
pss header will be provided by the publisher

Dynamical symmetries and quantum transport
through nanostructures

M.N.Kiselev∗1,2

1 The Abdus Salam International Centre for Theoretical Physics, I-34014, Trieste, Italy
2 Institute für Theoretische Physik, Universität Würzburg, D-97074 Würzburg, Germany

Receivedzzz, revised zzz, accepted zzz
Published online zzz

PACS 73.23.Hk, 72.15.Qm, 73.21.La, 73.63.-b, 75.10.Pq, 71.10.Fd

We discuss the manifestation of dynamical symmetries in quantum transport through nanostructures. The
dynamical symmetrySO(4) manifested in the singlet-triplet excitations is shown to be responsible for
several exotic effects in nano-devices: non-equilibrium Kondo effect in T-shape Double Quantum Dots,
phonon-induced Kondo effect in transition-metal-organiccomplexes, Kondo shuttling in Nano-Electro-
mechanical Single Electron Transistor. We consider the interplay between chargeU(1) and spinSU(2)
fluctuations in the vicinity of Stoner instability point anda non-monotonic behavior of a Tunneling Density
of States in metallic quantum dots. The experiments showingimportant role of dynamical symmetries in
nanostructures are briefly reviewed.
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INTRODUCTION

The single electron tunneling through the quantum dot is studied in many details during the recent decade.
Quantum dot [1, 2], being a little semiconductor box, can hold a small number of electrons. Quantum dots
are often called artificial atoms since their electronic properties resemble those of real atoms. A voltage
applied to one of the gate electrodes of semiconductor device controls the number of electrons in the dot.
If such number is small (about 10), the properties of the dot are similar to the properties of the atom with
few electrons. If the number of electrons is relatively large (about 100 and more), the statistics of levels in
such artificial atom is determined by the Random Matrix Theory [2]. The system of coupled quantum dots
is similar to an artificial molecule. Fabricating semiconductor devices with different geometries allows to
consider different symmetries associated with the artificial molecule structure. There are many interesting
effects already experimentally observed in quantum dots structures and many theoretical predictions which
still wait for the experimental confirmation.

Among many interesting phenomena behind the unusual transport properties of mesoscopic systems is
the Kondo effect in quantum dots, recently observed experimentally [3]. If the number of electrons trapped
within a dot is odd, the total spin of a dotS is necessarily nonzero and has a minimum value atS = 1/2.
Thus the system resembles a local spin interacting with electron seas associated with metallic reservoirs
(leads). The Kondo effect is a result of exchange interaction of itinerant electrons in leads with the local-
ized spin state in a dot. Being responsible for local spin polarization of the electron gas, the resonance
Kondo scattering becomes significant at low temperatures. The antiferromagnetic exchange interaction be-
tween itinerant electrons and local spins gives rise to possibility of simultaneous change of spin projection
both for electron and spin. As a result, the ”Kondo cloud” is formed out when the temperature goes to
zero. Formation of the ”Kondo cloud” or ”spin cloud” is due tothe screening effects, associated with the
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2 M.N.Kiselev: Dynamical symmetries and quantum transportthrough nanostructures

processes when the free electron gas tends to screen the magnetic moments of the localized state. This
phenomenon is responsible for the non-monotonic temperature behavior of the resistivity of metals with
magnetic impurities at low temperatures (e.g. in many heavyfermion (HF) compounds). The inter-metallic
alloys and HF compounds usually contain rare-earth atoms, which makes it difficult to produce the sample
with adjustable parameters. In contrast, the modern nanoscience technologies allow one to produce the
highly controllable systems based on quantum dot devices and possessing many of properties of strongly
correlated electron systems.

Yet another interesting property of quantum dots is associated with the magnetic correlations between
electrons confined in this nano-scale object. The question whether the itinerant ferromagnetism may occur
in finite-size system in a presence of disorder attracts a lotof attention of theorists (see, e.g [5]) and
experimentalists [6]. The simplest model of ferromagnetism in metallic systems was proposed by Stoner
long time ago [4]. The physical mechanism behind the instability is analogous to the familiar from atomic
physics Hund’s rule. The magnetic ordering in this model takes place when the increase of orbital energy
due to promotion of electrons to higher energy states is smaller than the energy gain due to the exchange
interaction. As soon as this happens, the system becomes unstable with respect to the transition to a
state with the nonzero total magnetization. In contrast to bulk magnetic system where both orbital and
exchange energies are self-averaging quantities, in a small (mesoscopic) systems they are sample specific.
Therefore, one may expect strong mesoscopic fluctuations ina metallic quantum dots in the vicinity of the
Stoner instability point. It is known, that in disordered metals the interaction between electrons in states
which are close in energy is enhanced due to increase return probability and may satisfy the instability
criterion for a weaker bare interaction. However, the question how the properties of isolated quantum dot
as well as transport properties are affected by the disorderremains open.

