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Abstract. We study in a mean-field approximation the ordered “excitonic” states which develop around
the quantum critical point (QCP) associated with the electronic topological transition (ETT) in a 2D
electron system on a square lattice. We consider the case of hopping beyond nearest neighbors when ETT
has an unusual character. We show that the amplitude of the order parameter (OP) and of the gap in the
electron spectrum increase with increasing the distance from the QCP, δc− δ, where δ = 1−n and n is an
electron concentration. Such a behavior is different from the ordinary case when OP and the gap decrease
when going away from the point which is a motor for instability. We show that the chemical potential lies
always inside the gap for wavevectors k in a proximity of (0, π) whatever is the doping concentration. The
spectrum gets a characteristic flat shape as a result of hybridization effect in the vicinity of two different
SP’s. The shape of the spectrum as a function of k and the angle dependence of the gap have a striking
similarity with the features observed in the normal state of the underdoped high-Tc cuprates. We discuss
also details about the phase diagram and the behaviour of the density of states.

PACS. 74.25.-q General properties; correlations between physical properties in normal
and superconducting states – 74.72.-h High-Tc compounds – 74.25.Dw Superconductivity phase
diagrams – 74.25.Ha Magnetic properties

Many experiments performed for high Tc cuprates pro-
vide an evidence for the existence of a pseudogap in the
underdoped regime above Tc and below some temperature
T ∗(δ) which value increases with increasing the doping dis-
tance from the optimal doping, δopt−δ [1–8]. The pseudo-
gap is observed directly by angle-resolved photoemission
spectroscopy (ARPES) measurements [9–13]. The striking
about this gap is its increase with increasing δopt − δ [12]
while the critical temperature of superconducting (SC)
transition, Tsc, decreases. Another prominent feature is
the so-called (π, 0) feature discovered by ARPES: the elec-
tron spectrum around the saddle-point (SP) is flat and
disappears above some threshold value of wavevector [9].
Several hypotheses exist about possible origin of the pseu-
dogap [14–17]. In this paper we present another explana-
tion of this phenomenon in the framework of the model
developed in [18–20]. In these works the concept of the
Electronic Topological Transition in 2D system is devel-
oped and applied for the explanation of various effects
experimentally observed in high-Tc cuprates.

In the present paper we consider various ordered states
appearing in the vicinity of ETT point in the presence of
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interaction. We show that the ordered “excitonic” phase
formed in a proximity of quantum critical point QCP cor-
responding to ETT1 is characterized by the electron spec-
trum strikingly similar to that observed in the underdoped
cuprates. The mentioned ETT corresponds to the electron
concentration nc = 1−δc at which Fermi level (FL) crosses
saddle point (SP) energy in the bare spectrum. As shown
in [19], in the case of hopping between more than nearest
neighbors (or, by other words of electron-hole asymmetry)
the existence of the ETT QCP leads to a very asymmet-
ric behaviour of the noninteracting and interacting sys-
tem on two sides of ETT being quite anomalous on the
side δ < δc. On the other hand, for realistic for the high-
Tc cuprates ratios of hopping parameters between nearest
and next nearest neighbors t′/t, δc is given by: δc = 0.27
for t′/t = −0.3 and δc = 0.17 for t′/t = −0.2, i.e. the
anomalous regime δ < δc occurs in the doping range where
the experimentally observed normal metal anomalies take
place. Moreover, δ = δc corresponds to a maximum of
Tsc(δ) (as discussed in [19]) and therefore the latter regime
can be considered as an underdoped regime.

1 It has been shown in [19] that the ETT point is an isolated
QCP. The properties of this QCP have been studied in detail
in [19].
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Some anomalies concerning the ordered “excitonic”
phase have been discussed in [18]. Namely, it was shown
that the line of the “excitonic” instability grows from the
ETT QCP to the side δ < δc instead of having the form
of a bell around the QCP as it usually happens for an or-
dinary QCP. Other anomalies which exist in the ordered
phase are considered in the present paper. (We call this
phase “excitonic” ordered phase because the discussed in-
stability has the same origin as the classical “excitonic” in-
stability intensively discussed in the 60-70 [21–26]. Namely
it is related to the opposite curvature of two parts of elec-
tron spectrum in a proximity of FL. In the case considered
they correspond to spectra in vicinities of two SP’s.)

