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We discuss the manifestation of dynamical symmetries imgum transport through nanostructures. The
dynamical symmetry5O(4) manifested in the singlet-triplet excitations is shown &rbsponsible for
several exotic effects in nano-devices: non-equilibriuon#o effect in T-shape Double Quantum Dots,
phonon-induced Kondo effect in transition-metal-orgacienplexes, Kondo shuttling in Nano-Electro-
mechanical Single Electron Transistor. We consider therjifihy between charg€é (1) and spinSU(2)
fluctuations in the vicinity of Stoner instability point aachon-monotonic behavior of a Tunneling Density
of States in metallic quantum dots. The experiments showimprtant role of dynamical symmetries in
nanostructures are briefly reviewed.
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INTRODUCTION

The single electron tunneling through the quantum dot idistlin many details during the recent decade.
Quantum dot [1, 2], being a little semiconductor box, cardreosmall number of electrons. Quantum dots
are often called artificial atoms since their electronicpamies resemble those of real atoms. A voltage
applied to one of the gate electrodes of semiconductor degaatrols the number of electrons in the dot.
If such number is small (about 10), the properties of the dosanilar to the properties of the atom with
few electrons. If the number of electrons is relatively &agbout 100 and more), the statistics of levels in
such artificial atom is determined by the Random Matrix Thg2}. The system of coupled quantum dots
is similar to an artificial molecule. Fabricating semicoottu devices with different geometries allows to
consider different symmetries associated with the aifiziolecule structure. There are many interesting
effects already experimentally observed in quantum daisttres and many theoretical predictions which
still wait for the experimental confirmation.

Among many interesting phenomena behind the unusual toainsmperties of mesoscopic systems is
the Kondo effect in quantum dots, recently observed expantaily [3]. If the number of electrons trapped
within a dot is odd, the total spin of a détis necessarily nonzero and has a minimum valug at 1/2.
Thus the system resembles a local spin interacting withireleseas associated with metallic reservoirs
(leads). The Kondo effect is a result of exchange interaatfatinerant electrons in leads with the local-
ized spin state in a dot. Being responsible for local spirapption of the electron gas, the resonance
Kondo scattering becomes significant at low temperatures.ahtiferromagnetic exchange interaction be-
tween itinerant electrons and local spins gives rise toipiig of simultaneous change of spin projection
both for electron and spin. As a result, the "Kondo cloud”asnfied out when the temperature goes to
zero. Formation of the "Kondo cloud” or "spin cloud” is duett® screening effects, associated with the
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2 M.N.Kiselev: Dynamical symmetries and quantum transffodugh nanostructures

processes when the free electron gas tends to screen theticagoments of the localized state. This
phenomenon is responsible for the non-monotonic temperatehavior of the resistivity of metals with
magnetic impurities at low temperatures (e.g. in many héanrgion (HF) compounds). The inter-metallic
alloys and HF compounds usually contain rare-earth atomighamakes it difficult to produce the sample
with adjustable parameters. In contrast, the modern n&ase technologies allow one to produce the
highly controllable systems based on quantum dot deviceégpasasessing many of properties of strongly
correlated electron systems.

Yet another interesting property of quantum dots is assaediaith the magnetic correlations between
electrons confined in this nano-scale object. The questiathver the itinerant ferromagnetism may occur
in finite-size system in a presence of disorder attracts afl@ttention of theorists (see, e.g [5]) and
experimentalists [6]. The simplest model of ferromagmetiis metallic systems was proposed by Stoner
long time ago [4]. The physical mechanism behind the intalis analogous to the familiar from atomic
physics Hund’s rule. The magnetic ordering in this modegtailace when the increase of orbital energy
due to promotion of electrons to higher energy states islentlan the energy gain due to the exchange
interaction. As soon as this happens, the system becomésbiensvith respect to the transition to a
state with the nonzero total magnetization. In contrastuiéx nagnetic system where both orbital and
exchange energies are self-averaging quantities, in d émesoscopic) systems they are sample specific.
Therefore, one may expect strong mesoscopic fluctuatioasriatallic quantum dots in the vicinity of the
Stoner instability point. It is known, that in disorderedtale the interaction between electrons in states
which are close in energy is enhanced due to increase retabralpility and may satisfy the instability
criterion for a weaker bare interaction. However, the goastow the properties of isolated quantum dot
as well as transport properties are affected by the disoemeains open.

