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TWO CRITICAL VOLTAGE v2 AND v3

In order to find stationary state without perpendicular magnetic fields, we linearize the problem, of stability of the
NEM motion. The equation of motion Eq. (3) in main text can be expressed as three coupled first order differential
equations by representing the time dependent (x, ẋ, qc) as three variables (x, y, z):
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One can find the fixed point of system, {X∗, X∗
+, X

∗
−}, by means of simple algebra from three conditions ẋ = 0, ẏ =

0, ż = 0. The result is: X∗ = (0, 0, v
1+rw

), and X∗
± = (± cosh−1(

v
√

α/d2−1
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), 0,

√

d2

α ). The value of v1 is also obtained

from X∗
±. We evaluate the eigenvalues, λ, of Jacobian matrix for the system of first order differential equations. This

matrix always possesses a real eigenvalue (λ0), and two complex conjugate values λ± for {X∗, X∗
+, X

∗
−}. In Fig. S1,

the X∗
± are shown when v1 < v, and the eigenvalues are presented by red filled dots. The real part of eigenvalues of

X∗
± cross zero at some voltage (v2) as shown in lower inset of Fig. S1 (a).
In order to find crossing point, we evaluate amplitude equation by means of ansatz x(t) = x± + A sin(ωt + φ).

Inserting this function into equation of motion and then averaging over a period with cosωt, and sinωt yields phase
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FIG. S1: Real part (a) and imaginary part (b) of eigenvalues of Jacobian matrix of the system, λ±. The black (red) line
represents λ± evaluated at the X

∗ (X∗
±) as a function of v. Inset of (a): Upper : Large negative real value lambda0 at X

∗

(blue) and X
∗
± (green). Lower: X∗

± in the vicinity of v2
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where F (v, α
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Here, we use first order term in expansion of cosh(x) at x± for qc(t) = v/(1+ rw cosh(x(t))). Typically, rw(= Rw/R0)
can be controlled in the range of rw ≪ 1, since the tunnel resistance R0 is order of GΩ. This condition allow us to

assume 1± rw ≈ 1 which implies, sinh(cosh−1(x)) =
√

x−1

x+1
(x+ 1) ≈ (x + 1). Then, F (v, α

d2 , A, rw) simplifies:
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Using this approximate function F ′(v, α
d2 , A, rw), the amplitude square is obtained from the sum of squared Eqs (S4)

and (S5):
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The values of v2 and v3 can be defined from conditions A2 = 0 for v2, and A2 = x2
± for v3. Applying

1

Q2

0

= 0, one can

rewrite these conditions in terms of v2 and v3;
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We also apply ω = ω0 when constructing the phase diagrams shown in Fig 4(a) of the main text.


