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In the present note we expand on some important steps of the derivation. For the convenience of the reader we
include here a guide, relating specific comments/steps in the main text to certain equations in the Supplementary
Material.

1. Canonical partition functions: see Egs. (32), (38).

2. Wei-Norman-Kolokolov (WNK) representation: see Section III.
3. Differences of our y from previous works: see Section VI.

4. Full distribution function of S§? : see Section VIIL.

5. Steps in the derivation of the TDOS and the partition function: see Sections I-V.

I. CHARGE AND SPIN SEPARATION

Employing a Hubbard-Stratonovich transformation of the original action Sio, the one-particle Green function
(11 > 72) can be written as
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where we remind
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Then, (5(7') + 2mmT can be gauge away by unitary transformation of the fermionic fields. The one-particle Green
function becomes
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Here 715 = 71 — 7 and the so-called Coulomb-boson propogator reads?3
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The one-particle Green function and the partition function
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are taken with respect to the action
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Performing integration over ®, we find that the one-particle Green function G, (712, ¢o) and the partition function
Z(¢g) corresponds to the problem with hamiltonian
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where €, = €, — pt + i¢pg.

II. WEI-NORMAN-KOLOKOLOV REPRESENTATION

The equation for time evolution operator for the time dependent Hamiltonian H (t)
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with initial condition U(0) = 1 can be represented by a finite product of n exponential operators*. The index n is a
dimension of the Lie algebra generated by H(t) where the Hamiltonian is assumed to be linearly dependent on the
group generators. The general formalism of time evolution operator construction is known as Wei-Norman method?.
The particular parametrization of the time-evolution operator for SU(2) group is due to Kolokolov®.

Consider a time-evolution operator for the system with linear realization of dynamical SU(2) symmetry described
by the Hamiltonian

H(t)=06(@t)-5 (11)

The solution of (10) can be parameterized as

U(t) = exp(f(t)S™) exp(h(t)S?) exp(g(t)S™) (12)

where S* = S* £iSY and S* are three generators of SU(2) group. Functions f(t), h(t) and g(t) satisfy the system
of differential equations
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with initial condition f(0) = h(0) = ¢(0) = 0. This system can be easily obtained with the help of Hausdorf
formula®. The solution of the system (13) depends on the solution of the single Riccati equation (first equation in
(13)). Parametrization of (13) by three new functions xi, p; defined as
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leads to the Kolokolov® representation of the time-evolution operator
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The initial condition f(0) = 0 is translated to x*(0) = 0. The initial conditions g(0) = h(0) = 0 are satisfied by
construction of functions x; and p;.



III. EVALUATION OF Ko (t+,t—) AND Z

The evolution operator K., (t4,t_) can be written as (see the main text)
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where Co» and B, are given in terms of single-particle traces:
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The expression for Z can be obtained from Eq. (16) by the substitution of B, for Cus:
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Evaluation of the single-particle traces yields

CaT — o 2Ziéaty Z eig(,tpe%’ [32 dtpp(t) (19)

and
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The expression for B, is bilinear form of the fields KJ;_ and k, . Due to specific form of the initial conditions, they
have simple dynamics and can be integrated out exactly®. The resulting functional integral over fields p, is of the
Feynman-Kac type. After introducing the following variables
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it can be written as
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of the one-dimensional quantum mechanics is exactly solvable. Its eigenfunctions are spanned by modified Bessel
functions Ko;,:

v|€) = \/ vsinh(27v) Ko, (e 5/2 (25)



where v is real parameter and corresponding eigenvalues are equal to Jv2. In a similar way the expression (18) for
the partition function becomes
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Evaluating the integrals over £, and £_ in Egs. (22) and (26) with the help of the following identity
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IV. EVALUATION OF THE PARTITION FUNCTION ~
The partition function Z is given as (see the main text)
2= [ o 5 oo’ 5 (30)
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Performing first integration over h in Eq. (30) with the help of the following idenitity?
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and then integration over ¢ we obtain Eq.(4) of the main text.
At temperatures § < T < pln J, /T, we find
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Performing integration over h and, then, over ¢ in Egs. (31) and (30), we find
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V. EVALUATION OF THE TDOS v(e)