The main goal of this paper is to demonstrate the relevandgredmical symmetries [7] on the trans-
port through the nanostructures and review last years pssgn the analysis of the interplay between
symmetries and strong correlations at the nanoscale. Weralie on the role of dynamical symmetries in
a special discipline of condensed matter physics, whicéreninder the name of correlated impurity prob-
lem. Itis concerned with the physics which is exposed whersytstem is composed of strongly correlated
localized electrons on the one hand and itinerant elecwarthe other hand. We will review the role of
dynamical symmetries and its manifestation in quantum,detsiconducting nano-clusters and molecular
electronic devices. As it turns out, the concept of dynahsigammetries is meaningful also in systems out
of equilibrium, and the case of dynamical symmetries atdifrie¢quencies will also be addressed.

The paper is organized as follows. In the Section | discussdymamical symmetries affect the trans-
port through the semiconductor few-electron quantum dotsthe molecular transistors. Section Il is
devoted to a description of magnetic instability in the rigtguantum dots. In conclusions the summary
of discussions will be given and the perspectives of futesearch will be discussed.

1 Kondo effect and dynamical symmetries

1.1 Double Quantum Dot

The first example of the manifestation of dynamical symrestis the non-equilibrium Kondo effect pre-
dicted [8, 10] and observed [11] in nano-structures charaetd by the interplay between singlet/triplet
excitations. An example of such system is a Double Quantumn(Big.1, left panel). As was noticed
in Ref. [12], quantum dots with eveR” possess the dynamical symmef(4) of spin rotator in the
Kondo tunneling regime, provided the low-energy part ofietion spectrum is formed by a singlet-triplet
(ST) pair, and all other excitations are separated from then@nifold by a gap noticeably exceeding
the tunneling ratd’. A DQD with evenA\ in a side-bound (T-shape) configuration where two wells are
coupled by the tunneling and only one of them (sa¥) is coupled to metallic leadd, R) is a simplest
system satisfying this condition [12]. Such system waszedlexperimentally in Ref.[13]. Novel features
introduced by the dynamical symmetry in Kondo tunnelinga@menected with the fact that unlike the case
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of conventionalSU (2) symmetry of spin vecto8, the SO(4) group possesses two generatrandP.
The latter vector describes transitions between singléti@plet states of spin manifold (this vector is an
analog of Runge-Lenz vector describing the hidden symnadthydrogen atom). As was shown in Ref.
[14], this vector alone is responsible for Kondo tunnelihgptigh quantum dot with eveR” induced by
external magnetic field. The Hamiltonian describing Konfleat in DQD is given by

0.1
Left lead (L)
W

Wt (O H :
W

Right lead (R)

Fig. 1 (Color online) Left panel: Double quantum dot in a side-lwonfiguration. Central panel: cotunneling
processes in biased DQD responsible for the resonance Kandeling. Right panel: Typical shape of the differential
conductance as the function of source-drain lbiis The asymmetry of the conductance peak is attributed tcefinit
repopulation of the triplet state fel” > A and also due to additional decoherence mechanisms aszbuiih the
triplet-triplet relaxation [8]. Insert shows the RG eqoas for the coupling constants defined in (1). The solution of
these RG equations is given by (2).

Hipy = Z[(J;Fa/s + J5TP) - sqar + J5 N¥n04/] (1)

aa’

Here sua =311 Choo™Chiaro’s Moo= jir Chag LCk/aos 75 1 are the Pauli matrices and unity matrix
respectively. The constant’, J57 and.J® stand for the interaction between the total spin of the&jot
and the electrons in the leads= L, R.

