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Semi-Fermionic Approach for Quantum Spin Systems∗

M. Kiselev

Abstract. We present a general derivation of semi-fermionic representation for gen-
erators of SU(N) group as a bilinear combination of Fermi operators. The con-
straints are fulfilled by means of imaginary Lagrange multipliers. The important
case of SU(2) group is discussed. We demonstrate how the idea of semi-fermionic
representation might be extended to the groups possessing dynamic symmetries.
As an example, SO(4) group is considered. We illustrate the application of semi-
fermionic representations for various problems of strongly correlated physics.

PACS numbers: 71.27.+a, 75.20.Hr

Introduction

It is known that spin operators satisfy neither Fermi nor Bose commutation rela-
tions. For example, the Pauli matrices for S = 1/2 operator commute on different
sites and anticommute on the same site. The commutation relations for spins are
determined by SU(2) algebra, leading to the absence of a Wick theorem for the
generators. To avoid this difficulty and construct a diagrammatic technique and
path integral representation for spin systems various approaches have been used.
The first class of approaches is based on representation of spins as bilinear com-
bination of Fermi or Bose operators [1]-[6], whereas the representations belonging
to the second class deal with more complex objects like, e.g. the Hubbard [7] and
supersymmetric [8] operators, the nonlinear sigma model [9] etc. However, in all
cases the fundamental problem which is at the heart of the difficulty is the local
constraint problem. To illustrate it, let’s consider e.g., first class of representa-
tions. Introducing the auxiliary Fermi or Bose fields makes the dimensionality of
the Hilbert space, where these operators act, greater than the dimensionality of the
Hilbert space for the spin operators. As a result, the spurious unphysical states
should be excluded from the consideration which leads in turn to some restric-
tions (constraints) on bilinear combinations of Fermi/Bose operators, resulting in
substantial complication of corresponding rules of the diagrammatic technique.
The representations from the second class suffer from the same kind of problem,
transformed either into a high nonlinearity of resulting model (non-linear sigma
model) or hierarchical structure of perturbation series in the absence of Wick the-
orem (Hubbard operators). The exclusion of double occupied and empty states
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for a S = 1/2 impurity interacting with conduction electron bath (single impurity
Kondo model), is controlled by fictitious chemical potential (Lagrange multiplier)
of Abrikosov pseudofermions [4]. At the end of calculations this “chemical poten-
tial” λ should be put λ→ −∞ to “freeze out” all unphysical states. In other words,
there exists an additional U(1) gauge field which freezes the charge fluctuations
associated with this representation. The method works for dilute systems where
all the spins can be considered independently. Unfortunately, attempts to gener-
alize this technique to the lattice of spins results in the replacement of the local
constraint (the number of particles on each site is fixed) by the so-called global
constraint where the number of particles is fixed only on an average for the whole
crystal. There is no reason to believe that such an approximation is a good starting
point for the description of the strongly correlated systems. Another possibility to
treat the local constraint rigorously is based on Majorana fermion representation.
In this case fermions are “real” and corresponding gauge symmetry is Z2. The
difficulty with this representation is mostly related to the physical regularization
of the fluctuations associated with the discrete symmetry group.

An alternative approach for spin Hamiltonians, free from local constraint
problem, has been proposed in the pioneering paper of Popov and Fedotov [10].
Based on the exact fermionic representation for S = 1/2 and S = 1 operators,
where the constraint is controlled by purely imaginary Lagrange multipliers, these
authors demonstrated the power and simplification of the corresponding Matsub-
ara diagram technique. The semi-fermionic representation (we discuss the meaning
of this definition in the course of our paper) used by Popov and Fedotov is neither
fermionic, nor bosonic, but reflects the fundamental Pauli nature of spins. The goal
of this paper is to give a brief introduction to a semi-fermionic (SF) approach. A
reader can find many useful technical details, discussion of mathematical aspects of
semi-fermionic representation and its application to various problems in the origi-
nal papers [10]-[21]. However, we reproduce the key steps of important derivations
contained in [18],[19] in order to make the reader’s job easier.

The manuscript is organized as follows: in Section I, the general concept of
semi-fermions is introduced. We begin with the construction of the SF formalism
for the fully antisymmetric representation of SU(N) group and the fully symmetric
SF representation of SU(2) group using the imaginary-time (Matsubara) represen-
tation. We show a “bridge” between different representations using the simplest
example of S = 1 in SU(2) and discuss the SF approach for SO(4) group. Finally,
we show how to work with semi-fermions in real-time formalism and construct the
Schwinger-Keldysh technique for SF. In this section, we will mostly follow original
papers by the author [11], [18]. The reader acquainted with semi-fermionic tech-
nique can easily skip this section. In Section II, we illustrate the applications of SF
formalism for various problems of condensed matter physics, such as ferromagnetic
(FM), antiferromagnetic (AFM) and resonance valence bond (RVB) instabilities
in the Heisenberg model, competition between local and non-local correlations in
Kondo lattices in the vicinity of magnetic and spin glass critical points and the
Kondo effect in quantum dots. In the Epilogue, we discuss some open questions
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and perspectives.

1 Semi-fermionic representation

To begin with, we briefly reproduce the arguments contained in the original paper
of Popov and Fedotov. Let’s assume first S = 1/2. We denote as Hσ the Hamil-
tonian of spin system. The standard Pauli matrices can be represented as bilinear
combination of Fermi operators as follows:

σz
j → a†jaj − b†jbj , σ+

j → 2a†jbj , σ−
j → 2b†jaj . (1)

on each site i of the lattice. The partition function of the spin problem Zσ is given
by

Zσ = Tr exp(−βĤσ) = iNTr exp(−β(ĤF + iπN̂F /(2β)) (2)

where ĤF is the operator obtained from Ĥσ by the replacement (1) and

N̂ =
N∑

j=1

(a†jaj + b†jbj) (3)

(N is the number of sites in the system and β = 1/T is inverse temperature). To
prove equation (2) we note that the trace over the nonphysical states of the i-th
site vanishes

Trunphys exp(−β(ĤF + iπN̂F/(2β)) = (−i)0 + (−i)2 = 0 (4)

Thus, the identity (2) holds. The constraint of fixed number of fermions N̂j = 1,
is achieved by means of the purely imaginary Lagrange multipliers µ = −iπ/(2β)
playing the role of imaginary chemical potentials of fermions. As a result, the
Green’s function

G = (iωF − ε)−1 (5)

is expressed in terms of Matsubara frequencies ωF = 2πT (n+ 1/4) corresponding
neither Fermi nor Bose statistics.