The exact one-particle Green function in the imaginary time is given as (see the main text)
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Performing first integration over h in Eq. (37) with the help of the following idenitity®
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Here n = ny +n; and m = (ny —n;)/2. For the symmetry reasons, the expression for G| (7 > 0) is also given by
Eq. (39). By using general expression®
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we find Eq.(3) of the main text. At temperatures § < T < p/In(J,/T) we can use approximation similar to Eq. (33)

for Z,(eq). Performing integration over h in Eq. (37) and, then, over ¢ in Eq. (36), we obtain Eq.(3) of the main
text.

VI. COMPARISON OF THE SPIN SUSCEPTIBILITY X WITH THE PREVIOUS RESULTS

The spin susceptibility X can be found from the partition function
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By using Eq. (35), for 6 < T' < p/In(J,/T) we obtain (see Eq.(5) of the main text):
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It implies the following result for the average total spin:
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The average total spin (S2) has been calculated in Ref.” near the Stoner instability, § — J < d. In our notations, the
result of Ref.” at T >> J, becomes (see Eqs.(4.8), (4.13b), (4.15) of Ref.”)
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where numerical coefficients ¢y = 1, ¢; = /7/4, and ¢y = 0.238 for unitary ensemble and ¢y = 1, ¢; = \/ﬂ/ll, and
ca ~ 0.227 for orthogonal ensemble. The result (44) of Ref.” contradicts our result (43) in which ¢g = 3/2, ¢; = 0 and
¢ = 1/6 are independent of the ensemble statistics of the single-particle levels. The reason for this disrepancy is not
clear now. According to Ref.”, at T = 0, (see Eq.(4.19) of Ref.”)
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As one can see from Eq. (43), our result for T < .J, smoothly interpolates into result of Ref.” for T' = 0.

Our result for ¥ implies that the magnetic field tends to zero first ( before, e.g., temperature). The result found
by Schechter® is valid in the limit of vanishing temperature but finite magnetic field (provided an additional coarse
graining is performed). Generalization of Eq. (42) to finite magnetic field resembles the result of Schechter at magnetic
fields larger than temperature®.

VII. THE DISTRIBUTION FUNCTION FOR (S2)

The average moments of the total spin can be found from the partition function Z (see Eq.(4) of the main text) as
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It can be characterized by the distribution function Pg2(x):
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If we explicitly indicate the dependence of Z on J then the distribution function is given as
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By using the result (35) which is valid at temperatures § < T' < p/In(J,/T), we find near the Stoner instability,
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To characterize this asymmetric non-Gaussian distribution we present the results for skewness

(82— (8%)°) _ VT(J, +27) {SF\/QT/J*, T < J., (50)
2 J. < T,

"= e (e L LT

and excess kurtosis

(51)

_ (S22 _ | T@L 43T _ [uT)),  T<
PEUST (S22 T Y, 3T 4, J, <T.

K.B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).

A. Kamenev and Y. Gefen, Phys. Rev. B 54, 5428 (1996).

N. Seldmayr, I.V. Yurkevich, I.V. Lerner, Europhys. Lett. 76, 109 (2006).

J. Wei and E. Norman, J. Math. Phys 4, 575 (1963).

I.V. Kolokolov, Ann. Phys. (N.Y.) 202, 165 (1990); M. Chertkov and I. Kolokolov, Phys. Rev. B 51, 3974 (1994); Sov. Phys.
JETP 79, 1063 (1994).

K.A. Matveev and A.V. Andreev, Phys. Rev. B 66, 045301 (2002).

L.L. Kurland, I.L. Aleiner, B.L. Altshuler, Phys. Rev. B 62, 14886 (2000).

M. Schechter, Phys. Rev. B 70, 024521 (2004).

I. Burmistrov, Y. Gefen, M. Kiselev, and L. Medvedovsky, to be published.

gt W=

© 0w N O