We consider various possibilities for the ordered state,
namely, Spin and Charge Density Wave orderings with dif-
ferent types of the order parameter symmetries (s-wave,
d-wave) depending on the effective interaction between
the quasiparticles. Despite of the different symmetries,
the properties of such ordered states resembling an “ex-
citonic” states [21–26] are quite similar. For example we
show that the electron spectrum in the ordered phase is
characterized by a gap on FL for wavevectors belonging
to some part of Brillouin zone which always covers the SP
wavevectors (0, π), (π, 0) whatever is the doping concen-
tration. This remarkable feature is related, as we show in
the paper, to a quite nontrivial aspect of ETT: it is the end
point of two critical lines for the “polarization operator”
characterizing a behaviour of the free electron system. The
other side of the same effect is an increase of the amplitude
of the order parameter (and of the gap) with increasing
the doping distance from QCP on the underdoped side.
We show also that the electron spectrum in a vicinity of
SP wavevectors gets a specific “flat” form as a function
of k that on one hand is typical for an “excitonic” phase
(see for example [24]) being a result of a hybridization of
two parts of the bare spectrum with the opposite curva-
ture and on the other hand has a striking similarity with
the form of the spectrum observed by ARPES [9–13]. We
show that the spectrum “disappears” above some thresh-
old value of wavevector in the direction (π, 0)−(π, π) that
is also an effect of the same hybridization. We briefly dis-
cuss also features related to strong-coupling limit of the
model and effects of strong electron correlations.

A starting point is a 2D system of free fermions on a
square lattice with hopping between nearest (t) and next
nearest (t′) neighbors

εk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky . (1)

The dispersion law (1) is characterized by two different
saddle points (SP’s) located at (± π, 0) and (0,±π) (in
the first Brillouin zone (−π, 0) is equivalent to (π, 0) and
(0,−π) is equivalent to (0, π)) with the energy εs = 4t′.
When we vary the chemical potential µ or the energy dis-
tance from the SP, Z, determined as

Z = µ− εs = εF − 4t′, (2)

the topology of the Fermi surface changes when Z goes
from Z < 0 to Z > 0 through the critical value Z = 0,
see Figure 1. For t′/t 6= 0 which is the case of our interest,
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Fig. 1. Fermi surface of the electron system with the dispersion
law (1) for different Z and t′/t = −0.3. The thick line stands
for Z = 0. Open and close FS correspond to Z > 0 and Z < 0
respectively.

the FS does not satisfy the perfect nesting condition [27]
and has a different shape for different signs of t′/t. In our
paper we discuss t′/t < 0 that corresponds to proper fit
of ARPES experimental data. The FS’s corresponding to
Z > 0 and Z < 0 are shown in Figure 1.

According to Figure 1, the FS can be classified as fol-
lows. For arbitrary filling factor (depending on dopings),
the FS can have either 8 points which can be connected
by vector Q = (±π,±π) (see Fig. 1), or 4 points, or do not
have any such a point. These points are called “hot spots”
(HS) (see [17]). The 8 hot spots are the intersection points
between the Fermi Surface (FS) and the umklapp surface
(US) kx ± ky = ±π. The two quantum critical points
QCP1 and QCP2 correspond to critical hole dopings δc1

and δc2. For δc2 < δ < δc1 there are 8 hot spots. When
δ → δc1 they become 4 hot spots located at the 4 sad-
dle points (kx = ±π, ky = 0 and ky = ±π, kx = 0), then
for δ > δc1 they disappear. When δ → δc2 they coincide
with the 4 points located at the FS along the diagonals
kx = ±ky; for δ < δc2 they disappear.

It has been shown in [19] that such a system undergoes
a fundamental ETT at the electron concentration corre-
sponding to Z = 0. The corresponding quantum critical
point is quite rich. It combines several aspects of criti-
cality. The first standard one is related to singularities in
thermodynamic properties, in density of states at ω = 0
(Van Hove singularity), to additional singularity in the
superconducting (SC) response function, all reflect a local
change in the topology of FS. This aspect is not impor-
tant for the properties we are interested in the present
paper. Important aspects which reflect a mutual change
in the topology of FS in the vicinities of two SP’s are the
following. First of all, it is a logarithmic divergence of the
polarizability of noninteracting electrons

χ0(k, ω) =
1
N

∑
q

nF(ε̃q)− nF(ε̃q+k)
ε̃q+k − ε̃q − ω − i0+

, (3)
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Fig. 2. Schematic presentation of the electron spectrum in a
vicinity of two SP’s for Z = 0

as k = Q = (π, π), ω = 0 and Z → 0:

χ0(Q, 0) ∝ ln
ωmax

|Z| , (4)

which has an “excitonic” origin (ωmax ∼ t is a cutoff en-
ergy). By “excitonic” origin we mean that two branches
of the spectrum corresponding to vicinities of two SP’s
(a = t− 2t′, b = t+ 2t′)

ε̃1(k) = ε1(k)− µ = −Z + ak2
x − bk2

y,

ε̃2(k) = ε2(k) − µ = −Z + ak2
y − bk2

x (5)

have such a form (see Fig. 2) that at Z = 0 the chemical
potential lies on the bottom of one “band” and on the
top of the another for the given directions (0, π) − (π, π)
and (π, 0) − (0, 0), (see Fig. 2). Therefore, no energy is
needed to excite the electron-hole pair. It is this divergence
that is at the origin of density wave (DW) instability.
The DW instability can be of Spin Density Wave (SDW),
Charge Density Wave (CDW), Spin Current Density Wave
(SCDW) or Orbital Current Density Wave (OCDW) in-
stability [28]) of interacting electron system depending on
a nature of interaction.