We deal with the case, which was not met in the previous stuafi@on-equilibrium Kondo tunneling.
The ground state of the system is singlet, and the Kondo tingni@ equilibrium is quenched & ~ A,
whereA = Ep — Eg stands for the energy difference between the ground ($)rayhel excited (triplet)
states. Thus, the elastic Kondo tunneling arises only gemi’x > A in accordance with the theory
of two-impurity Kondo effect [12, 15]. However, the energgcessary for spin flip may be donated by
external electric fieldV applied to the left lead, and in the opposite lifiit < A the elastic channel
emerges atV =~ A. The processes responsible for resonance Kondo cotugratlfinite bias are shown
in Fig. 1 (central panel).

In conventional spir6 = 1/2 quantum dots the Kondo regime out of equilibrium is affedigdspin
relaxation and decoherence processes, which emergié a+ Tk (see, e.g., [16, 17, 18, 19]). These
processes appear in the same order as Kondo co-tunnekifgdisd one should use the non-equilibrium
perturbation theory (e.g., Keldysh technique) to take th@maccount in a proper way. In our case these
effects are expected to be weaker, because the nonzeraagnssinvolved in Kondo tunneling only as
an intermediate virtual state arising due to S/T trans#timduced by the second term in the Hamiltonian
(1), which contains vectaP. The effects of repopulation of triplet state by externalsil” have been
considered in details in [8]. It has been found thatGox eV < A the repopulation of the triplet state
is exponentially small. For large biaseg > A the effects of repopulation of the triplet state lead to
and inelastic cotunneling and should be taken into accolimse effects [8] lead to strong anisotropy of
conductance line-shape (Fig.1 right panel). The methogteimented for a weak-coupling Kondo regime
in [8] are not applicable for the quantitative and even datiie description of the nonequilibrium effects
(full nonlinear conductance etc) at large biagds — A| > A. The kinetic equation approach based on
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4 M.N.Kiselev: Dynamical symmetries and quantum transffodugh nanostructures

Schwinger-Keldysh diagrammatics [9, 10] might be appmtpriool to describe the regime of strong out
of equilibrium in double quantum dots.

Having this in mind, we describe Kondo tunneling through D@minite eV ~ A within the quasi-
equilibrium perturbation theory in a weak coupling regiroe the quasi-equilibrium approach to descrip-
tion of decoherence rate at larg¥ in Ref. [17]).

Using a Renormalization Group (RG) technique [8] based omi-$ermionic representation O (4)
group generators [9, 10, 20] we find the following scalingetegencies of the exchange integrals:

T , = Jg JST, — JégT JS — JS—§p(JST)2
1—pJTIn(D/T) "> 1 —pJI In(D/T)” "R 70 4770

In(D/T)
1—pJEIn(D/T)
)

Herea = L, o’ = L, R andp is the density of states at the Fermi level of the contactsadherized by ef-
fective bandwidthD. One should note that the Kondo temperature is determinétjgt-triplet processes
only in spite of the fact that the ground state is singlet. @nés from (2) thatl=Dexp[—1/(pJT)].
This temperature is noticeably smaller than the "equilibri Kondo temperatur&'x,, which emerges in
tunneling through triplet channel in the ground state, rgriige ~ T2,/D. The reason for this differ-
ence is the reduction of usual parquet equationg¥erto a simple ladder series. In this respect our case
differs also from conventional Kondo effect at strong bitg|[ where the non-equilibrium Kondo temper-
atureT™* ~ T%,/eV arises. In our model the finite bias does not efitgrbecause of the compensation
eV ~ A in spite of the fact that we take the argument eV in our RG equations [8].

The differential conductandg(eV, T)/Go ~ |J:%|? (cf. Ref. [21]) is the universal function of two
parameterd’ /Ty andeV /Ty, Go = e?/7h:

o,

G/Go ~ In"? (max[(eV — A),T]/Txk) (3)

The resonance tunneling "flashes’e&t ~ A and dies away out of this resonance. The decoherence effects
for the finite bias processes have been studied in [8]. Infl2d]gauge theory unifying the decoherence
processes associated with the fluctuations of the constaéhexchange integrals has been constructed .
It was shown that these processes do not suppress the Kdiedbiefthe weak coupling regime and the
non-equilibrium peak in differential conductance remainact.