The main goal of this paper is to demonstrate the relevance ofdynamical symmetries [7] on the trans-
port through the nanostructures and review last years progress in the analysis of the interplay between
symmetries and strong correlations at the nanoscale. We elaborate on the role of dynamical symmetries in
a special discipline of condensed matter physics, which enters under the name of correlated impurity prob-
lem. It is concerned with the physics which is exposed when the system is composed of strongly correlated
localized electrons on the one hand and itinerant electronson the other hand. We will review the role of
dynamical symmetries and its manifestation in quantum dots, semiconducting nano-clusters and molecular
electronic devices. As it turns out, the concept of dynamical symmetries is meaningful also in systems out
of equilibrium, and the case of dynamical symmetries at finite frequencies will also be addressed.

The paper is organized as follows. In the Section I discuss how dynamical symmetries affect the trans-
port through the semiconductor few-electron quantum dots and the molecular transistors. Section II is
devoted to a description of magnetic instability in the metallic quantum dots. In conclusions the summary
of discussions will be given and the perspectives of future research will be discussed.

1 Kondo effect and dynamical symmetries

1.1 Double Quantum Dot

The first example of the manifestation of dynamical symmetries is the non-equilibrium Kondo effect pre-
dicted [8, 10] and observed [11] in nano-structures characterized by the interplay between singlet/triplet
excitations. An example of such system is a Double Quantum Dot (Fig.1, left panel). As was noticed
in Ref. [12], quantum dots with evenN possess the dynamical symmetrySO(4) of spin rotator in the
Kondo tunneling regime, provided the low-energy part of excitation spectrum is formed by a singlet-triplet
(ST) pair, and all other excitations are separated from the ST manifold by a gap noticeably exceeding
the tunneling rateΓ. A DQD with evenN in a side-bound (T-shape) configuration where two wells are
coupled by the tunnelingv and only one of them (say,l) is coupled to metallic leads(L, R) is a simplest
system satisfying this condition [12]. Such system was realized experimentally in Ref.[13]. Novel features
introduced by the dynamical symmetry in Kondo tunneling areconnected with the fact that unlike the case
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of conventionalSU(2) symmetry of spin vectorS, theSO(4) group possesses two generatorsS andP.
The latter vector describes transitions between singlet and triplet states of spin manifold (this vector is an
analog of Runge-Lenz vector describing the hidden symmetryof hydrogen atom). As was shown in Ref.
[14], this vector alone is responsible for Kondo tunneling through quantum dot with evenN induced by
external magnetic field. The Hamiltonian describing Kondo effect in DQD is given by
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Fig. 1 (Color online) Left panel: Double quantum dot in a side-bound configuration. Central panel: cotunneling
processes in biased DQD responsible for the resonance Kondotunneling. Right panel: Typical shape of the differential
conductance as the function of source-drain biaseV . The asymmetry of the conductance peak is attributed to finite
repopulation of the triplet state foreV > ∆ and also due to additional decoherence mechanisms associated with the
triplet-triplet relaxation [8]. Insert shows the RG equations for the coupling constants defined in (1). The solution of
these RG equations is given by (2).

Hint =
∑

αα′

[(JT
αα′S + JST

αα′P) · sαα′ + JS
αα′NSSnαα′ ] (1)

Here sαα′=
∑

kk′ c†kασ τ̂ ck′α′σ′ , nαα′=
∑

kk′ c†kασ 1̂ck′α′σ, τ̂ , 1̂ are the Pauli matrices and unity matrix
respectively. The constantsJT , JST andJS stand for the interaction between the total spin of the dotS,
and the electrons in the leadsα = L, R.