The nontriviality stems from the aspect of criticality
related to the effect of Kohn singularity in 2D system:
the point Z = 0, T = 0 is the end of the critical line
Z < 0 each point of which is a point of static Kohn sin-
gularities in polarizability of noninteracting electrons. As
shown in [19], the latter aspect is a motor for the anoma-
lous behaviour of the system on the other side of ETT
Z > 0. One among the anomalies found in [19] concerns
the ordered DW phases. We have obtained that the line
of DW “excitonic” instability TDW(Z) has the anomalous
form on the side Z > 0: it grows from QCP instead of
having the form of a bell around QCP as it usually hap-
pens in the case of ordinary QCP. Below we show that this
latter aspect is also at the origin of anomalous behaviour
of the order parameter and of some other anomalies in the
ordered state in the same regime Z > 0.

As shown in [19], on the side Z > 0 of the elec-
tronic topological transition point, a maximum of the
static electron-hole susceptibility occurs at the wavevector
q = Q. Therefore in a presence of q independent interac-
tion or q dependent interaction negative for q = Q, the

DW instability happens at q = Q and this is the wavevec-
tor of ordering in the DW phase. As usual for such phases,
one should consider a matrix electron Green function con-
taining as components the normal and anomalous Green
functions in terms of operators a+

k,σ and akσ which are
the creation and annihilation electron’s operators respec-
tively:

K11(k, iωn) = −
∫ β

0

dτ eiωnτ 〈Tτakσ(τ)|a+
kσ(0)〉

K22(k, iωn) = −
∫ β

0

dτ eiωnτ 〈Tτak+Qσ(τ)|a+
k+Qσ(0)〉

Kσσ′

12 (k, iωn) = −
∫ β

0

dτ eiωnτ 〈Tτak+Qσ(τ)|a+
kσ′(0)〉. (6)

(Below we will omit spin indices in the Green functions
keeping in mind that K12 = Kσ−σ

12 for CDW and OCDW
states and K12 = Kσσ

12 for SDW and SCDW states.)
If the anomalous Green function K12 is nonzero (that

should be found selfconsistently) the explicit expressions
for the two Green functions are as follows

K11(k, iωn) =
[
u2(k)

iωn − ε1
+

v2(k)
iωn − ε2

]
,

K22(k, iωn) =
[
u2(k)

iωn − ε2
+

v2(k)
iωn − ε1

]
,

K12(k, iωn) = K21(k, iωn)

= u(k)v(k)
[

1
iωn − ε1

− 1
iωn − ε2

]
, (7)

where u, v-coefficients have a standard form:

u2(k) =
1
2

[
1 +

εA(k)− εB(k)
2E(k)

]
,

v2(k) =
1
2

[
1− εA(k)− εB(k)

2E(k)

]
,

E(k) =

√(
εA − εB

2

)2

+ |∆(k)|2. (8)

The spectrum in the ordered state is given by

ε1,2 =
εA + εB

2
±

√(
εA − εB

2

)2

+ |∆(k)|2,

εA(k) ≡ ε(k) εB(k) = ε(k + Q), (9)

where ε(k) is defined by (1). The equation for the gap is

∆(k) = −T
∑
ωn

1
N

∑
p

Γ12(k,k + Q,p)K12(p, iωn) (10)
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where Γ12 is a vertex which in mean field approximation
coincides with the bare interaction:

Γ12(k,k + Q,p) = VQ, for SDW (CDW)
Γ12(k,k + Q,p) = Vk−p, for OCDW (SCDW) (11)

where Vk = 2V (cos(kx) + cos(ky)). The type of the inter-
action and therefore, type of the excitonic phase depend
on the model. The SDW and OCDW instabilities occur
in the case of a positive interaction in the triplet channel
(exchange interaction), the CDW and SCDW instabilities
take place for positive interaction in the singlet channel
(density-density interaction). We will not fix for the mo-
ment a type of interaction and therefore a nature of the
ordered phase assuming that there exists either the first
or the second interaction.

The equation (10) is reduced to the following equation

1 = 4|V |ΠDW
k=0(Q, Z,∆) (12)

where the “polarization operators” ΠDW(Q, Z,∆) are
given by one of the following equations [30]:

ΠSDW,CDW(Q, Z,∆) =
1

4N

∑
p

1
E(p)

[
tanh

( ε1

2T

)
− tanh

( ε2

2T

)]
. (13)

ΠOCDW,SCDW(Q, Z,∆) =

1
4N

∑
p

(cos px − cos py)2

4E(p)

[
tanh

( ε1

2T

)
− tanh

( ε2

2T

)]
.

(14)

The expressions (12) are the equation for the SDW, CDW,
OCDW or SCDW gap which should be solved selfconsis-
tently. We emphasis that for V > 0 only SDW (OCDW)
solution is possible whereas CDW (SCDW) solution takes
place for V < 0.