Aninteresting question which arises here is whether theawrilibrium Kondo effect falls into the class
of strong-coupling regime. It has been extensively studiedng the last few years (see discussion and
references in [18, 19]). The same question when addresssgt®ms characterized by hidden dynamical
symmetries allows a simple and straightforward answerstitong coupling limit is not achievable in this
situation. There is always an energy scale determined byt@nral bias, decoherence effects associated
with AC or effects related to repopulation of the dot whicleyent the system from both one-stage and
two-stage Kondo scenario [23, 22] and suppress the Kondotéff the ground state.

1.2 Molecular transistor

Another example of manifestation of dynamical symmetrsagiven by a Transition-Metal Organic Com-
plexes (TMOC) with a transition metal ion secluded in a lidaage [25, 26]. The cage is in tunnel contact
with metallic reservoirs (surface, STM nanotip, or edgesnetallic wire in electro-migration or break
junction geometry). The left panel of Fig.2 illustratesstietup. We consider a TMOC with even electron
numberN fixed by charge and energy quantization. Tunneling throumgies-molecule devices is a com-
plex phenomenon involving vibrational motion and manytioke processes in metallic leads. Vibrational
effects have been observed in the sequential [27, 28, 2%taodg tunneling regime [30, 31, 32]. Phonon
satellites coexist with resonance Kondo co-tunneling jBGfansport through transition-metal (TM) or-
ganic complexes (TMOC). Kondo effect is a direct maniféstadf strong correlation effects in tunneling
[33].
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Fig. 2 (Color online) Left panel: Electrode tunnel-coupled to arsition-Metal Organic Complex. Charging of the
complex by a tunnel process deforms the outer part of thadigage without strongly affecting the direct coordination
sphere of the metal ion and thereby the ligand-field spijttiWe assume that the extra electron is localized mainly
on the cage. Electrons tunnel onto the ion through the thilssomolecular state centered on the ion, which includes
admixtures of the outer shell electronic states. Therdfaenain effect of the charging is tiadulation of the tunnel
barrier between the ion-centered states and electrode. Right:paéyyatal shape of the differential conductance as
the function of source-drain biad”. The central peak corresponds to Zero-Bias Anomaly whitettbo finite bias
peaks are attributed to the non-equilibrium Kondo effect.

The ground state of TMOC is supposed to be a spin singlet, leme@rnergy of the lowest triplet ex-
citation A exceeds Kondo temperatufg,. The linear conductance is thus suppressed. To investigate
how intramolecular vibrations mawpduce transport through a Kondo effect, in the first place one ghoul
incorporate a vibronic mode in a generic tunneling Hamilian

H = Hmol + Hres + Htun (4)

Here H,,,; includes the3d electron levels in a ligand field of the cage electrons, théeemdar orbitals of
these ligands, as well as interactions within 3deshell and within the cage. One should take into account
the three most relevant charge states including their digere on the vibrational coordinate of the cage

Q:
Hypot = HYY + HY + BV 41, (5)

The last ternil;, is the kinetic energy of the cage distortion. The eigenstateHéNﬂ) are admixed to
those ofH (") by the tunneling,.,,, of electrons from the reservolf, ..
The effective Hamiltonian accounting for dynamiéad(4) symmetry has the form

1
Hepp = Hrew+ 5AS” +J7S 5+ 7P s + T, (6)

The electron spin operator is given by the conventional esjoas = >, >, ¢ Toorcrror Where

T is the Pauli vector. The exchange coupling constarts” (Q) describe the Q-dependent resonance
scattering of the electrons in the leads on the Sa(4) multiplet. The main source of phonon emis-
sion/absorption in our case is the tunneling rate. Expandift (Q) = J°T + jpQ in the quantized
displacement operat@p = (b' + b)/+/2 and assuming that the optical phonon mode is approximated by
single Einstein phonon with frequenfywe come to phonon assisted exchange Kondo Hamiltonian.
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6 M.N.Kiselev: Dynamical symmetries and quantum transffodugh nanostructures

We calculate the phonon assisted Kondo-renormalizatitimeodlifferential conductaned /dV ~ ||?
[25, 26] using the RG technique developed in [8]:

lo D
&\ max[T, |A — hQY[]