We deal with the case, which was not met in the previous studies of non-equilibrium Kondo tunneling.
The ground state of the system is singlet, and the Kondo tunneling in equilibrium is quenched atT ∼ ∆,
where∆ = ET − ES stands for the energy difference between the ground (singlet) and excited (triplet)
states. Thus, the elastic Kondo tunneling arises only providedTK ≫ ∆ in accordance with the theory
of two-impurity Kondo effect [12, 15]. However, the energy necessary for spin flip may be donated by
external electric fieldeV applied to the left lead, and in the opposite limitTK ≪ ∆ the elastic channel
emerges ateV ≈ ∆. The processes responsible for resonance Kondo cotunneling at finite bias are shown
in Fig. 1 (central panel).

In conventional spinS = 1/2 quantum dots the Kondo regime out of equilibrium is affectedby spin
relaxation and decoherence processes, which emerge ateV ≫ TK (see, e.g., [16, 17, 18, 19]). These
processes appear in the same order as Kondo co-tunneling itself, and one should use the non-equilibrium
perturbation theory (e.g., Keldysh technique) to take theminto account in a proper way. In our case these
effects are expected to be weaker, because the nonzero spin state is involved in Kondo tunneling only as
an intermediate virtual state arising due to S/T transitions induced by the second term in the Hamiltonian
(1), which contains vectorP. The effects of repopulation of triplet state by external biaseV have been
considered in details in [8]. It has been found that for0 ≤ eV ≤ ∆ the repopulation of the triplet state
is exponentially small. For large biaseseV > ∆ the effects of repopulation of the triplet state lead to
and inelastic cotunneling and should be taken into account.These effects [8] lead to strong anisotropy of
conductance line-shape (Fig.1 right panel). The methods implemented for a weak-coupling Kondo regime
in [8] are not applicable for the quantitative and even qualitative description of the nonequilibrium effects
(full nonlinear conductance etc) at large biases|eV − ∆| ≫ ∆. The kinetic equation approach based on
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Schwinger-Keldysh diagrammatics [9, 10] might be appropriate tool to describe the regime of strong out
of equilibrium in double quantum dots.

Having this in mind, we describe Kondo tunneling through DQDat finite eV ∼ ∆ within the quasi-
equilibrium perturbation theory in a weak coupling regime (cf. the quasi-equilibrium approach to descrip-
tion of decoherence rate at largeeV in Ref. [17]).

Using a Renormalization Group (RG) technique [8] based on semi-fermionic representation ofSO(4)
group generators [9, 10, 20] we find the following scaling dependencies of the exchange integrals:

JT
α,α′ =

JT
0

1 − ρJT
0 ln(D/T )

, JST
α,α′ =

JST
0

1 − ρJT
0 ln(D/T )

, JS
LR = JS

0 −
3

4
ρ(JST

0 )2
ln(D/T )

1 − ρJT
0 ln(D/T )

.

(2)

Hereα = L, α′ = L, R andρ is the density of states at the Fermi level of the contacts characterized by ef-
fective bandwidthD. One should note that the Kondo temperature is determined bytriplet-triplet processes
only in spite of the fact that the ground state is singlet. Onefinds from (2) thatTK=Dexp[−1/(ρJT

0 )].
This temperature is noticeably smaller than the ”equilibrium” Kondo temperatureTK0, which emerges in
tunneling through triplet channel in the ground state, namely TK ≈ T 2

K0/D. The reason for this differ-
ence is the reduction of usual parquet equations forTK to a simple ladder series. In this respect our case
differs also from conventional Kondo effect at strong bias [17], where the non-equilibrium Kondo temper-
atureT ∗ ≈ T 2

K0/eV arises. In our model the finite bias does not enterTK because of the compensation
eV ≈ ∆ in spite of the fact that we take the argumentω = eV in our RG equations [8].

The differential conductanceG(eV, T )/G0 ∼ |JST
LR |2 (cf. Ref. [21]) is the universal function of two

parametersT/TK andeV/TK , G0 = e2/πh̄:

G/G0 ∼ ln−2 (max[(eV − ∆), T ]/TK) (3)

The resonance tunneling ”flashes” ateV ∼ ∆ and dies away out of this resonance. The decoherence effects
for the finite bias processes have been studied in [8]. In [24]the gauge theory unifying the decoherence
processes associated with the fluctuations of the constraint and exchange integrals has been constructed .
It was shown that these processes do not suppress the Kondo effect in the weak coupling regime and the
non-equilibrium peak in differential conductance remainsintact.