For S = 1 we adopt the representation of Ĥσ in terms of the 3-component
Fermi field:

σz
j → a†ja− b†jb, σ+

j →
√

2(a†jcj + c†jbj), σ−
j →

√
2(c†jaj + b†jcj). (6)

The partition function Zσ is given by

Zσ = Tr(−βĤσ) =
(

i√
3

)N

Tr exp(−β(ĤF + iπN̂F /(3β)). (7)

It is easy to note that the states with occupation numbers 0 and 3 cancel each
other, whereas states with occupation 1 and 2 are equivalent due to the particle-
hole symmetry and thus can be taken into account on an equal footing by proper
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normalization of the partition function. As a result, the Green’s function in the
imaginary time representation is expressed in terms of ωF = 2πT (n + 1/3) fre-
quencies.

In this section, we show how semi-fermionic (Popov-Fedotov) representation
can be derived using the mapping of partition function of the spin problem onto the
corresponding partition function of the fermionic problem. The cases of arbitrary
N (even) for SU(N) groups and arbitrary S for SU(2) group are discussed.

1.1 SU(N) group

We begin with the derivation of SF representation for SU(N) group. The SU(N)
algebra is determined by the generators obeying the following commutation rela-
tions:

[Ŝβ
α,iŜ

ρ
σj ] = δij(δρ

αŜ
β
σi − δβ

σ Ŝ
ρ
αi), (8)

where α, β = 1, ..., N . We adopt the definition of the Cartan algebra [22] of the
SU(N) group {Hα} = Sα

α similar to the one used in [23], noting that the diag-
onal generators Sα

α are not traceless. To ensure a vanishing trace, the diagonal
generators should only appear in combinations

N∑

α=1

sαS
α
α with

N∑

α=1

sα = 0, (9)

which effectively reduce the number of independent diagonal generators to N − 1
and the total number of SU(N) generators to N2 − 1.

In this paper we discuss the representations of SU(N) group determined by
rectangular Young Tableau (YT) (see [23] and [18] for details) and mostly concen-
trate on two important cases of the fully asymmetric (one column) YT and the
fully symmetric (one row) YT.

The generator Ŝα
β may be written as biquadratic form in terms of the Fermi-

operators
Ŝα

β =
∑

γ

a†αγa
βγ (10)

where the ”color” index γ = 1, ..., nc and the nc(nc + 1)/2 constraints

N∑

α=1

a†αγ1
aαγ2 = δγ2

γ1
m (11)

restrict the Hilbert space to the states with m∗nc particles and ensure the charac-
teristic symmetry in the color index a. Here m corresponds to the number of rows
in rectangular Young Tableau whereas nc stands for the number of columns. The
antisymmetric behavior with respect to α is a direct consequence of the fermionic
representation.
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Let us consider the partition function for the Hamiltonian, expressed in terms
of SU(N) generators

ZS = Tr exp(−βHS) = Tr′ exp(−βHF ) (12)

where Tr′ denotes the trace taken with constraints (11). As it is shown in [18], the
partition function of SU(N) model is related to partition function of corresponding
fermion model through the following equation:

ZS =
∫ ∏

j

dµ(j)P (µ(j))Tr exp (−β(HF − µ(j)nF )) =

∫ ∏

j

dµ(j)P (µ(j))ZF (µ(j)) (13)

here P (µj) is a distribution function of imaginary Lagrange multipliers. We cal-
culate P (µj) explicitely using constraints (11).

We use the path integral representation of the partition function

ZS/Z
0
S =

∫ ∏

j

dµ(j)P (µ(j)) exp(A)/
∫ ∏

j

dµ(j)P (µ(j)) exp(A0) (14)

where the actions A and A0 are determined by

A = A0 −
∫ β

0

dτHF (τ), A0 =
∑

j

N∑

k=1

∫ β

0

dτāk(j, τ)(∂τ + µ(j))ak(j, τ) (15)

and the fermionic representation of SU(N) generators (10) is applied.
Let us first consider the case nc = 1. We denote the corresponding distribu-

tion by PN,m(µ(j)), where m is the number of particles in the SU(N) orbital, or
in other words, 1 ≤ m < N labels the different fundamental representations of
SU(N).

nj =
N∑

k=1

āk(j)ak(j) = m (16)

To satisfy this requirement, the minimal set of chemical potentials and the corre-
sponding form of PN,m(µ(j)) are to be derived.

To derive the distribution function, we use the following identity for the
constraint (16) expressed in terms of Grassmann variables

δnj ,m =
1
N

sin (π(nj −m)) / sin
(
π(nj −m)

N

)
(17)

Substituting this identity into (12) and comparing with (14) one gets

PN,m(µ(j)) =
1
N

N∑

k=1

exp
(
iπm

N
(2k − 1)

)
δ(µ(j) − µk), (18)
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where
µk = − iπT

N
(2k − 1). (19)

Since the Hamiltonian is symmetric under the exchange of particles and holes
when the sign of the Lagrange multiplier is also changed simultaneously, we can
simplify (18) to

PN,m(µ(j)) =
2i
N

�N/2�∑

k=1

sin
(
πm

2k − 1
N

)
δ(µ(j) − µk) (20)

where �N/2� denotes the integer part of N/2. As shown below, this is the minimal
representation of the distribution function corresponding to the minimal set of the
discrete imaginary Lagrange multipliers. Another distributions function different
from (20) can be constructed when the sum is taken from k = N/2 + 1 to N .
Nevertheless, this DF is different from (20) only by the sign of imaginary Lagrange
multipliers µ̃k = µ∗

k = −µk and thus is supplementary to (20).
Particularly interesting for even N is the case when the SU(N) orbital is

half–filled, m = N/2. Then all Lagrange multipliers carry equal weight

PN,N/2(µ(j)) =
2i
N

N/2∑

k=1

(−1)k+1δ (µ(j) − µk) . (21)

Taking the limit N → ∞ one may replace the summation in expression (21) in a
suitable way by integration. Note, that while taking N → ∞ and m → ∞ limits,
we nevertheless keep the ratio m/N = 1/2 fixed. Then, the following limiting
distribution function can be obtained:

PN,N/2(µ(j)) N→∞−→ β

2πi
exp

(
−βµ(j)

N

2

)
(22)

resulting in the usual continuous representation of the local constraint for the
simplest case nc = 1

ZS = Tr(exp (−βHF ) δ
(
nj − N

2
)
)

(23)

We note the obvious similarity of the limiting DF (22) with the Gibbs canonical
distribution provided that the Wick rotation from the imaginary axis of the La-
grange multipliers µ to the real axis of energies E is performed and thus µ(j)N/2
has a meaning of energy.