The solution of (12–14) is given by one of the following
expressions

∆ = ∆SDW(k) = ∆SDW
0 ,

∆ = ∆CDW(k) = ∆CDW
0 ,

∆ = ∆OCDW(k) = ∆OCDW
0 (cos kx − cos ky)/2,

∆ = ∆SCDW(k) = ∆SCDW
0 (cos kx − cos ky)/2. (15)

The equations (10–15) are quite standard. A nontriv-
iality, as we show below, is related to the behaviour of
the “polarization operator” in a proximity of ETT. As
we have shown in [19], the effect that the point of ETT
is the end point of the critical line Z < 0 leads to the
anomalous behaviour of the electron-hole susceptibility
χ0(Q, Z, ω) on the side Z > 0. Below we show that
a similar effect takes place for the “polarization opera-
tor” (14). The two functions coincides in the limit cases:
χ0(Q, Z, ω = 0) = ΠDW(Q, Z,∆ = 0). (It is important to
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Z/t=0.2
Z/t=0.3

∆

Fig. 3. Calculated “polarization operator” Π(Q, Z,∆(Q)) as
a function of ∆0 for fixed Z and T = 0.

emphasize that the behaviour of the “polarization opera-
tor” depends only on properties of the system of nonin-
teracting electrons, namely on the topology of FS.)

Calculated for T = 0 “polarization operators”
ΠDW(Q, Z,∆0) as a function of ∆0 for fixed Z (in the
regime Z > 0) are shown in Figure 3. Since the properties
of the “polarization operators” are similar in many aspects
we shall omit later the indices (SDW, CDW, OCDW or
SCDW) except for the cases when it will be necessary to
emphasize the difference.

One can see that there is a singularity at some point
∆0 = ∆c(Z). The value of∆c(Z) increases with increasing
Z. The situation is quite similar to that analyzed in [19]
for χ0 as a function of ω for fixed Z and T = 0. In the
latter case we have found a square-root singularity at

ω = ωc =
2Z

1− 2t′/t
,

which is the dynamic Kohn singularity. As we see in Fig-
ure 3, for the polarization operator Π(Q, Z,∆) the singu-
larity is weaker, while ∆c(Z) also scales with Z.

Analytical estimations show that ∆c(Z) is given by

∆c(Z) = Z (16)

while the asymptotic form of Π(Q, Z,∆) near the singu-
larity is given by:

tΠ(Q, Z,∆) =
{
A1|1−∆/∆c|+ B, ∆ < ∆c

A2|1−∆/∆c|+ B, ∆ > ∆c.
(17)

The jump in the derivative, A1 − A2, depends only on
t′/t [31] and is proportional to

A1 −A2 ∝
1
|t′/t|

(
ln
∣∣∣∣ 4
t′/t

∣∣∣∣−A0

)
, (18)

where A0 is a constant (for the spectrum (5) A0 = π/8).
The critical line (16) is clearly seen in Figure 4 where
we present the calculated Π(Q, Z,∆0) as a function of
Z and ∆0. From the point of view of the behaviour
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Fig. 4. Π(Q, Z,∆0) as a function of ∆0 and Z at T = 0 and
lines Πzz(Q) = const in Z −∆0 coordinates.

of the “polarization operator”, the ETT point is the
end point of two critical lines. The first is the semi-axis
Z < 0 each point of which corresponds to the square-
root singularity in Π(q, Z,∆) occurring as ∆0 → 0 and
q → qm, where the latter is the characteristic for this
regime wavevector of incommensurability (see [19] where
the q dependence of Π(q, Z, 0) = χ0(q, Z) is analyzed
in details.) The second is the line Z = ∆0 each point of
which corresponds to the kink in Π(q, Z,∆(q)) occurring
at T = 0 as q → Q where the latter is the character-
istic wavevector for the regime Z > 0. At the point of
intersection of these lines, Z = 0, the two types of singu-
larities are transforming into the logarithmic singularity;
Π(q, 0,∆) ∝ ln |max(q−Q,∆)|.

The existence of the critical line growing with in-
creasing Z determines a quite unusual form of the lines
Π(Q, Z,∆) = const which develop around the critical line
∆c(Z) and grow with increasing Z (see the contour plot
Fig. 4).

In preceding discussion we presented some general
analysis which does not depend on details of interaction
considered but only on the topology of the FS. To pro-
vide the calculations, let us consider a particular case of
interaction resulting in spin density wave (11, 13). The
solution of corresponding equation (12) for t/V = 1.8 is
shown in Figure 5. Two branches of the solution have an
anomalous dependence of the gap on Z reproducing the
form of the lines Π(Q, Z,∆0) = const in the contour plot
in Figure 4. The anomaly is that for both solutions gap
increases with increasing the distance from the quantum
critical point, i.e. from the point which is at the origin
of the ordered phase. (For an ordinary QCP the gap is
maximum at the electron concentration corresponding to
QCP and decreases monotonously with increasing the dis-
tance from QCP. For example such a picture takes place
for DW phase on both sides from QCP in the case of
t′ = t′′ = ... = 0; as we discussed in [19] in the latter case
all anomalies in the regime δ < δc disappear. In the case

0.000.050.100.150.20
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ZZ cr
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Fig. 5. Gap ∆ obtained by solving equations (12), (14) as func-
tion of Z (t/V=1.8, t′/t = −0.3). The solid line corresponds
to ∆1(Z), the dot-dashed line to ∆2(Z), the dashed line to
∆c(Z).

considered in the paper it happens on the overdoped side
of the QCP.)