D
_JT
b Aplos (max[:p, A hﬂu)

Here A~1 is a constant determined by spin algehiais the effective width of the electron conduction
band ang is the density of states on the Fermi level. The Kondo tenpszaxtracted from this equation
readsTKwDexp(—l/(ApJT)). One concludes from these calculations that the singlexphprocesses
are sufficient to compensate the energy of the S/T splittimdyinduce resonance tunneling through the
TMOC provided the local vibration mode with appropriateguency satisfying the condition

|hQ — A ~ Tx ®)

v~ (jr)°p @)

exists in the cage. One can expect in this case a significaaneement of the tunnel conductance already
atT > Tx according to the law /Gy ~ In~?(T/Tk) [33], whereG) is the conductance at unitarity
limit T — 0. We emphasize that in spite of the fact that the Kondo effeist®in our casenly under
phonon assistance (c.f. [34]), the Kondo temperatufEx is the same as in the usual Kondo effect. Since
Tk is high enough+ 10 K) in electro-migrated junction experiments with a TMOC dsjted between
contacts [30, 31], the effect predicted in this work seemset@asily observable. The crucial point is the
existence of phonon satisfying condition (15) in a TMOC viite S/T multiplet as a lowest spin excitation.
One should note, however, that even if this condition is xac#y satisfied, one may tune the system by
applying the magnetic field. Then the triplet is split, andyahe level £ _; = Er — E is involved

in the phonon induced Kondo tunneling £ is the Zeeman energy). In this cadein (15) is substituted
for Ay = A — Ez, andEz may be tuned to satisfy the inequality (15). Thus the vibragives rise to

a magnetic field induced Kondo effect at Zeeman energieshnddaa be much smaller thah. The only
difference is that in this case the effective spin of the TMi®Gne half instead of one [35].

The differential conductance as a function of the kilsis shown in Fig.2 (right panel). The central
peak is suppressed @ ~T'x due to the decoherence effects associated with the elgatticrent across
the TMOC. The conductance grows agaire®t—A, due tonon-equilibrium effects occurring when the
resonance tunneling is restorect&t=A [8]. One of essential ingredients of our theory is that wethse
dynamical symmetry of the TMOC, which characterizes bogéhdpin algebra of localized spin itself and
transitions between various levels of different spin npldtis [12].

1.3 Kondo shuttle

The Nano-Electromechanical (NEM) devices represent yatten class of nanostructures where the mani-
festations of dynamical symmetries can be seen in the toshspperiments [36]. Building on the analogy
with shuttling experiments of [38, 37], we consider the dewivhere an isolated nanomachined island
oscillates between two electrodes (Fig.3, left panel). Wdayever, are interested in a regime where the
applied voltage is low enough so that the field emission ofynedectrons, which was the main mechanism
of tunneling in those experiments, should be neglectede Nwther that the characteristic de Broglie wave
length associated with the dot should be much shorter th@oaldisplacements allowing thus for a clas-
sical treatment of the mechanical motion of the nano-partithe conditiom:Q2<« Tk, necessary to elimi-
nate decoherence effects, requires for e.g. planar quashdtenwith the Kondo temperatuig,~100mK,

the conditior2~1G H = for oscillation frequencies to hold; this frequency rargiexperimentally feasible
[38, 37]. The shuttling island then is to be considered as alifa quantum impurity”, and transport ex-
periments will detect the influence of mechanical motion alifferential conductance. If the dot is small
enough, then the Coulomb blockade guarantees the singlkearidéunneling or cotunneling regime, which
is necessary for realization of Kondo effect [33, 39]. Cateling process is accompanied by the change
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of spin projection in the process of charging/dischargifithe shuttle and therefore is closely related to
the spin/charge pumping problem [40].

) L W2

Conductance G/Gy

0 1  Temperature T/T},

Fig. 3 (Color online) Left panel: Nanomechanical resonator whig ddd number of electrons as a "mobile quantum
impurity”. Right panel: Differential conductance of a KandhuttleI'o /U=0.4. Solid line denotes for the shuttle
I'r=I'r, A=\, dashed line: the static nano-islahd = I'r, A=0, dotted line:I'z, /T k=0.5, A=0. Insert shows
the time oscillations of 'k for small A=0.05)\, (dotted line) and largel=2.5X, (solid line) shuttling amplitudes.