Up to now, the representation we discussed was purely fermionic and ex-
pressed in terms of usual Grassmann variables when the path integral formalism
is applied. The only difference from slave fermionic approach is that imaginary La-
grange multipliers are introduced to fulfill the constraint. Nevertheless, by making
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the replacement

ak(j, τ)) → ak(j, τ) exp
(
iπτ

β

2k − 1
N

)
, āk(j, τ) → āk(j, τ) exp

(
− iπτ

β

2k − 1
N

)

(24)
we arrive at the generalized Grassmann (semi-fermionic) boundary conditions

ak(j, β) = ak(j, 0) exp
(
iπ

2k − 1
N

)
, āk(j, β) = āk(j, 0) exp

(
−iπ 2k − 1

N

)
(25)

This leads to a temperature diagram technique for the Green’s functions

Gαβ(j, τ) = −〈Tτaα(j, τ)āβ(j, 0)〉 (26)

of semi-fermions with Matsubara frequencies different from both Fermi and Bose
representations (see Fig.2).

The exclusion principle for this case is illustrated on Fig.1, where the S = 1/2
representation for the first two groups SU(2) and SU(4) are shown. The first point
to observe is that the spin Hamiltonian does not distinguish the n particle and
the n hole (or N −n particle) subspace. Eq. (19) shows that the two phase factors
exp(βµn) and exp(βµ(N − n)) accompanying these subspaces in Eq. (20) add up
to a purely imaginary value within the same Lagrange multiplier, and the empty
and the fully occupied states are always canceled. In the case of N ≥ 4, where
we have multiple Lagrange multipliers, the distribution function P (µ) linearly
combines these imaginary prefactors to select out the desired physical subspace
with particle number n = m.

In Fig.1, we note that on each picture, the empty and fully occupied states
are canceled in their own unit circle. For SU(2) there is a unique chemical potential
µ = ±iπT/2 which results in the survival of single occupied states. For SU(4) there
are two chemical potentials (see also Fig.2). The cancellation of single and triple
occupied states is achieved with the help of proper weights for these states in the
distribution function whereas the states with the occupation number 2 are doubled
according to the expression (21). In general, for SU(N) group with nc = 1 there
exists N/2 circles providing the realization of the exclusion principle.

1.2 SU(2) group

We consider now the generalization of the SU(2) algebra for the case of spin S.
Here, the most convenient fermionic representation is constructed with the help
of a 2S + 1 component Fermi field ak(j) provided that the generators of SU(2)
satisfy the following equations:

S+ =
S−1∑

k=−S

√
S(S + 1) − k(k + 1)a†k+1(j)ak(j),
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Re e−βµN

e−βµNIm 

n=0

n=1

n=2

SU(2)

n=0

n=1

n=2

n=3

n=4

Re e−βµN

e−βµNIm 

n=0

n=1 n=3

n=4

n=2

Re e−βµN

e−βµNIm SU(4)

Figure 1: Graphical representation of exclusion principle for SU(N) semi-fermionic
representation with even N , nc = 1 (we use µ = iπT/2 for SU(2) and µ1 =
iπT/4, µ2 = 3iπT/4 for SU(4)).
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S− =
S∑

k=−S+1

√
S(S + 1) − k(k − 1)a†k−1(j)ak(j),

Sz =
S∑

k=−S

ka†k(j)ak(j) (27)

such that dimHF = 22S+1 whereas the constraint reads as follows

nj =
k=S∑

k=−S

a†k(j)ak(j) = l = 1 (28)

Following the same routine as for SU(N) generators and using the occupancy
condition to have l = 1 (or 2S) states of the (2S + 1) states filled, one gets
the following distribution function, after using the particle–hole symmetry of the
Hamiltonian HS :

P2S+1,1(µ(j)) =
2i

2S + 1

�S+1/2�∑

k=1

sin
(
π

2k − 1
2S + 1

)
δ(µ(j) − µk) (29)

where the Lagrange multipliers are µk = −iπT (2k−1)/(2S+1) and k = 1, ..., �S+
1/2�, similarly to Eq.(19). In the particular case of the SU(2) model for some chosen
values of spin S the distribution functions are given by the following expressions

P2,1(µ(j)) = i δ

(
µ(j) +

iπT

2

)

for S = 1/2

P3,1(µ(j)) = P3,2(µ(j)) =
i√
3
δ

(
µ(j) +

iπT

3

)

for S = 1.
This result corresponds to the original Popov-Fedotov description restricted

to the S = 1/2 and S = 1 cases. A limiting distribution function corresponding to
Eq. (22) for the constraint condition with arbitrary l is found to be

P∞,l(µ(j)) S→∞−→ β

2πi
exp(−βlµ(j)). (30)

For the case l = m = N/2 → ∞ and S = (N − 1)/2 → ∞ the expression
for the limiting DF P∞,l(µ(j)) coincides with (23). We note that in S → ∞ (or
N → ∞) limit, the continuum “chemical potentials” play the role of additional
U(1) fluctuating field whereas for finite S and N they are characterized by fixed
and discrete values.