The difference between two solutions for the gap pre-
sented in Figure 5 is that

∆1(Z) > Z (19)

while

∆2(Z) < Z (20)

for any Z, any t/V , any t′/t since the two lines, ∆1(Z) and
∆2(Z) are attached to the critical line ∆ = ∆c(Z) = Z
from above and from below. For the most range of the
existence of the ordered phase Z < Z

(1)
cr , see Figure 5,

only one solution exists, the one corresponding to equa-
tion (12). In the hyperbolic approximation and under the
condition |t′/t| not too small Z(1)

cr is given by:

Z(1)
cr ∝ ωmax exp(−π2t/(V ln |t/t′|)).

For this solution one has

∆1(Z) ≡ ∆0(Z) = f(Z) +∆(0) (21)

where ∆(0) is given by

∆(0) ∝ |t′| exp

(
− 2π2|t′/V |√

1− (2t′/t)2

)
, (22)

and f(Z) is an increasing function of Z, linear under the
condition ∆(Z) � ∆(0). The expression (22) is valid
under condition π2|t′/V |/

√
1− (2t′/t)2 � 1. For the

narrow Z range of the coexistence of the two solutions
Z

(1)
cr < Z < Z

(2)
cr it is the solution ∆1 which is favorable

(see Appendix). Therefore, the value of the gap increases
with increasing Z being always larger than Z. As we have
shown, this is a consequence of the effect that the point
of ETT is the end point of two critical lines.
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Fig. 6. One particle spectra along (π, π)− (π, qy/π) and (π− qx/π, 0)− (0, 0) symmetry lines (a) and in (0, 0) - (π, π) direction
(b), t′/t = −0.3, t/V = 1.8, Z/t = 0.03. Long dashed line is the bare spectrum, dot-dashed line corresponds to the spectrum
when the residue of the Green function (7) less than 0.1.
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Fig. 7. Schematic representation of the bare spectrum in the
vicinity of the two saddle points for Z 6= 0.

Let’s analyze now the form of the spectrum in the DW
phase. The spectrum given by (9) is plotted in Figure 6.
for three important directions: (π, π)− (π, 0)− (0, 0) and
(0, 0)− (π, π). The spectrum in the vicinity of SP has the
following prominent features: The first is a characteris-
tic “flat” shape being a consequence of the hybridization
of the two branches of the bare spectrum in the vicin-
ity of two different SP’s with the opposite curvatures,
(see Fig. 7). The second: the spectrum in the direction
(π, π)− (0, π) “disappears” above some threshold value of
wavevector since the residue v2

k tends to zero (that is also
an ordinary consequence of the hybridization). The third:
the chemical potential always lies in the gap for the part
of Brillouin zone (BZ) around SP wavevectors since

ε1(kSP) = −Z +∆,

ε2(kSP) = −Z −∆
(see, e.g. Eq. (9)) and ∆ > Z.

This is a consequence of the existence of the critical
line ∆ = ∆c related to the discussed above aspect of
criticality of the QCP. The obtained theoretical spectrum
has a striking similarity with the anomalous experimen-
tal electron spectrum observed by ARPES [9] in the un-
derdoped cuprates below the characteristic line T ∗(δ), we

reproduce it in Figure 8. (We remind that ARPES mea-
sures a spectral function only below FL.) For the direction
(0, 0)− (π, π), Fermi level crosses the lower branch of the
spectrum, (see Fig. 6b), i.e. the system remains metal-
lic. In fact, the chemical potential gets out of the gap for
directions extending from the diagonal (0, 0) – (π, π) to
some limit direction. This corresponds to an arc of FS
shown in the insert of Figure 9 which is the lower part of
a pocket (the upper part corresponding to a low residue is
not shown). The limit points of the arc are located on the
umklapp surface away from the hot spots of the unper-
turbed Fermi surface. As the gap value ∆ is larger than
Z, the FS is destroyed starting from the hot spots in both
directions up to the saddle points on the side and up to
limit points on the other side (the position depends on
the position of the hot spots and on the strength of the
interaction V ). For large Z and large V the Fermi surface
pockets may fully disappear and the system becomes an
insulator.