An interesting question which arises here is whether the non-equilibrium Kondo effect falls into the class
of strong-coupling regime. It has been extensively studiedduring the last few years (see discussion and
references in [18, 19]). The same question when addressed tosystems characterized by hidden dynamical
symmetries allows a simple and straightforward answer: thestrong coupling limit is not achievable in this
situation. There is always an energy scale determined by an external bias, decoherence effects associated
with AC or effects related to repopulation of the dot which prevent the system from both one-stage and
two-stage Kondo scenario [23, 22] and suppress the Kondo effect in the ground state.

1.2 Molecular transistor

Another example of manifestation of dynamical symmetries is given by a Transition-Metal Organic Com-
plexes (TMOC) with a transition metal ion secluded in a ligand cage [25, 26]. The cage is in tunnel contact
with metallic reservoirs (surface, STM nanotip, or edges ofmetallic wire in electro-migration or break
junction geometry). The left panel of Fig.2 illustrates this setup. We consider a TMOC with even electron
numberN fixed by charge and energy quantization. Tunneling through single-molecule devices is a com-
plex phenomenon involving vibrational motion and many-particle processes in metallic leads. Vibrational
effects have been observed in the sequential [27, 28, 29] andstrong tunneling regime [30, 31, 32]. Phonon
satellites coexist with resonance Kondo co-tunneling [30]in transport through transition-metal (TM) or-
ganic complexes (TMOC). Kondo effect is a direct manifestation of strong correlation effects in tunneling
[33].
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Fig. 2 (Color online) Left panel: Electrode tunnel-coupled to a Transition-Metal Organic Complex. Charging of the
complex by a tunnel process deforms the outer part of the ligand cage without strongly affecting the direct coordination-
sphere of the metal ion and thereby the ligand-field splitting. We assume that the extra electron is localized mainly
on the cage. Electrons tunnel onto the ion through the tails of the molecular state centered on the ion, which includes
admixtures of the outer shell electronic states. Thereforethe main effect of the charging is themodulation of the tunnel
barrier between the ion-centered states and electrode. Right panel: Typical shape of the differential conductance as
the function of source-drain biaseV . The central peak corresponds to Zero-Bias Anomaly while the two finite bias
peaks are attributed to the non-equilibrium Kondo effect.

The ground state of TMOC is supposed to be a spin singlet, and the energy of the lowest triplet ex-
citation ∆ exceeds Kondo temperatureTK . The linear conductance is thus suppressed. To investigate
how intramolecular vibrations mayinduce transport through a Kondo effect, in the first place one should
incorporate a vibronic mode in a generic tunneling Hamiltonian

H = Hmol + Hres + Htun (4)

HereHmol includes the3d electron levels in a ligand field of the cage electrons, the molecular orbitals of
these ligands, as well as interactions within the3d shell and within the cage. One should take into account
the three most relevant charge states including their dependence on the vibrational coordinate of the cage
Q:

Hmol = H
(N)
Q + H

(N+1)
Q + H

(N−1)
Q + Tn (5)

The last termTn is the kinetic energy of the cage distortion. The eigenstates of H(N±1)
Q are admixed to

those ofH(N) by the tunnelingHtun of electrons from the reservoirHres.
The effective Hamiltonian accounting for dynamicalSO(4) symmetry has the form

Heff = Hres +
1

2
∆S

2 + JT
S · s + JST

P · s + Tn (6)

The electron spin operator is given by the conventional expansions = 1
2

∑

kk′

∑

σσ′ c†kστ σσ′ck′σ′ where
τ is the Pauli vector. The exchange coupling constantsJT,ST (Q) describe the Q-dependent resonance
scattering of the electrons in the leads on the S-TSO(4) multiplet. The main source of phonon emis-
sion/absorption in our case is the tunneling rate. Expanding JST (Q) = JST + jP Q in the quantized
displacement operatorQ = (b† + b)/

√
2 and assuming that the optical phonon mode is approximated by

single Einstein phonon with frequencyΩ we come to phonon assisted exchange Kondo Hamiltonian.
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6 M.N.Kiselev: Dynamical symmetries and quantum transportthrough nanostructures

We calculate the phonon assisted Kondo-renormalization ofthe differential conductancedI/dV ∼ |γ|2
[25, 26] using the RG technique developed in [8]:

