and qκ show only
very weak sublattice splitting.

undergo large jumps and become (almost) interchanged
at the discontinuous transition in the framework of the
standard unmodulated scheme, i.e. under the condition
aA = aB, aκ ≡ lim

T→0 mκ/T .
In the modulated SES-scheme, Figure 4, the selfcon-

sistent solutions for aA, aB and q2A, q2B are different but
show only small sublattice splitting; at the transition
aB − aA changes sign, in contrast to qB − qA.

The sublattice effective fields of equation (6) help to
explain the origin of the discontinuous transition: the com-
petition between JafMκ̄ and the polaron field Hp leads
(in the clean limit) eventually to a total spin reversal
on one sublattice. Random magnetic order would smear
the jump in any homogeneous field but the discontinuity
reappears due to the competition between antiferromag-
netic ({A, B}- symmetric) order, preferred in the Hp = 0-
region, and a strongly (A, B)-asymmetric ferrimagnetic
order for sufficiently large Hp/J .

We finally compare our 1RSB-results for the free en-
ergies in the double transition regime of Figures 3, 4. Fig-

Fig. 5. a) Energies F (T = 0) of modulated 1RSB- (arrow),
unmodulated 1RSB- (P ), and RS-scheme (RS) with ferromag-
netic RS-solution (dashed), shown as a function of r ≡ Jaf/J
in the double transition region, b) energy difference between
modulated- and unmodulated scheme; inset (top right) shows
susceptibility RSB-contributions δχ.

ure 5 provides evidence for the discontinuous transition
to involve a transition from unmodulated to modulated
RSB. As discussed in [1] higher energies correspond to
improved solutions (unless identical stability criteria are
met). Figure 5b shows that the energy for the SES-scheme
is higher for Jaf > Jc

af ≈ 4.02 (lower if < holds). This
crossing of energies at the discontinuous transition and the
character of the RSB-schemes suggests that modulated
RSB governs the Jaf > Jc

af -regime. The RS-solution is
lowest but unstable everywhere. Despite small energy sep-
aration, equilibrium- and nonequilibrium linear suscepti-
bility shows large differences which depend strongly on
the type of RSB-scheme (inset of Fig. 5). Further observ-
able manifestations and thermal behavior remain to be
considered.

5 Confined field-fraction effect
on the multiplicity of phase transitions

The sublattice effective fields of equation (9) help to ex-
plain the origin of the discontinuous transition: the com-
petition between JafMκ̄ and the polaron field leads (in
the clean limit) to a total spin reversal on one sub-
lattice. Random magnetic order would smear the jump
in any homogeneous field, as can be deduced from Fig-
ure 6 at α = 1, but the discontinuity reappears due
to the competition between antiferromagnetic ((A, B)-
symmetric) order, preferred in the Hp = 0-region, and
a strongly (A, B)-asymmetric ferrimagnetic order for suf-
ficiently large Hp �= 0. For half-penetrated layer (α = 0.5)
the continuous transition with order parameter MA−MB,
caused by the competition between spin glass and antifer-
romagnetic order, exists at Jaf = Jc

af ≈ 3.25J . To under-
stand the α = 0.5-scenario in the context of all 0 ≤ α ≤ 1
we found sufficient to analyze the stability limits at T = 0
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Fig. 6. Magnetizations Mc
κ=A,B obeying the constraint

dMc
κ/dr = ∞, r ≡ Jaf/J , are shown in RS-approximation for

T = 0 as a function of the polaron fraction α for field strengths
Hp = 4, 6; the vertical line indicates the position of the double
transition analyzed in 1RSB-schemes in Figures 3, 4.

in an RS-approximation. Introducing the definitions

ξ = r Mκ, hp ≡ Hp/J (10)

one may cast the equation of state into the compact nested
form

ξ = u(u(ξ) + η u(ξ − hp))
+ η u(u(ξ) + η u(ξ − hp) + hp), (11)

where

u(ξ) ≡ (1 − α)r erf(ξ/
√

2), η = α/(1 − α). (12)

The stability limits are obtained under the constraint

dr(Mκ)
dMκ

= 0,
d2r(Mκ)

dM2
κ

�= 0 (13)

in terms of the inverted solution r(Mκ) displaying the in-
teraction ratio r ≡ Jaf/J as a function of the sublattice
magnetizations Mκ. The constrained solutions M c

κ are de-
rived by scanning all α and shown in Figure 6 for typical
values of Hp (stability limits in terms of Jaf (α) are omit-
ted for brevity). At a fixed α, the existence of one or three
solutions implies a single continuous or a single discontinu-
ous SG-ferrimagnetic transition respectively, while five so-
lutions are necessary to obtain a double transition regime
(with a magnetization-curve M(r = Jaf/J) shaped as in
Figs. 3, 4). Corrections in the effective field H̃ originating
from intra-sublattice interactions do not change qualita-
tively the results. The right part of Figure 6 shows a spe-
cial point which emerges for large Hp near α ≈ 0.5 and
small M c

κ.
The Korenblit-Shender model in a field h = Hp can be

retrieved at α = 1.

6 Conclusions and open ends

In this article hybrid RSB-schemes which combine tree-
and wave-like structures were defined. A variational em-
bedding factor of Parisi block matrices appeared as a char-
acteristic ingredient of the new schemes.

In the evaluated leading order of one-step RSB the ap-
plication showed that the SES-modulated phase appears
to be preferred beyond a critical coupling Jc

af where a type
of glassy (anti-)ferrimagnetic order prevails.
The MES-scheme (in contrast to SES) allows a con-
tinuous crossover to unmodulated RSB. Like the SES,
it should also be extended to infinite order of symmetry
breaking and analyzed for its stability, both near Tc and
at T = 0.

A generalization of our trace-formula to all powers of
the order parameter matrix can in principle create an ex-
tension of the Parisi scheme, modelling perhaps excited
states in short-range spin glasses. Viewing replica symme-
try breaking as a fluctuational effect itself, it seems rea-
sonable to incorporate spatial fluctuations of even more
general type than staggered order in the Parisi scheme.
Higher orders of both types of RSB are currently under
study for ferrimagnets, using for example techniques ap-
plied to unmodulated RSB in reference [19].
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11. J.P. Bouchaud, M. Mézard, J. Phys. France 4, 1109 (1994)
12. E. Marinari, G. Parisi, F. Ritort, J. Phys. A 27, 7647

(1994)
13. P. Chandra, L.B. Ioffe, D. Sherrington, Phys. Rev. Lett.

75, 713 (1995)
14. A. Chudnovskiy, R. Oppermann, B. Rosenow, D. Yakovlev,

W. Zehnder, W. Ossau, Phys. Rev. B 55, 10519 (1997)
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