The Hamiltonian of the shuttl®/ = Hy+ Hy,,,, IS given by

Hy = Zakgackgackga —I—Z —eé‘xd o dic + Un?

Hyn = Z T (2)[c}y o dio + H.c, (9)

iko,«

& is the electric field between the leads. The tunnelling mﬁiemenﬂﬂéf)R( )= (Z}g)exp[:Fx( t)/ o),
depends exponentially on the ratio of the time-dependepialtement:(¢) (which is considered to be a
given harmonic function of the time) and the electronic &iimyg length),.

We begin with the discussion of an odd, S = 1/2, case. Then only the state withk-1 retains
in (9), and hereafter we omit this index. In order to find anlgi@solution, we assume that if(¢)
varies adiabatically slow (on the scale of the tunnelindnaeging time), there is no charge shuttling due
to multiple recharging processes [41], but the Kondo reso@@otunneling occurs. The time-dependent
tunneling width s, (t) = 2mpo|Tw (x(t))|? [21], wherepy is the density of states at the leads Fermi
level. The adiabaticity condition read#0< Tk <T', with T=min[/T% () + '%(¢)]. We apply the
time-dependent Schrieffer-Wolff transformation and abtae time-dependent Kondo Hamiltonian [21]
as

whereck , dJr create an electron in the leag=L, R, or the dot levek;_; o, respectivelyp=>". d!_dig,

I |
H= HO + Z jao/ (t) [UUU’S + 1500’]0207ack’0’,a’ (10)
kao,k’a’c’

whereJ o (t)=1/Ta ()T o () /(1po Ea(t)) andS=21d} &5, d, . In the adiabatic regime the time can be
treated as an external parameter, and the renormalizatiop g@quations for the Hamiltonian (10) can be
solved the same manner as those for the equilibrium [21]. Aesalt, the Kondo temperature becomes
time oscillating:

U

Tr(t) = D(t) exp | — 8T cosh(2x(t) /o)

(11)
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Neglecting the weak time-dependence of the effective badttwD (t)~D,, we arrive at the following
expression for the time-averaged Kondo temperature:

U sinh?(z(t) /o)
4T 1 + 2sinh®(x(t) //\0)] > (12)

(Tic) = T?(<exp [

Here(...) denotes averaging over the period of the mechanical aseillaThe time-dependence of the
Kondo temperatures results in a remarkable effect: the etitign between Breit-Wigner (BW) resonance
responsible for the transparency of the nano-device andbhi&osov-Suhl (AS) resonance related to the
quasi-particle Kondo peak occurring at the Fermi level eflgads. While BW resonance has a maximum
at the most symmetrical reginig, = I'r corresponding to the central position of the island in itssical
trajectory, the sharpest AS resonance occurs at the tupaimgs of the trajectory when the Kondo tem-
perature reaches its minimal value. In the weak couplingmed ***<T'< D, the zero bias anomaly
(ZBA) in the tunneling conductance is given by

16 Tr(t) +Tr(t))? [In(T/Tk(t))]?

The two competing effects of BW and AS resonances lead to fieetiee enhancement aff at high
temperatures (see Fig.3, right panel):
Gk  G(T)-G% 0Tk 1

Gy Gy TR W(T/TR)

(14)

Next we turn to the case of evéi in the island. In this case one may refer to #xeited-state Kondo
features [39], where the KR tunneling is possible only during the timkervals where