When S assumes integer values, the minimal fundamental set of Matsubara
frequencies is given by the table in Fig.2.
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Figure 2: The minimal set of Matsubara frequencies for a) SU(N) representation
with even N/ SU(2) representation for half-integer value of the spin. b) SU(2)
representation for integer values of the spin and l = 1.
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n=0n=3

n=1n=2 S=1
e Im 

βµn

 Re 
βµe n

n=0n=5

e Im 
βµn

 Re 
βµe n

S=2
n=1n=4

n=2n=3

n=0

e Im 
βµn

 Re 
βµe n

n=2

n=1

n=5

n=3

n=4

Figure 3: Graphical representation of exclusion principle for SU(2) semi-fermionic
representation for S = 1 and S = 2. For any arbitrary integer value of spin there
exists S circle diagrams corresponding to the S different chemical potentials and
providing the realization of the exclusion principle.
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The exclusion principle for SU(2) in the large spin limit can be also un-
derstood with the help of Fig.1 and Fig.3. One can see that the empty and the
fully occupied states are canceled in each given circle similarly to even-N SU(N)
algebra. The particle-hole (PH) symmetry of the representation results in an equiv-
alence of single occupied and 2S occupied states whereas all the other states are
canceled due to proper weights in the distribution function (29). In accordance
with PH symmetry being preserved for each value of the chemical potential all cir-
cle diagrams (see Fig.3, Fig.5) are invariant with respect to simultaneous change
µ↔ −µ and nparticle ↔ nholes.

1.3 From SU(2) to SO(4)

We have shown that the general rectangular Young Tableau of size nc ∗ m is
represented by N ∗nc component fermionic field with nc diagonal constraints and
nc(nc −1)/2 off-diagonal constraints. However, the fully symmetric representation
(one row) requires only nc + 1 = 2S + 1 component field. The general scheme of
projected representation for SU(N) group is given in [18]. We illustrate this idea
on a simple example of S = 1.

We start with 2 ∗ nc = 4 - field representation

(a11, a12, a21, a22) (31)

There are two diagonal and two off-diagonal constraints which read as follows:

a†11a11 + a†21a21 = 1, a†12a12 + a†22a22 = 1. (32)

a†11a12 + a†21a22 = 0, a†12a11 + a†22a21 = 0 (33)

and generators of SU(2) group are given by

S− = S1
2 = a†11a21 + a†12a22, S+ = S2

1 = a†21a11 + a†22a12

2Sz = S2
2 − S1

1 = a†21a21 + a†22a22 − a†11a11 − a†12a12 (34)

Combining definition (34) with constraint (33) we reach the following equations:

S− = a†11(a21 + a12) + (a†12 + a†21)a22,

S+ = (a†21 + a†12)a11 + a†22(a12 + a21), (35)

Sz = a†22a22 − a†11a11

Therefore, we conclude that the antisymmetric (singlet) combination a12−a21 does
not enter the expression for spin S = 1 operators. Thus, three (out of four) com-
ponent Fermi-field is sufficient for the description of S = 1 SU(2) representation.
Defining new fields as follows

a11 = f−1, a22 = f1,
1√
2
(a12 + a21) = f0,

1√
2
(a12 − a21) = s. (36)



Vol. 4, 2003 Semi-Fermionic Approach for Quantum Spin Systems 167

where fermions f1, f0, f−1 stand for Sz = 1, 0 − 1 projections of the triplet state
and fermion s determines the singlet state, we come to standard S = 1 SU(2)
representation (c.f 6)

S+ =
√

2(f †
0f−1 + f †

1f0), S− =
√

2(f †
−1f0 + f †

0f1), Sz = f †
1f1 − f †

−1f−1, (37)

with the constraint
n1 + n0 + n−1 + ns = 2 (38)

where nα = f †
αfα.

Nevertheless, the constraint (38) transforms to a standard SU(2) S = 1 con-
straint in both cases ns = 0 and ns = 1 since there is no singlet/triplet mixing
allowed by SU(2) algebra.

To demonstrate the transformation of the local constraint let’s first consider
the case ns = 0. The constraint reads as follows

n1 + n0 + n−1 = 2S ⇐⇒ S2 = S(S + 1). (39)

On the other hand, the the states with 2S occupation are equivalent to the states
with single occupation due to particle-hole symmetry. Thus, the constraint (38)
might be written as

ñ1 + ñ0 + ñ−1 = 1 (40)

where ñα = 1 − nα. The latter case corresponds to ns = 1.
We start now with definition of SO(4) group obeying the following commu-

tation relations

[Sj , Sk] = iejklSl, [Pj , Pk] = iejklSl, [Pj , Sk] = iejklPl (41)

where 6 generators of SO(4) group, namely vectors S and P are represented by
the matrices

S+ =
√

2





0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0



 , S− =
√

2





0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0



 ,

Sz =





1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0



 , P+ =
√

2





0 0 0 1
0 0 0 0
0 0 0 0
0 0 −1 0



 ,

P− =
√

2





0 0 0 0
0 0 0 0
0 0 0 −1
1 0 0 0



 , P z =





0 0 0 0
0 0 0 −1
0 0 0 0
0 −1 0 0



 . (42)
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Figure 4: The Keldysh contour going from −∞ → ∞ → −∞ in real time. The
boundary conditions on the imaginary time segment determine the generalized
distribution functions for quasiparticles.

With the Casimir operator

S · P = 0, S2 + P2 = 3.

Unlike SU(2) group, the singlet/triplet transitions are allowed in SO(4) group and
determined by P operators. Using the definition of singlet/triplet fermions one
comes to following representation

S+ =
√

2(f †
0f−1 + f †

1f0), S− =
√

2(f †
−1f0 + f †

0f1), Sz = f †
1f1 − f †

−1f−1, (43)

P+ =
√

2(f †
1s− s†f−1), P− =

√
2(s†f1 − f †

−1s), Pz = −(f †
0s+ s†f0). (44)

with the only constraint
n1 + n0 + n−1 + ns = 1

whereas the orthogonality condition is fulfilled automatically.

1.4 Real-time formalism

We discuss finally the real-time formalism based on the semi-fermionic representa-
tion of SU(N) generators. This approach is necessary for treating the systems out
of equilibrium, especially for many component systems describing Fermi (Bose)
quasiparticles interacting with spins. The real time formalism [24], [25] provides
an alternative approach for the analytical continuation method for equilibrium
problems allowing direct calculations of correlators whose analytical properties as
function of many complex arguments can be quite cumbersome.