The angle dependence of the value of εk − µ, i.e. of
the gap calculated from FL, in the same way as it is
done in ARPES experiments [10] is presented in Figure 9.
Namely we plot the minimal value of |εk − µ| for each
given direction from the diagonal (0, 0) – (π, π) to the
direction (0, 0) – (0, π). The dependence is of a “d-wave
type” in a sense that the gap increases with increasing the
argument (cos kx−cos ky) almost linearly in the proximity
of SP. However the dependence is flat (not linear as it hap-
pens in the d-wave case) when approaching the direction
(1, 1). Such a behaviour is also close to the experimentally
found behaviour above Tc [10] reproduced in Figure 9b.
(Although the authors of [10] claim that the behaviour
observed above and below Tc is the same, what one sees
in the experimental plot is not exactly this: the behaviour
above and below Tc is similar in the vicinity of SP and
different when approaching the (1, 1) direction and this
occurs quite systematically, see also the plots in [10] for
other samples.)
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Fig. 8. Experimental one particle spectra along (π, π) − (π, 0) − (0, 0) symmetry lines (a) and in (0, 0) -(π, π) direction (b)
measured in the overdoped regime of BSCO. The data are taken from [10].
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Fig. 9. Theoretical angle dependence of the SDW gap calculated from FL in the underdoped regime Z > 0 (t′/t = −0.3,
t/V = 1.7, Z/t = 0.3, typical shape of FS is shown on inset) (a) and the experimental leading edge midpoint measured by
ARPES in the underdoped BSCO [11] (b).

We considered the particular case of SDW as an exam-
ple of ordered “excitonic” state. Nevertheless, all aforesaid
is true for any other types of ordered states since the exis-
tence of such states is determined only by topology of FS.

Let us study now a one particle density of states (DOS)
given by the expression

N(ε) = − 1
π

1
N

∑
p

[ImKR
11(p, ε) + ImKR

22(p, ε)]

=
1
N

∑
p

[δ(ε− ε1(p)) + δ(ε− ε2(p))]. (23)

Numerical calculations with the spectrum (1) give the pic-
ture shown in Figure 10. The density of states of SDW
(CDW) states deviates from the DOS in the initial metal-
lic state in two ε ranges notated as A and B. For OCDW
(SCDW) states only feature A survives. Analytical calcu-

lations show that the A-feature is related to the existence
of the discussed above QCP (which we call below QCP1).
Calculations of the integral in (23) performing with the hy-
perbolic spectrum (5) valid in the vicinities of SP’s show
that in the A range DOS is characterized by three singu-
larities (instead of one logarithmic singularity in the bare
density of states N0(ε) as ε→ −Z). Those are a logarith-
mic singularity at ε1 = −Z −∆0

√
1− 4(t′/t)2 [32]

N (ε→ ε1) ∼ 1
t
√

1− 4(t′/t)2
ln
(

ωmax

|ε− ε1|

)
(24)

and jumps at two energies

ε2,3 = −Z ±∆0.

The distance between two jumps is equal to 2∆.
The B feature is related to the existence of the second

quantum critical point in the system (QCP2) discussed
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Fig. 10. Density of states in the ordered “excitonic” phase
calculated for Z/t = 0.03 (t/V = 1.8, t′/t = −0.3). Dashed
line corresponds to the DOS in the initial metallic state.

in [29]. This point corresponds to the electron concentra-
tion when the chemical potential is equal: µ = µc2 = 0 or
by other words when the wavevector connecting two parts
of FS in the direction (1, 1) is equal to QAF = (π, π).
In this case two “hot spots” on FS come together at the
singular position (±π/2,±π/2) before disappearing. The
calculations of the integral in (23) with the spectrum taken
around (π/2, π/2) give a logarithmic divergence at the
point ε4 = −Z − 4t′ +∆(π/2, π/2):

N (ε→ ε4)−N0(ε4) ∼ 1
t

√
∆(π/2, π/2)

|t′| ln
(

ωmax

|ε− ε4|

)
(25)

and a jump at the point ε = −Z−4t′−∆(π/2, π/2). This
feature does not exist for OCDW (SCDW) states since
∆(k) = 0 along the diagonal of BZ.

The B feature is important in the case when the chem-
ical potential lies close to the pseudogap in the B part that
should take place in the electron-doped cuprates. For the
hole-doped cuprates we are interested in the present pa-
per, it is QCP1 which determines properties of the system.
In this case the chemical potential lies in the “pseudo-gap”
A according to the properties of the electron spectrum in
the vicinity of SP discussed above.

Let’s analyze now the range of the existence of the
ordered phase in the T−Z plane. For this sake let’s analyze
the behaviour of Π(Q, Z,∆0) as a function of Z at finite
temperature. (We again consider SDW state for certainty.)
Results of calculations are presented in Figure 11. The
first observation is that the gap changes only little with
T at low T . The second is that the behaviour at finite
temperature as a function of Z is qualitatively the same
as for T = 0 and it is anomalous: the value of the gap
increases with increasing Z.

0.2 0
Z/t

0

0.2

Gap

Fig. 11. The DW gap in t units as a function of Z for increas-
ing temperature: T/t = 0.005, 0.1, 0.2 (t′/t = −0.3, t/V = 1.8).
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Fig. 12. Phase diagram around QCP1 in T-Z coordinates
(t/V = 1.8, t′/t = −0.3). We show only the regime Z > 0
corresponding to the anomalous behavior. The solid line is a
line of second-order phase transition, the dot-dashed is a line
of first-order phase transition and the dashed line is a line of
instability of the disordered metal state (spinodal). The point
O is a tricritical point.