γ ∼ (jP )2ρ









log

(

D

max[T, |∆ − h̄Ω|]

)

1 − JT Aρ log

(

D

max[T, |∆ − h̄Ω|]

)









(7)

HereA∼1 is a constant determined by spin algebra,D is the effective width of the electron conduction
band andρ is the density of states on the Fermi level. The Kondo temperature extracted from this equation
readsTK∼Dexp

(

−1/(AρJT )
)

. One concludes from these calculations that the single-phonon processes
are sufficient to compensate the energy of the S/T splitting and induce resonance tunneling through the
TMOC provided the local vibration mode with appropriate frequency satisfying the condition

|h̄Ω − ∆| ∼ TK (8)

exists in the cage. One can expect in this case a significant enhancement of the tunnel conductance already
at T > TK according to the lawG/G0 ∼ ln−2(T/TK) [33], whereG0 is the conductance at unitarity
limit T → 0. We emphasize that in spite of the fact that the Kondo effect exists in our caseonly under
phonon assistance (c.f. [34]), the Kondo temperatureTK is the same as in the usual Kondo effect. Since
TK is high enough (∼ 10 K) in electro-migrated junction experiments with a TMOC deposited between
contacts [30, 31], the effect predicted in this work seems tobe easily observable. The crucial point is the
existence of phonon satisfying condition (15) in a TMOC withthe S/T multiplet as a lowest spin excitation.
One should note, however, that even if this condition is not exactly satisfied, one may tune the system by
applying the magnetic field. Then the triplet is split, and only the levelET,−1 = ET − EZ is involved
in the phonon induced Kondo tunneling (EZ is the Zeeman energy). In this case∆ in (15) is substituted
for ∆Z = ∆ − EZ , andEZ may be tuned to satisfy the inequality (15). Thus the vibration gives rise to
a magnetic field induced Kondo effect at Zeeman energies which can be much smaller than∆. The only
difference is that in this case the effective spin of the TMOCis one half instead of one [35].

The differential conductance as a function of the biaseV is shown in Fig.2 (right panel). The central
peak is suppressed ateV ∼TK due to the decoherence effects associated with the electrical current across
the TMOC. The conductance grows again ateV →∆, due tonon-equilibrium effects occurring when the
resonance tunneling is restored ateV =∆ [8]. One of essential ingredients of our theory is that we usethe
dynamical symmetry of the TMOC, which characterizes both the spin algebra of localized spin itself and
transitions between various levels of different spin multiplets [12].

1.3 Kondo shuttle

The Nano-Electromechanical (NEM) devices represent yet another class of nanostructures where the mani-
festations of dynamical symmetries can be seen in the transport experiments [36]. Building on the analogy
with shuttling experiments of [38, 37], we consider the device where an isolated nanomachined island
oscillates between two electrodes (Fig.3, left panel). We,however, are interested in a regime where the
applied voltage is low enough so that the field emission of many electrons, which was the main mechanism
of tunneling in those experiments, should be neglected. Note further that the characteristic de Broglie wave
length associated with the dot should be much shorter than typical displacements allowing thus for a clas-
sical treatment of the mechanical motion of the nano-particle. The condition̄hΩ≪TK , necessary to elimi-
nate decoherence effects, requires for e.g. planar quantumdots with the Kondo temperatureTK∼100mK,
the conditionΩ∼1GHz for oscillation frequencies to hold; this frequency range is experimentally feasible
[38, 37]. The shuttling island then is to be considered as a ”mobile quantum impurity”, and transport ex-
periments will detect the influence of mechanical motion on adifferential conductance. If the dot is small
enough, then the Coulomb blockade guarantees the single electron tunneling or cotunneling regime, which
is necessary for realization of Kondo effect [33, 39]. Cotunneling process is accompanied by the change
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of spin projection in the process of charging/discharging of the shuttle and therefore is closely related to
the spin/charge pumping problem [40].
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Fig. 3 (Color online) Left panel: Nanomechanical resonator with the odd number of electrons as a ”mobile quantum
impurity”. Right panel: Differential conductance of a Kondo shuttleΓ0/U=0.4. Solid line denotesG for the shuttle
ΓL=ΓR, A=λ0, dashed line: the static nano-islandΓL = ΓR, A=0, dotted line:ΓL/ΓR=0.5, A=0. Insert shows
the time oscillations ofTK for smallA=0.05λ0 (dotted line) and largeA=2.5λ0 (solid line) shuttling amplitudes.