Agr(t) = 6(t) — Jeu (t) < Tk (2). (15)
The level spacing(t)=e¢2(t)—e;1 (t) may reduce due to the tunneling-induced Friedel shift
() = 0 () ()2 _pode_
a) == T ke e )

providedT§2)>T§1), which is usually the case [39]. This effect is maximal néwr turning points of
shuttle motion. Thus, if the condition (15) is valid for ther@in time intervals during the oscillation
cycle, the Kondo tunneling is possible for a part of this eyakhere the shuttle is close to one of the
leads. It should be emphasized that in this regime only thekveupling Kondo effect may be observed
atT>Ty, whereas af’—0 the triplet state is quenched and the dot behaves as a zero@po-particle
[23]. The full scale Kondo effect may arise only if the vaidatof |Tc(f)(t)|2 induces the crossover from a
singlet to a triplet ground state of a shuttle. The singiptét crossover induced by the variation of gate
voltages was observed on a static planar dot [42]. Unlikereotional level crossing, this crossover does
not violate adiabaticity because it conserves$ii¥4) symmetry of singlet/triplet manifold [12, 39].

2 Stoner instability and dynamical symmetries

As one decreases the effective dimensionality of a condutte role of electron-electron interactions —
notably in the charge and spin channels — is enhanced. Iniomension {=1) these two channels, re-
sponsible for a widely ranged spectrum of effects, ofterodpte. It is of obvious interest to study the
counterpart of this physics id=0 quantum dots (QDs). An easily accessible scheme is the Busa
Hamiltonian” [2, 43] where, in addition to the (impurity aggdometry dependent) single-particle Hamilto-
nian, only zero-mode interactions (charge and spin (ex@#gn our case) are included. The former leads
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to the phenomenon of the Coulomb blockade, while the lagi@dd to the Stoner instability [4] which is
modified in mesoscopic systems [43]. Attention has beenngieehe intriguing interplay between the
chargeU (1) [46] and the spinSU (2) [47, 48] channels. This is manifegtg., in the suppression of cer-
tain Coulomb peaks due to "spin-blockade” [44]. In a recéebretical study [45] the effect of the the
spin channel on Coulomb peaks has been analyzed employirgstemequation in the classical limit.
Notwithstanding the success of this approach, quanturnatefiee expected to play an important role. A
full fledged quantum mechanical analysis of the chargeigpénplay in zero dimensions is thus called for
[47, 48].

Our QD of linear sizel. is in the "metallic regime” (either diffusive/(< L) or ballistic-chaotic { ~
L)). The Thouless energy and the mean level-spacing satisfyE, /A > 1. We consider the following
terms of the Universal Hamiltonian:

H=> eqal 000+ Ho+ Hs. (17)

a,o

The spin ¢) degenerate levels of the single-particle Hamiltonianyaibe Wigner-Dyson statistics. For
simplicity we confine ourselves to the Gaussian Unitary Biise (GUE) case. The charging interaction
He = E.(n— NO)2 accounts for the Coulomb blockade. Hérés the number operatory, represents
the positive background charge and is tuned to the Couloifdyv@gime. The term

e |(g) o {(5) < (5)

—

represents spirﬁw/:%zaag_’gowl a,. .’ interactions within the dot. Below we allow for an easy axis
anisotropy,y=J, /J<1, reducing the originabU (2) symmetry toSO(2). There are several possible

sources for such an anisotropy: geometrical, moleculasoamtipy etc. The degree of anisotropy can
be controlled by introducing magnetic impurities into tlystem, or by applying anisotropic mechanical
pressure [49].

| =
- o
. /! %
3 A ll =
5 T S
§ 0 1 2 | - = =
‘g 5, ~ J / I 'g
2 | 20 | a )
= = Suppression
‘ |

0 05 J/A \ 0

1
Mesoscopic Instability Thermodynamic Instability Energy F/E
c

Fig. 4 (Color online) Left panel: Spin of the ground stéffg as a function of the spin exchange coupling. The inset
shows spin configurations for the = 0, 1, 2 states. Right panel: The spin normalized tunneling dertditstates
shown as function of the energy./T" = 10. Dashed curve:J = 0. Solid curve: J/A = 0.92, J/T = 0.1,

~ = 0.93. Left inset shows the QD setup. Right inset shows the spatiost on the Bloch sphere.