The phase diagram in T − Z plane obtained for
SDW (CDW) instability based on the analysis of the
gap behaviour at finite T is presented in Figure 12.
It is worthwhile to note that the polarization oper-
ator Π(Q, Z,∆) (14) calculated for OCDW (SCDW)
ordered states has essentially more abrupt behavior
as a function of Z in comparison with those for
ΠSDW,CDW(Q, Z,∆) (13). Such behavior appears due to
additional factor (cos(px)− cos(py))2 in the integral (12).
As a result, the domain of existence of OCDW (SCDW)
solutions for equation (12) at various doping concentra-
tions is substantially narrower than for SDW (CDW) case.
Nevertheless, it does not affect the qualitative shape of
phase diagram of Figure 12.
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Fig. 13. Lines of Π(Q, Z,∆) = const for fixed t/V = 1.8 and different Z. The plot (b) is a zoom of the plot (a) corresponding
to the coexistence of the two solutions for the gap.

The solid line on the phase diagram is the line where
∆1(T ) = 0. The dashed line is the line where ∆2(T ) = 0.
These two lines are at the same time the lines of instabili-
ties of the undistorted metallic state. The line ∆2(T ) = 0
is not however a line of a phase transition since the nonzero
solutions for the gap exist on the left of this line until the
dot-dashed line. Along the latter line corresponding to the
disappearance of the “ordered” solution, the gap is finite
and the two solutions coincide: ∆0(T ) = ∆1(T ) = ∆2(T ).
The situation is clearly seen from Figure 13 where we
present the lines Π(Q, Z,∆) = const for different Z and
fixed t/J which in fact give the full picture of the be-
haviour of the DW gap as a function of Z and T .

As we discuss in the Appendix, in the region between
the dot-dashed and dashed line, where three solutions
∆0 = ∆1, ∆0 = ∆2 and ∆ = 0 coexist, it is the solu-
tion ∆0 = ∆1 which is energetically favorable.

Thus, the dot-dashed line in the phase diagram in Fig-
ure 12 is the line of the first-order phase transition. The
gap along this line changes only little at low temperature
and tends to zero rapidly in the vicinity of the point O.
The latter is a tricritical point. The range in T −Z plane
in the vicinity of this point corresponds to a strongly fluc-
tuating regime which we will consider elsewhere. It is im-
portant to add also that at the point Z = Z

(2)
cr of the

appearance of the ordered phase at T = 0, the gap is ex-
actly equal to Z that means that the upper branch of the
spectrum in Figure 6a touches FL. Then when moving in-
side the ordered phase the gap ∆ becomes larger than Z
and this branch goes up leaving the FL.

Above we have considered the critical temperatures
and the gap behaviour as functions of the energy distance
from the QCP, Z. It is worth for applications to cuprates
to change the description and to consider physical prop-
erties as functions of electron concentration ne or of hole
doping δ = 1−ne. To do this we use the relation between
Z (or the chemical potential µ) and the hole doping which

for T = 0 is given by:

1− δ =
∫
ω

N(ω)dω. (26)

So far as

Z ∝ δc − δ, (27)

all dependencies considered above can be rewritten as
functions of doping distance from QCP. For example, the
phase diagram in the plane T−δ calculated for t′/t = −0.3
for which δc = 0.27 gets the form shown in Figure 14.

One can easily obtain values of doping for all plots
presented in Figures 4–11 when comparing the phase dia-
gram in T − Z plane in Figure 12, and in T − δ plane in
Figure 14.

Obviously, the gap ∆0(δ) increases with δc − δ in the
same way as it increases with Z, see Figures 5 and 11 for
∆0 = ∆1.

All features discussed above do not depend on the na-
ture of the ordered phase, SDW, CDW, OCDW or SCDW
since they reflect the topological aspects of ETT. The type
of the excitonic phases developing around ETT point de-
pend on the type of interaction. It is the SDW or OCDW
state in the case of a positive interaction in the triplet
channel (exchange interaction) and the CDW or SCDW
state in the case of a positive interaction in a singlet
channel (density-density interaction). The ordered SDW
phase is characterized by spin ordering with momentum
〈SzQ〉 = 1/2(〈nσσ(Q)〉 − 〈nσ̄σ̄(Q)〉) = ∆0 and the CDW
phase by the charge ordering. In the SCDW (OCDW) the
staggered magnetization (density) is equal to zero. Never-
theless, the spin-current (charge-current) correlation func-
tions survive.

In our opinion for the case of high-Tc cuprates it is the
interaction in the triplet channel which determines the
behaviour of the system and the nature of DW phase.
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(t/V = 1.8, t′/t = −0.3).