The Hamiltonian of the shuttleH=H0+Htun is given by

H0 =
∑

k,α

εkσ,αc†kσ,αckσ,α +
∑

iσ

[ǫi − eEx]d†iσdiσ + Un2

Htun =
∑

ikσ,α

T (i)
α (x)[c†kσ,αdiσ + H.c], (9)

wherec†kσ, d†iσ create an electron in the leadα=L,R, or the dot levelεi=1,2, respectively,n=
∑

iσd†iσdiσ,

E is the electric field between the leads. The tunnelling matrix elementT (i)
L,R(x)= T

(i,0)
L,R exp[∓x(t)/λ0],

depends exponentially on the ratio of the time-dependent displacementx(t) (which is considered to be a
given harmonic function of the time) and the electronic tunneling lengthλ0.

We begin with the discussion of an oddN , S = 1/2, case. Then only the state withi=1 retains
in (9), and hereafter we omit this index. In order to find an analytic solution, we assume that ifx(t)
varies adiabatically slow (on the scale of the tunneling recharging time), there is no charge shuttling due
to multiple recharging processes [41], but the Kondo resonance cotunneling occurs. The time-dependent
tunneling width isΓα(t) = 2πρ0|Tα(x(t))|2 [21], whereρ0 is the density of states at the leads Fermi
level. The adiabaticity condition reads:̄hΩ≪TK ≪Γ, with Γ=min[

√

Γ2
L(t) + Γ2

R(t)]. We apply the
time-dependent Schrieffer-Wolff transformation and obtain the time-dependent Kondo Hamiltonian [21]
as

H = H0 +
∑

kασ,k′α′σ′

Jαα′(t)[~σσσ′
~S +

1

4
δσσ′ ]c†kσ,αck′σ′,α′ (10)

whereJα,α′(t)=
√

Γα(t)Γα′(t)/(πρ0Ed(t)) and~S= 1
2d†σ~σσσ′dσ′ . In the adiabatic regime the time can be

treated as an external parameter, and the renormalization group equations for the Hamiltonian (10) can be
solved the same manner as those for the equilibrium [21]. As aresult, the Kondo temperature becomes
time oscillating:

TK(t) = D(t) exp

[

− πU

8Γ0 cosh(2x(t)/λ0)

]

. (11)
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Neglecting the weak time-dependence of the effective bandwidth D(t)≈D0, we arrive at the following
expression for the time-averaged Kondo temperature:

〈TK〉 = T 0
K

〈

exp

[

πU

4Γ0

sinh2(x(t)/λ0)

1 + 2 sinh2(x(t)/λ0)

]〉

. (12)

Here〈...〉 denotes averaging over the period of the mechanical oscillation. The time-dependence of the
Kondo temperatures results in a remarkable effect: the competition between Breit-Wigner (BW) resonance
responsible for the transparency of the nano-device and theAbrikosov-Suhl (AS) resonance related to the
quasi-particle Kondo peak occurring at the Fermi level of the leads. While BW resonance has a maximum
at the most symmetrical regimeΓL = ΓR corresponding to the central position of the island in its classical
trajectory, the sharpest AS resonance occurs at the turningpoints of the trajectory when the Kondo tem-
perature reaches its minimal value. In the weak coupling regime T max

K ≪T≪D0 the zero bias anomaly
(ZBA) in the tunneling conductance is given by

G(T ) =
3π2

16
GU

〈

4ΓL(t)ΓR(t)

(ΓL(t) + ΓR(t))2
1

[ln(T/TK(t))]2

〉

. (13)

The two competing effects of BW and AS resonances lead to the effective enhancement ofG at high
temperatures (see Fig.3, right panel):

δGK

G0
K

=
G(T ) − G0

K

G0
K

= 2
δTK

T 0
K

1

ln(T/T 0
K)

. (14)

Next we turn to the case of evenN in the island. In this case one may refer to theexcited-state Kondo
features [39], where the KR tunneling is possible only during the timeintervals where

∆ST (t) = δ(t) − Jex(t) < TK(t). (15)

The level spacingδ(t)=ǫ2(t)−ǫ1(t) may reduce due to the tunneling-induced Friedel shift