To derive the real-time formalism for SU(N) generators we use the path
integral representation along the closed time Keldysh contour (see Fig.4). Following
the standard route [26], we can express the partition function of the problem
containing SU(N) generators as a path integral over Grassmann variables ψl =
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(al,1(j), ..., al,N (j))T where l = 1, 2 stands for upper and lower parts of the Keldysh
contour, respectively,

Z/Z0 =
∫
Dψ̄Dψ exp(iA)/

∫
Dψ̄Dψ exp(iA0) (45)

where the actions A and A0 are taken as an integral along the closed-time contour
Ct + Cτ which is shown in Fig.4. The contour is closed at t = −∞ + iτ since
exp(−βH0) = Tτ exp

(
− ∫ β

0 H0dτ
)
. We denote the ψ fields on upper and lower

sides of the contour Ct as ψ1 and ψ2 respectively. The fields Ψ stand for the contour
Cτ . These fields provide the matching conditions for ψ1,2 and are excluded from
the final expressions. Taking into account the semi-fermionic boundary conditions
for generalized Grassmann fields (25) one gets the matching conditions for ψ1,2 at
t = ±∞,

ψµ
1,α|k(−∞) = exp

(
iπ

2k − 1
N

)
ψµ

2,α|k(−∞),

ψµ
1,α|k(+∞) = ψµ

2,α|k(+∞) (46)

for k = 1, ..., �N/2� and α = 1, ..., N . The correlation functions can be represented
as functional derivatives of the generating functional

Z[η] = Z−1
0

∫
Dψ̄Dψ exp

(
iA + i

∮

C

dt(η̄σzψ + ψ̄σzη)
)

(47)

where η represents sources and the σz matrix stands for ”causal” and ”anti-causal”
orderings along the contour.

The on-site Green’s functions (GF) which are matrices of size 2N × 2N with
respect to both Keldysh (lower) and spin-color (upper) indices are given by

Gαβ
µν (t, t′) = −i δ

iδη̄α
µ(t)

δ

iδηβ
ν (t′)

Z[η]|η̄,η→0. (48)

To distinguish between imaginary-time (26) and real-time (48) GF’s, we use dif-
ferent notations for Green’s functions in these representations.

After a standard shift-transformation [26] of the fields ψ the Keldysh GF of
free semi-fermions assumes the form

Gα
0 (ε) = GR,α

0

(
1 − fε −fε

1 − fε −fε

)
−GA,α

0

( −fε −fε

1 − fε 1 − fε

)
,

where the retarded and advanced GF’s are

G
(R,A)α
0 (ε) = (ε± iδ)−1, fε = f (N,k)(ε), (49)

with equilibrium distribution functions

f (N,k)(ε) = T
∑

n

eiωnk
τ |+0

iωnk
− ε

=
1

eiπ(2k−1)/N exp(βε) + 1
. (50)
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A straightforward calculation of f (N,k) for the case of even N leads to the following
expression

f (N,k)(ε) =

N∑

l=1

(−1)l−1 exp (βε(N − l)) exp
(
− iπl(2k− 1)

N

)

exp(Nβε) + 1
, (51)

where k = 1, ..., N/2. The equilibrium distribution functions (EDF) f (2S+1,k) for
the auxiliary Fermi-fields representing arbitrary S for SU(2) algebra are given by

f (2S+1,k)(ε) =

2S+1∑

l=1

(−1)l−1 exp (βε(2S + 1 − l)) exp
(
− iπ(2k − 1)

2S + 1
)
)

exp((2S + 1)βε) + (−1)2S+1
(52)

for k = 1, ..., �S + 1/2�. Particularly simple are the cases of S = 1/2 and S = 1,

f (2,1)(ε) = nF (2ε) − i
1

2 cosh(βε)

f (3,1)(ε) =
1
2
nB(ε) − 3

2
nB(3ε) − i

√
3

sinh(βε/2)
sinh(3βε/2)

(53)

Here, the standard notations for Fermi/Bose distribution functions nF/B(ε) =
[exp(βε)±1]−1 are used. For S = 1/2 the semi-fermionic EDF satisfies the obvious
identity |f (2,1)(ε)|2 = nF (2ε).

In general the EDF for half-integer and integer spins can be expressed in
terms of Fermi and Bose EDF respectively. We note that since auxiliary Fermi
fields introduced for the representation of SU(N) generators do not represent the
true quasiparticles of the problem, helping only to treat properly the constraint
condition, the distribution functions for these objects in general do not have to
be real functions. Nevertheless, one can prove that the imaginary part of the
EDF does not affect the physical correlators and can be eliminated by introducing
an infinitesimally small real part for the chemical potential. In spin problems,
a uniform/staggered magnetic field usually plays the role of such real chemical
potential for semi-fermions.

2 Application of semi-fermionic representation

In this section we illustrate some of the applications of SF representation for
various problems of strongly correlated physics.

2.1 Heisenberg model: FM, AFM and RVB

The effective nonpolynomial action for Heisenberg model with ferromagnetic (FM)
coupling has been investigated in [10]. The model with antiferromagnetic (AFM)
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interaction has been considered by means of semi-fermionic representation in [16]
and [17] (magnon spectra) and in [11] for resonance valence bond (RVB) excita-
tions. The Hamiltonian considered is given as

Hint = −
∑

<ij>

Jij

(
�Si
�Sj − 1

4

)
(54)

• Ferromagnetic coupling J = IFM > 0

The exchange �Si
�Sj is represented as four-semi-fermion interaction. Applying the

Hubbard-Stratonovich transformation by the local vector field �Φi(τ) the effective
nonpolynomial action is obtained in terms of vector c-field. The FM phase transi-
tion corresponds to the appearance at T ≤ Tc of the nonzero average 〈Φz(q = 0, 0)〉
which stands for the nonzero magnetization, or in other words, corresponds to the
Bose condensation of the field Φz.

Φz(�k, ω) = M(βN)1/2δ�k,0δω,0 + Φ̃z(�k, ω). (55)

In one loop approximation the standard molecular field equation can be reproduced

M = IFM (0) tanh(βM/2). (56)

The saddle point (mean-field) effective action is given by well-known expression

A0[M] = −N
[
βM2

4IM (0)
− ln

(
2 cosh

(
βM
2

))]
, (57)

and the free energy per spin f0 is determined by the standard equation:

βf0 = − lnZS =
βM2

4IM (0)
− ln

(
2 cosh

(
βM
2

))
(58)

Calculation of the second variation of Aeff gives rise to the following expression

δAeff = −1
4

∑

�k

Φz(�k, 0)
[
I−1
M (�k) − β

2 cosh2(βΩ)

]
Φz(�k, 0)

− 1
4

∑

�k,ω �=0

I−1
M (�k)Φz(�k, ω)Φz(�k, ω)−

∑

�k,ω

Φ+(�k, ω)
[
I−1
M (�k) − tanh(βΩ)

2Ω − iω

]
Φ−(�k, ω)

(59)

where Ω = (gµBH +M)/2. The magnon spectrum (T ≤ Tc) is determined by the
poles of 〈Φ+Φ−〉 correlator, ω = λk2.