From the theoretical point of view it is this situation
which corresponds to the strong-coupling limit models:
the Hubbard model and the t − J model. For exam-
ple for the latter with the J term written as HJ =∑
ij Jij{aSiSj − (b/4)ninj} one has V SDW

q = aJq while
V CDW

q = − b
4Jq, i.e. the interaction in the triplet channel

is positive while in the singlet channel is negative. This
version is supported also by experiments in the high-Tc

cuprates: observed experimentally (by neutron scattering,
see for example [33] and NMR) strong magnetic response
around q = Q is a phenomenological argument in a favor
of a strong momentum dependent interaction in a triplet
channel, i.e. of Vq = Jq (J > 0). However, we can not ex-
clude an importance of an interaction leading to the CDW
(SCDW) order.

Another point concerning the interaction is its
strength. Depending on the ratio |V |/W (where W is an
energy bandwidth), maximal Tmax

DW can be high or low.
Respectively, the DW phase can lean out of SC state or
can be hidden under it. (In the presence of the interaction
in the triplet channel, Jq, both SDW and SC instabilities
occur around QCP1 under the same condition: J > 0,
for the SC instability see [34].) It is tempting to identify
the properties obtained for the DW state with the proper-
ties observed experimentally in the underdoped cuprates
above Tsc(δ) and below T ∗(δ). Indeed they have a strik-
ing resemblance, as one can see when comparing Figure 6
and Figure 8, Figure 9a and Figure 9b and when com-
paring the behaviour of the gap as a function of Z (or
doping, δc− δ) with the experimental behaviour [12]. Our
calculations (when considering both d-wave SC and DW
instabilities in the presence of interaction J in the triplet
channel) show that the answer is quite subtle [36]. When
t′/t = −0.2 the ordered DW phase leans out of the SC
phase for t/J < 1.90, for t′/t = −0.3 this happens when
t/J < 1.55. So far as realistic value of t/J for cuprates is
estimated to be in the interval t/J = 1− 3, both variants
when the DW phase takes place above SC phase and when
it is hidden under the SC phase are possible [36,37].

Even in the latter case the study of properties of the
ordered DW state performed here is important since the
normal metallic state above Tsc(δ) keeps a strong memory
about the ordered phase. Therefore, electron properties in
this state should be close to those in the DW ordered state
being however characterized by strong damping. (By the
way it is exactly what is observed by ARPES. The exper-
imental electron spectrum has a form shown in Figure 8,
being however characterized by a spectral function of a
very damped form.) It should be emphasized that the cal-
culations performed for ordered state are very important.
The form of the spectrum is a solid basis to understand
the physics of the precursor state. Calculations for the or-
dered state are in general more neat than for the precursor
state.

Summarizing, we have studied the DW phase which is
formed around QCP1 (associated with ETT) and we have
shown that this phase is characterized by the following
prominent features:

(i) the specific “flat” shape of the spectrum in the vicin-
ity of SP,

(ii) “disappearance” of the spectrum above some thresh-
old value of wavevector in the direction (π, 0)−(π, π),

(iii) pseudogap in DOS with FL lying inside it,
(iv) increasing of the gap in the spectrum around SP

wavevectors and of the pseudogap in DOS with de-
creasing doping for δ < δc,

(v) angle dependence of the gap calculating from FL
which is of a d-wave type close to SP and flat close
to the direction (1, 1).

All these features have a striking similarity with the exper-
imental features revealed by ARPES in the normal state
of the underdoped hole-doped cuprates.

Appendix A

The free energy density in the approximation correspond-
ing to considered in the paper is given by:

F = −T 1
N

∑
k

∑
α=1,2

[
ln
(

2 cosh
(
εα(k,∆k)

2T

))
+
∆2

k

4V

]
+µn. (A.1)

(Note that the equation (10) corresponds to ∂F/∂∆ = 0.)
Therefore, the difference between free energies correspond-
ing to ∆ = ∆1 and ∆ = ∆2 is given by

F1 − F2 =
∆2

1 −∆2
2

4V

− T 1
N

∑
k

∑
α=1,2

ln

cosh
(
εα(k,∆1)

2T

)
cosh

(
εα(k,∆2)

2T

)
 . (A.2)

One can check by numerical calculations that
F1 − F2 < 0 for the whole range of the coexistence of
the two solutions.
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Some analytical estimations can be also done for low T
based on the well-known expression [35] for the difference
between thermodynamic potentials of the ordered and dis-
ordered states:

δΩ = Ω(∆1)−Ω(0) =
∫ ∆1

0

d(1/V )
d∆

∆2d∆. (A.3)

When substituting the expressions for ∆1 (21),
(22) one gets

δF/t = δΩ/t ∼ −
√

1− 4|t′/t|2
|t′/t|

∆3
1

t2∆(Z = 0)

∼ − (Z(1)
cr )3

t2∆(Z = 0)
· (A.4)

One can see that this correction is negative. Therefore, the
solution ∆ = ∆1 is favorable with respect to the solution
∆ = 0 for any Z(1)

cr < Z < Z
(2)
cr .
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