ǫi(t) = ǫ0i −
∑

α=L,R

|T (i)
α (t)|2Re

∫

ρ0dε

ǫi − ǫα

, (16)

providedT
(2)
α >T

(1)
α , which is usually the case [39]. This effect is maximal near the turning points of

shuttle motion. Thus, if the condition (15) is valid for the certain time intervals during the oscillation
cycle, the Kondo tunneling is possible for a part of this cycle, where the shuttle is close to one of the
leads. It should be emphasized that in this regime only the weak-coupling Kondo effect may be observed
at T≫TK , whereas atT→0 the triplet state is quenched and the dot behaves as a zero spin nano-particle
[23]. The full scale Kondo effect may arise only if the variation of |T (i)

α (t)|2 induces the crossover from a
singlet to a triplet ground state of a shuttle. The singlet/triplet crossover induced by the variation of gate
voltages was observed on a static planar dot [42]. Unlike conventional level crossing, this crossover does
not violate adiabaticity because it conserves theSO(4) symmetry of singlet/triplet manifold [12, 39].

2 Stoner instability and dynamical symmetries

As one decreases the effective dimensionality of a conductor, the role of electron-electron interactions –
notably in the charge and spin channels – is enhanced. In one-dimension (d=1) these two channels, re-
sponsible for a widely ranged spectrum of effects, often decouple. It is of obvious interest to study the
counterpart of this physics ind=0 quantum dots (QDs). An easily accessible scheme is the ”Universal
Hamiltonian” [2, 43] where, in addition to the (impurity andgeometry dependent) single-particle Hamilto-
nian, only zero-mode interactions (charge and spin (exchange) in our case) are included. The former leads
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to the phenomenon of the Coulomb blockade, while the latter leads to the Stoner instability [4] which is
modified in mesoscopic systems [43]. Attention has been given to the intriguing interplay between the
chargeU(1) [46] and the spinSU(2) [47, 48] channels. This is manifest,e.g., in the suppression of cer-
tain Coulomb peaks due to ”spin-blockade” [44]. In a recent theoretical study [45] the effect of the the
spin channel on Coulomb peaks has been analyzed employing a master equation in the classical limit.
Notwithstanding the success of this approach, quantum effects are expected to play an important role. A
full fledged quantum mechanical analysis of the charge-spininterplay in zero dimensions is thus called for
[47, 48].

Our QD of linear sizeL is in the ”metallic regime” (either diffusive (ℓ ≪ L) or ballistic-chaotic (ℓ ≈
L)). The Thouless energy and the mean level-spacing satisfyg ≡ ETh/∆ ≫ 1. We consider the following
terms of the Universal Hamiltonian:

H =
∑

α,σ

ǫαa†
α,σaα,σ + HC + HS . (17)

The spin (σ) degenerate levels of the single-particle Hamiltonian obey the Wigner-Dyson statistics. For
simplicity we confine ourselves to the Gaussian Unitary Ensemble (GUE) case. The charging interaction
HC = Ec (n̂ − N0)

2 accounts for the Coulomb blockade. Heren̂ is the number operator;N0 represents
the positive background charge and is tuned to the Coulomb valley regime. The term

HS = −J





(

∑

α

Sz
α

)2

+ γ







(

∑

α

Sx
α

)2

+

(

∑

α

Sy
α

)2










represents spin,~Sσσ
′ = 1

2

∑

αa†
α,σ~σσσ

′ aα,σ
′ , interactions within the dot. Below we allow for an easy axis

anisotropy,γ=J⊥/J<1, reducing the originalSU(2) symmetry toSO(2). There are several possible
sources for such an anisotropy: geometrical, molecular anisotropy etc. The degree of anisotropy can
be controlled by introducing magnetic impurities into the system, or by applying anisotropic mechanical
pressure [49].

Fig. 4 (Color online) Left panel: Spin of the ground stateSg as a function of the spin exchange coupling. The inset
shows spin configurations for theS = 0, 1, 2 states. Right panel: The spin normalized tunneling densityof states
shown as function of the energyEc/T = 10. Dashed curve:J = 0. Solid curve: J/∆ = 0.92, J/T = 0.1,
γ = 0.93. Left inset shows the QD setup. Right inset shows the spin rotation on the Bloch sphere.