We recall that beyond the thermodynamic Stoner instalydint, J;, = A (see Fig.4, left panel),
the spontaneous magnetization is an extensive quantitysn#stler values of the exchange coupling,

(© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Jmesoscopic < J < Jup, finite magnetization shows up (see the inset on the leftlpsrteég.4), which, for
finite systems, does not scale linearly with the size of thttedg43]. Its non-self-averaging nature gives
rise [5] to strong sample-specific mesoscopic fluctuations.

The full fledged quantum mechanical analysis of the intgrjpletween chargé/(1) and transverse
SO(2) fluctuations is given in [47, 48]. Skipping the details of fredd-theoretical treatment of the Uni-
versal Hamiltonian based dh+ 1 functional bosonization approach, | present below the kegiption
for the Tunneling density of states.

The conductancey is related to the TDo% through

o= < / dev(e)T () <—85ﬁ>

where fr is the Fermi distribution function at the contact dnds the golden rule dot-lead broadening.
The TDoS is written in terms of the QD electrons Green’s FHoncaveraged by both charge and spin
fluctuations and given by [50]

vie) = —% cosh (%) /0:0 Z(Gg <% + it>>k,mei“dt. (18)

where(...); ,» denotes a summation over all winding numbers for Coulomblamgitudinal zero-modes
[51]. Examples for the temperature and energy dependenttedfDoS (for variousy) are depicted in
Fig.4 (right panel). The energy dependent TDoS shows aigiritrg non-monotonic behavior at energies
comparable to the charging enerfly. This behavior, absent fof = 0, is due to the contribution of the
transverse spin susceptibility (see [47, 48] for detaiheDscillating (in real time) factor in the dynamic
transverse susceptibility describes Bloch precessiomianisotropic easy axis spin model (see Fig.4,
right panel inset). The oscillations are amplified in thanity of the Stoner Instability point, and signals
the effect of collective spin excitations (incipient ordéiphase). One of possible experimental realizations
of predicted effect is transport measurements in magnddi¢gD

We have found [47, 48] that (i) As the spin modes renormaliee3oulomb blockade (CB), they modify
the tunneling density of states (TDoS) — hence the difféemeoonductance — of the dot (Fig.4, right panel).
For an Ising-like spin anisotropy the longitudinal modetjadly suppresses the CB. Quantum fluctuations,
manifest through the transvers®(2) modes, act qualitatively in the same way, but as one appesach
the Stoner instability (from the disordered phase) thdeatfreverses its sign, giving rise to suppression
of the conductance (i.eenhancement of the CB). This results in aon-monotonic behavior of the TDoS;
(ii) The longitudinal spin susceptibility diverges at the thermodynamic Stoner instability point, white
transverse susceptibility is enhanced by gauge fluctuations (but remains finite).

Conclusions

Today, the concept of dynamical symmetry is ubiquitous imynaranches of modern physics, such as
quantum field theory, nuclear physics, quantum optics amdl@ased matter physics in low dimensions.
Quantum dots are especially suitable objects for the grbepretical approach because the fully discrete
spectrum of low-lying excitations in these systems oftely io@a characterized by the definite dynamical
symmetry, and the interaction with the metallic reservdinmtallic electrons in the leads provides a
powerful tool of symmetry breaking.

In this review we concentrated on the spin excitations innfua dots. We discussed the quantum
transport through the Single Electron Transistor, mokacelectronic devices and Nanoelectromechanical
shuttles. Many interesting properties, like thermoelettansport through few-electron quantum dots [52]
or magnetic control on the Kondo oscillations [53] has natrbdiscussed in this review due to the space
limitations for the publication.

(© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Another promising class of nanoobject for applicationshaf ideas of dynamical symmetries which
has not been considered in this paper is spin ladders andtkpins. Such kind of quasi-1D structures
can be fabricated as an array of artificial atoms or nanctalss In this case the role of object with
definite dynamical symmetry is played by a single rung or p&ineighboring rungs bound by diagonal
bonds, whereas the longitudinal modes violate this symm@&tre application of of dynamical symmetry
approaches in this field are seldom enough as yet [54]-[@d}he field seems to be really wide.

At the end, | hope to convince the reader of the beauty andaete of dynamical symmetries in the
transport through the nanostructures and to stress itsoelaith experiments.
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