• Antiferromagnetic coupling J = IAFM < 0. Néel solution
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The AFM transition corresponds to formation of the staggered condensate

Φz(�k, ω) = N (βN)1/2δ�k, �Qδω,0 + Φ̃z(�k, ω) (60)

The one-loop approximation leads to standard mean-field equations for the stag-
gered magnetization

N = −IAFM (Q) tanh(βN/2),

A0[N ] = N

[
βN 2

4IAFM (Q)
+ ln

(
2 cosh

(
βN
2

))]
. (61)

After taking into account the second variation of Aeff , the following expres-
sion for the effective action is obtained [(see e.g. [16],[17]):

δAeff =
1
4

∑

�k

Φz(�k, 0)
[
I−1
AFM (�k) +

β

2 cosh2(βΩ̃)

]
Φz(�k, 0)

+
1
4

∑

�k,ω �=0

I−1
AFM (�k)Φz(�k, ω)Φz(�k, ω)

+
∑

�k,ω

Φ+(�k, ω)

[
I−1
AFM (�k) +

2Ω̃ tanh(βΩ̃)
4Ω̃2 + ω2

]
Φ−(�k, ω)

−
∑

�k,ω

Φ+(�k + �Q, ω)
iω

4Ω̃2 + ω2
Φ−(�k, ω). (62)

The AFM magnon spectrum ω = c|k|.
• Antiferromagnetic coupling. Resonance Valence Bond solution

The four-semi-fermion term in (54) is decoupled by bilocal scalar field Λij . The
RVB spin liquid (SL) instability in 2D Heisenberg model corresponds to Bose-
condensation of exciton-like [27] pairs of semi-fermions:

∆0 = −
∑

q

Iq
I0

tanh
(
Iq∆0

T

)
, A0 =

β|I|∆2
0

2
−

∑

q

ln [2 cosh(βIq∆0)] (63)

where ∆0 = ∆(q = 0) is determined by the modulus of Λij field

Λ<ij>(�R, �r) = ∆(�r) exp
(
i�r �A(�R)

)
(64)

whereas the second variation of δAeff describes the fluctuations of phase Λij

Aeff =
∑

k,ω

Aα(k, ω)παβ
k,ωAβ(k, ω),

παβ
k,ω = Tr(pαpβ(Gp+kGp +Gp+kGp) + δαβf(Ip∆0)) (65)

The spectrum of excitation in uniform SL is determined by zeros of πR and is
purely diffusive [28]-[29].
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2.2 Kondo lattices: competition between magnetic and Kondo correla-
tions

The problem of competition between Ruderman-Kittel-Kasuya-Yosida (RKKY)
magnetic exchange and Kondo correlations is one of the most interesting problem
of the heavy fermion physics. The recent experiments unambiguously show, that
such a competition is responsible for many unusual properties of the integer valent
heavy fermion compounds e.g. quantum critical behavior, unusual antiferromag-
netism and superconductivity (see references in [19]). We address the reader to
the review [30] for details of complex physics of Kondo effect in heavy fermion
compounds. In this section we discuss the influence of Kondo effect on the compe-
tition between local (magnetic, spin glass) and non-local (RVB) correlations. The
Ginzburg-Landau theory for nearly antiferromagnetic Kondo lattices has been con-
structed in [19] using the semi-fermion approach. We discuss the key results of this
theory.

The Hamiltonian of the Kondo lattice (KL) model is given by

H =
∑

kσ

εkc
†
kσckσ + J

∑

j

(
Sjsj +

1
4
Njnj

)
(66)

Here the local electron and spin density operators for conduction electrons at site
j are defined as

nj =
∑

jσ

c†jσcjσ, sj =
∑

σ

1
2
c†jσ τ̂σσ′cjσ′ , (67)

where τ̂ are the Pauli matrices and cjσ =
∑

k ckσ exp(ikj). The spin glass (SG)
freezing is possible if an additional quenched randomness of the inter-site exchange
Ijl between the localized spins arises. This disorder is described by

H ′ =
∑

jl

Ijl(SjSl). (68)

We start with a perfect Kondo lattice. The spin correlations in KL are charac-
terized by two energy scales, i.e., I ∼ J2/εF , and ∆K ∼ εF exp(−εF/J) (the
inter-site indirect exchange of the RKKY type and the Kondo binding energy, re-
spectively). At high enough temperature, the localized spins are weakly coupled
with the electron Fermi sea having the Fermi energy εF , so that the magnetic
response of a rare-earth sublattice of KL is of paramagnetic Curie-Weiss type.
With decreasing temperature either a crossover to a strong-coupling Kondo sin-
glet regime occurs at T ∼ ∆K or the phase transition to an AFM state occurs at
T = TN ∼ zI where z is a coordination number in KL. If TN ≈ ∆K the interference
between two trends results in the decrease of both characteristic temperatures or in
suppressing one of them. The mechanism of suppression is based on the screening
effect due to Kondo interaction. As we will show, the Kondo correlations screen
the local order parameter, but leave nonlocal correlations intact. The mechanism
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Figure 5: Kondo-screening of local moment by conduction electrons (solid line).

of Kondo screening for single-impurity Kondo problem is illustrated on Fig.5.ω
The magnetization of local impurity in the presence of Kondo effect is given by:

M(H) = S(gµB)T
∑

ω

(G↑(ω) − G↓(ω)) =

S(gµB) tanh
(
Hβ

2

) [
1 − 1

ln(T/TK)
− ln(ln(T/TK))

2 ln2(T/TK)
+ ...

]
. (69)

To take into account the screening effect in the lattice model we apply the semi-
fermionic representation of spin operators. In accordance with the general path-
integral approach to KL’s, we first integrate over fast (electron) degrees of freedom.
The Kondo exchange interaction is decoupled by auxiliary field φ [32] with statis-
tics complementary to that of semi-fermions which prevents this field from Bose
condensation except at T = 0. As a result, we are left with an effective bosonic
action describing low-energy properties of KL model at high T > TK temperatures.