We recall that beyond the thermodynamic Stoner instabilitypoint, Jth = ∆ (see Fig.4, left panel),
the spontaneous magnetization is an extensive quantity. Atsmaller values of the exchange coupling,
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Jmesoscopic < J < Jth, finite magnetization shows up (see the inset on the left panel of Fig.4), which, for
finite systems, does not scale linearly with the size of the latter [43]. Its non-self-averaging nature gives
rise [5] to strong sample-specific mesoscopic fluctuations.

The full fledged quantum mechanical analysis of the interplay between chargeU(1) and transverse
SO(2) fluctuations is given in [47, 48]. Skipping the details of thefield-theoretical treatment of the Uni-
versal Hamiltonian based on0 + 1 functional bosonization approach, I present below the key prediction
for the Tunneling density of states.

The conductancegT is related to the TDoSν through

gT =
e

h̄

∫

dǫν(ǫ)Γ(ǫ)

(

−∂fF

∂ǫ

)

wherefF is the Fermi distribution function at the contact andΓ is the golden rule dot-lead broadening.
The TDoS is written in terms of the QD electrons Green’s Function averaged by both charge and spin
fluctuations and given by [50]

ν(ǫ) = − 1

π
cosh

( ǫ

2T

)

∫ ∞

−∞

∑

σ

〈Gσ

(

1

2T
+ it

)

〉k,meiǫtdt. (18)

where〈...〉k,m denotes a summation over all winding numbers for Coulomb andlongitudinal zero-modes
[51]. Examples for the temperature and energy dependence ofthe TDoS (for variousγ) are depicted in
Fig.4 (right panel). The energy dependent TDoS shows an intriguing non-monotonic behavior at energies
comparable to the charging energyEc. This behavior, absent forJ = 0, is due to the contribution of the
transverse spin susceptibility (see [47, 48] for detail). The oscillating (in real time) factor in the dynamic
transverse susceptibility describes Bloch precessions inan anisotropic easy axis spin model (see Fig.4,
right panel inset). The oscillations are amplified in the vicinity of the Stoner Instability point, and signals
the effect of collective spin excitations (incipient ordered phase). One of possible experimental realizations
of predicted effect is transport measurements in magnetic QD [6].

We have found [47, 48] that (i) As the spin modes renormalize the Coulomb blockade (CB), they modify
the tunneling density of states (TDoS) – hence the differential conductance – of the dot (Fig.4, right panel).
For an Ising-like spin anisotropy the longitudinal mode partially suppresses the CB. Quantum fluctuations,
manifest through the transverseSO(2) modes, act qualitatively in the same way, but as one approaches
the Stoner instability (from the disordered phase) their effect reverses its sign, giving rise to suppression
of the conductance (i.e.,enhancement of the CB). This results in anon-monotonic behavior of the TDoS ;
(ii) The longitudinal spin susceptibility diverges at the thermodynamic Stoner instability point, whilethe
transverse susceptibility is enhanced by gauge fluctuations (but remains finite).

Conclusions

Today, the concept of dynamical symmetry is ubiquitous in many branches of modern physics, such as
quantum field theory, nuclear physics, quantum optics and condensed matter physics in low dimensions.
Quantum dots are especially suitable objects for the group theoretical approach because the fully discrete
spectrum of low-lying excitations in these systems often may be characterized by the definite dynamical
symmetry, and the interaction with the metallic reservoir of metallic electrons in the leads provides a
powerful tool of symmetry breaking.

In this review we concentrated on the spin excitations in quantum dots. We discussed the quantum
transport through the Single Electron Transistor, molecular electronic devices and Nanoelectromechanical
shuttles. Many interesting properties, like thermoelectric transport through few-electron quantum dots [52]
or magnetic control on the Kondo oscillations [53] has not been discussed in this review due to the space
limitations for the publication.
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Another promising class of nanoobject for applications of the ideas of dynamical symmetries which
has not been considered in this paper is spin ladders and spinchains. Such kind of quasi-1D structures
can be fabricated as an array of artificial atoms or nano-crystals. In this case the role of object with
definite dynamical symmetry is played by a single rung or pairof neighboring rungs bound by diagonal
bonds, whereas the longitudinal modes violate this symmetry. The application of of dynamical symmetry
approaches in this field are seldom enough as yet [54]-[60], but the field seems to be really wide.

At the end, I hope to convince the reader of the beauty and relevance of dynamical symmetries in the
transport through the nanostructures and to stress its relation with experiments.
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