• Kondo screening of the Néel order

To analyze the influence of Kondo screening on formation of AFM order, we adopt
the decoupling scheme for the Heisenberg model discussed in Section II.A. Taking
into account the classic part of Néel field, we calculate the Kondo-contribution to
the effective action which depends on magnetic order parameter N :

Aφ = 2
∑

q,n

[
1

J̃
− Π(N )

]
|φn(q)|2. (70)

where a polarization operator Π(N ) casts the form

Π(N ) = ρ(0) ln
( εF
T

)
+

[
π

2

(
1

cosh(βN )
− 1

)
+O

( N 2

T εF

)]
, (71)
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where ρ(0) is the density of states of conduction electrons at the Fermi level and
the Kondo temperature TK = εF exp (−1/(ρ(0)J)). Minimizing the effective action
A(φ,N ) with respect to classic field N , the mean field equation for Néel transition
is obtained (c.f. with (56))

N = tanh
(
IQN
2T

) [
1 − aN

ln (T/TK)
cosh2(βIQN/2)
cosh2(βIQN )

]
. (72)

As a result, Kondo corrections to the molecular field equation reduce the Néel
temperature

• Kondo enhancement of RVB correlations

Applying the similar procedure to nonlocal RVB correlations, we take into account
the influence of Kondo effect on RVB correlations

Π(Iq∆) = ρ(0) ln
(εF
T

)

+
∑

k

[
1

coshβ(Ik∆)
− 1 + Ik∆ tanh(βIk∆)

]
1

ξ2k+q + (π/2β)2
. (73)

Here ξk = ε(k) − εF . Minimizing the effective action with respect to ∆ we obtain
new self-consistent equation to determine the non-local semi-fermion correlator.

∆ = −
∑

q

Iq
I0

[
tanh

(
Iq∆
T

)
+ asl

Iq∆
T ln(T/TK)

]
. (74)

It is seen that unlike the case of local magnetic order, the Kondo scattering favors
transition into the spin-liquid state, because the scattering means the involvement
of the itinerant electron degrees of freedom into the spinon dynamics.

• Kondo effect and quenched disorder

Let’s assume that the RKKY interactions are random (e.g. due to the presence of
non-magnetic impurities resulting in appearance of random phase in the RKKY
indirect exchange). In this case the spin glass phase should be considered. As it
has been shown in [15] and [19], the influence of static disorder on Kondo effect in
models with Ising exchange on fully connected lattices (Sherrington-Kirkpatrick
model) can be taken into account by the mapping KL model with quenched disor-
der onto the single impurity Kondo model in random (depending on replicas) mag-
netic field. It allows for the self-consistent determination of the Edwards-Anderson
qEAorder parameter given by the following set of self-consistent equations

q̃ = 1 − 2c
ln(T/TK)

−O

(
1

ln2(T/TK)

)
,

q =
∫ G

x

tanh2

(
βIx

√
q

1 + 2c(βI)2(q̃ − q)/ ln(T/TK)

)
+O

(
q

ln2(T/TK)

)
. (75)
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Figure 6: Feynman diagrams for nonlocal excitations associated with the overlap
of Kondo clouds.

Here q = qEA and q̃ are nondiagonal and diagonal elements of Parisi matrix re-
spectively. Therefore, the Kondo-scattering results in the depression of the freezing
temperature due to the screening effects in the same way as the magnetic moments
and the one-site susceptibility are screened in the single-impurity Kondo problem
(c.f. Fig.5) when Ising and Kondo interactions are of the same order of magnitude.
Let’s now briefly discuss the fluctuation effects in Kondo lattices. The natural way
to construct the fluctuation theory is to consider the non-local dynamical Kondo
correlations described by the field φ(q, ω) (see Fig.6). In fact, the non-locality of
the “semi-Bosonic” field is associated with an overlap of Kondo clouds [19] and
responsible for a crossover from the localized magnetism to the itinerant-like fluc-
tuational spin-liquid magnetism. The temperature dependence of static magnetic
susceptibility becomes nonuniversal in spite of the fact that we are in a region of
critical AFM fluctuations which is consistent with recent experimental observa-
tions.

2.3 Kondo effect in quantum dots

The single electron tunneling through the quantum dot [33] has been studied in
great details during the recent decade. Among many interesting phenomena be-
hind the unusual transport properties of mesoscopic systems, the Kondo effect in
quantum dots, recently observed experimentally, continues to attract an atten-
tion both of experimental and theoretical communities. The modern nanoscience
technologies allow one to produce the highly controllable systems based on quan-
tum dot devices and possessing many of properties of strongly correlated electron
systems. The quantum dot in a semiconductor planar heterostructure is a con-
fined few-electron system (see Fig.7) contacted by sheets of two-dimensional gas
(leads). Junctions between dot and leeds produce the exchange interaction be-
tween the spins of the dot and spins of itinerant 2D electron gas. Measuring the dc
I −V characteristics, one can investigate the Kondo effect in quantum dots under
various conditions.

Various realizations of Kondo effect in quantum dots were proposed both
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Figure 7: (a) Double quantum dot in a side-bound configuration (b) co-tunneling
processes in biased DQD responsible for the resonance Kondo tunneling.

theoretically and experimentally in recent publications (see e.g. [34] for review).
In order to illustrate the application of semi-fermionic approach we discuss briefly
electric field induced Kondo tunneling in double quantum dot (DQD). As was
noticed in [35], quantum dots with even N possess the dynamical symmetry SO(4)
of spin rotator in the Kondo tunneling regime, provided the low-energy part of
its spectrum is formed by a singlet-triplet (ST) pair, and all other excitations
are separated from the ST manifold by a gap noticeably exceeding the tunneling
rate γ. A DQD with even N in a side-bound configuration where two wells are
coupled by the tunneling v and only one of them (say, l) is coupled to metallic
leads (L,R) is a simplest system satisfying this condition [35]. Such system was
realized experimentally in Ref.[36]. As it was shown in [20] the Shrieffer-Wolff (SW)
transformation, when applied to a spin rotator results in the following effective spin
Hamiltonian

Hint =
∑

kk′,αα′=L,R

JS
αα′f †

sfsc
†
kασck′α′σ

+
∑

kk′,αα′ΛΛ′

(
JT

αα′ Ŝd
ΛΛ′ + JST

αα′ P̂ d
ΛΛ′

)
τd
σσ′c

†
kασck′α′σ′f †

ΛfΛ′ (76)

where the c-operators describe the electrons in the leads and f -operators stand
for the electrons in the dot. The matrices Ŝd and P̂ d (d=x,y,z) are 4× 4 matrices
defined by relations (41) (see Section I.C) and JS = JSS , JT = JTT and JST are
singlet, triplet and singlet-triplet coupling SW constants, respectively.

Applying the semi-fermionic representation of SO(4) group introduced in Sec-
tion I.C we started with perturbation theory results analyzing the most divergent
Feynman diagrams for spin-rotator model [20]. Following the “poor man’s scal-
ing” approach we derive the system of coupled renormalization group equations
for effective couplings responsible for the transport through DQD. As a result,
the differential conductance G(eV, T )/G0 ∼ |JST

LR |2 is shown to be the universal
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function of two parameters T/TK and V/TK , G0 = e2/πh̄:

G/G0 ∼ ln−2 (max[(eV − δ), T ]/TK) (77)

Thus, the tunneling through singlet DQDs with δ = ET − ES � TK exhibits a
peak in differential conductance at eV ≈ δ instead of the usual zero bias Kondo
anomaly which arises in the opposite limit, δ < TK . Therefore, in this case the
Kondo effect in DQD is induced by a strong external bias. The scaling equations
can also be derived in Schwinger-Keldysh formalism (see [11] and also [18]) by
applying the “poor man’s scaling” approach directly to the dot conductance. The
detailed analysis of the model (76) in a real-time formalism is a subject for a
separate publication.

3 Epilogue and perspectives

In this paper, we demonstrated several examples of the applications of semi-
fermionic representation to various problems of condensed matter physics. The
list of these applications is not exhaustive. We did not discuss, e.g., the interest-
ing development of SF approach for the Hubbard model with repulsive [14] and
attractive [13] interaction, Dicke model, 2D Ising model in transverse magnetic
field, application of SF formalism to mesoscopic physics [21] etc. Nevertheless, we
would like to point out some problems of strongly correlated physics where the
application of SF representation might be a promising alternative to existing field-
theoretical methods.

Heavy Fermions

• Crossover from localized to itinerant magnetism in Kondo lattices

• Quantum critical phenomena associated with competition between local and
nonlocal correlations

• Nonequilibrium spin liquids

• Effects of spin impurities and defects in spin liquids

• Crystalline Electric Field excitations in spin liquids

• Dynamic theory of screening effects in Kondo spin glasses.

Mesoscopic systems

• Nonequilibrium Kondo effect in Quantum Dots

• Two-channel Kondo in complex multiple dots

• Spin chains, rings and ladders
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• Nonequilibrium spin transport in wires

Summarizing, we constructed a general concept of semi-fermionic representation
for SU(N) groups. The main advantage of this representation in application to the
strongly correlated systems in comparison with another methods is that the local
constraint is taken into account exactly and the usual Feynman diagrammatic
codex is applicable. The method proposed allows us to treat spins on the same
footing as Fermi and Bose systems. The semi-fermionic approach can be helpful
for the description of the quantum systems in the vicinity of a quantum phase
transition point and for the nonequilibrium spin systems.

Acknowledgments

I am grateful to my colleagues F.Bouis, H.Feldmann, K.Kikoin and R.Oppermann
for fruitful collaboration on different stages of SF project. I am thankful to Alexan-
der von Humboldt Foundation for financial support. The support of Deutsche
Forschungsgemeinschaft (SFB-410 project) is gratefully acknowledged. My special
thank to participants of Strongly Correlated Workshops in Trieste and especially
to A.Protogenov for many inspiring discussions. My particular thank to A.Dutta
for careful reading of this manuscript and useful suggestions.

References

[1] T. Holstein and H. Primakoff, Phys. Rev. B 58, 1098 (1940).

[2] F. Dyson, Phys. Rev. 102, 1217 (1956).

[3] S. V. Maleyev, Sov. Phys. JETP 6, 776 (1958).

[4] A. A. Abrikosov, Physics 2, 5 (1965).

[5] V. G. Vaks, A. I. Larkin, and S. A. Pikin, Sov. Phys. JETP 26, 188 (1968).

[6] V. G. Vaks, A. I. Larkin, and S. A. Pikin, Sov. Phys. JETP 26, 647 (1968).

[7] J. Hubbard, Proc. R. Soc. London A 285, 542 (1965).

[8] P. Coleman, C. Pepin, and A. M. Tsvelik, Phys. Rev. B 62, 3852 (2000).

[9] A.M.Tsvelik, Quantum field theory in condensed matter physics. Cambridge
(1995)

[10] V. N. Popov and S. A. Fedotov, Zh. Eksp. Teor. Fiz. 94, 183 (1988), [Sov.
Phys. JETP 67, 535 (1988)].

[11] M. N. Kiselev and R. Oppermann, Phys.Rev.Lett 85, 5631 (2000).



180 M. Kiselev Proceedings TH2002

[12] O. Veits, R. Oppermann, M. Binderberger, and J. Stein, J. Phys. I France 4,
493 (1994).

[13] J. Stein and R. Oppermann, Z. Phys. B 83, 333 (1991).

[14] C. Gros and M. D. Johnson, Physica B 165-166, 985 (1990).

[15] M. N. Kiselev and R. Oppermann, JETP Lett. 71, 250 (2000).

[16] F. Bouis and M. N. Kiselev, Physica B 259-261, 195 (1999).

[17] S.Azakov, M.Dilaver, A.M.Oztas. Int. Journal of Modern Phys. B 14, 13
(2000).

[18] M.N.Kiselev, H.Feldmann and R.Oppermann, Eur.Phys. J B 22, 53 (2001)

[19] M.N.Kiselev, K.Kikoin and R.Oppermann, Phys. Rev. B 65, 184410 (2002)

[20] M.N.Kiselev, K.Kikoin and L.W.Molenkamp cond-mat/0206503.

[21] P.Coleman and W.Mao cond-mat/0203001,cond-mat/0205004.
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