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Abstract

The main goal of this short review is to demonstrate the relevance of dynam-
ical symmetry and its breaking to one of the most active fields in contemporary
condensed matter physics, namely, impurity problems and the Kondo effect.
It is intended to expose yet another facet of the existing deep and profound
relations between quantum field theory and condensed matter physics. At the
same time, the reader should not get the impression that this topics is limited
to abstract entities and that it is governed by complicated and sophisticated
mathematical structures. On the contrary, it will be shown that many of the
concepts introduced below are experimentally relevant. It is one of the rare
occasions where the parameters of a dynamical group (e.g the number n of a
group SO(n)) can be determined experimentally.

We elaborate on the role of dynamical symmetry in a special subdiscipline
of condensed matter physics, which enters under the name of correlated im-
purity problems. It is concerned with the physics which is exposed when the
system is composed of strongly correlated localized electrons on the one hand,
and itinerant electrons on the other hand. Experimentally, it can be realized
in quantum dots and other artificial objects which can be controlled by exter-
nal parameters such as magnetic fields and gate voltages. Recently, impurity
problems have been shown to be realizable also on single molecules. The size of
the pertinent impurities then reduces to nanometers and the relevant scientific
activity is referred to as nano-science. At low temperatures, the most striking
manifestation of impurity problems is the Kondo effect, which is present in bulk
systems and, in the last few years, appears to be an indispensable ingredient in
nano-science.

The relevant Hamiltonian in impurity problem is a generalized Anderson
Hamiltonian which, under certain conditions can be approximated by a gener-
alized spin Hamiltonian encoding the exchange interactions between localized
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and itinerant electrons. If the nano-object is, in some sense, simple, (for ex-
ample, a single localized electron), there is no extra symmetry in the problem.
On the other hand, if the quantum dot is complex in some sense, (for example,
it contains an even number of electrons or it contains several potential wells)
the effective spin Hamiltonian reveals a dynamical symmetry. In particular
it includes, beyond the standard spin operators, new sets of vector operators
which are the analogues of the Runge-Lenz operator familiar in the physics of
the hydrogen atom. These operators induce transitions between different spin
multiplets and generate dynamical symmetry groups (usually SO(n)) which
are not exposed within the bare Anderson Hamiltonian. Like in quantum field
theory, the most dramatic aspects of dynamical symmetry in the present con-
text is not its relation with the spectrum but, rather, the manner in which it
is broken.

We will review the role of dynamical symmetry and its manifestation in
several systems such as planar dots, vertical dots, semiconductor nano-clusters,
and complex quantum dots, and show how these dynamical symmetries are bro-
ken by exchange interactions with itinerant electrons in the metallic electrodes.
We will then develop the concept within numerous physical situations, explain-
ing the concept of dynamical symmetry in Kondo co-tunnelling, including the
interesting case of Kondo co-tunnelling in an external magnetic field. As it
turns out, the concept of dynamical symmetry is meaningful also in systems
out of equilibrium, and the case of dynamical symmetries at finite frequencies
will also be addressed.

1 Dynamical and hidden symmetry in quantum me-
chanics

The concept of symmetry in quantum mechanics has had its golden age in the mid-
dle of the last century. In that period the beauty, elegance and efficiency of group
theory was used in various branches of physics: classification of hadron multiplets,
isospin in nuclear reactions, the orbital symmetry in Rydberg atoms, point-groups
in crystallography, translational symmetry in solid state physics, and so on. At
the focus of all these studies is the symmetry group of the underlying Hamiltonian.
Using the powerful formalism of symmetry operators and their irreducible repre-
sentations, the energy spectrum of any Hamiltonian with a given symmetry could
be found in an elegant and economical way. Exploiting the properties of discrete
and infinitesimal rotation and translation operators, general statements about the
basic properties of quantum mechanical systems could be formulated in a form of
theorems (Bloch theorem, Goldstone theorem, Adler principle, etc). The intimate
relation between group theory and quantum mechanics has been exposed in numer-
ous excellent handbooks (see, e.g. [1]).

A somewhat more subtle aspect featuring group theory and quantum mechanics
emerged and was formulated later on, that is, the concept of dynamical symmetry.
The notion of dynamical symmetry group is distinct from that of the familiar sym-
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metry group. To understand this distinction in an heuristic way let us recall that
all generators of the symmetry group of the Hamiltonian H encode certain integrals
of the motion, which commute with H. These operators induce all transformations
which conserve the symmetry of the Hamiltonian, and may have non-diagonal ma-
trix elements only within a given irreducible representation space of H. On the
other hand, dynamical symmetry of H is realized by transformations implementing
transitions between states belonging to different irreducible representations of the
symmetry group. One may then say that the irreducible representation of the dy-
namical group of the Hamiltonian requires consideration of the energy spectrum as a
whole (see [2] for discussion of various aspects of dynamical symmetries in quantum
mechanics).

A special case of dynamical symmetry in quantum mechanics is that of a hid-
den symmetry, where additional degeneracy exists due to an implicit symmetry of
the interaction. In particular, such hidden symmetry is a characteristic feature of
Coulomb interaction in the hydrogen atom and the isotropic oscillator [3]. This form
of hidden symmetry (implemented by the Coulomb interaction) results from an ex-
plicit invariance of 1/r potentials in a four dimensional energy/momentum space
[4], and manifests itself in the degeneracy of states with different orbital angular
momentum l.

A mathematically compact and elegant way to describe various kinds of sym-
metry operations in many-particle quantum problems is by means of the so called
configuration change operators introduced by J. Hubbard in the context of his sem-
inal work on the ”Hubbard model” [5]. These so called Hubbard operators are
constructed, in fact, in terms of Dirac’s ket/bra operations in the space of eigen-
vectors |Ψ〉 of the Hamiltonian H. In other words, let EΛ be an eigenstate of the
Hamiltonian, that is, (H − EΛ)|Λ〉 = 0. Then a configuration changing operator is
defined as

XΛΛ′ = |Λ〉〈Λ′|. (1)

Following the accepted terminology, we refer to these operators as Hubbard operators.
In the original Hubbard model these operators were intended to describe excitations
in the narrow electron bands under condition that the on-site Coulomb repulsion
exceeds the kinetic energy of electron tunnelling between neighboring sites. Then
the Hubbard operators are termed as Bose-like if the pairs of states (Λ, Λ′) belong
to the same charge sector of the Fock space {Λ} or if the charge of the system N
is changed by an even number ∆N as a result of configuration changes (Λ′ → Λ).
In case of an odd ∆N the Hubbard operator is termed as Fermi-like. Note that the
one-site part H0 of the Hubbard Hamiltonian and the Dirac’s projection operator
P = |Ψ〉〈Ψ| can be rewritten in terms of diagonal Hubbard operators,

H0 =
∑

Λ

EΛ|Λ〉〈Λ| ≡
∑

Λ

EΛXΛΛ , (2)

P =
∑

Λ

XΛΛ. (3)
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The algebra of Hubbard operators is determined by the commutation relations

[XΛ1Λ2 , XΛ3Λ4 ]∓ = XΛ1Λ4δΛ2Λ3 ∓XΛ3Λ2δΛ1Λ4 (4)

and the sum rule ∑

Λ

XΛΛ = 1. (5)

Here the sign − or + is chosen for ”Bose-like” and ”Fermi-like” operators respec-
tively. If at least one operator in the brackets is Bose-like, the minus sign pre-
vails. Spin flips and electron-hole excitations are examples of Bose-like configura-
tion changes, and addition or removal of electron to the system implies a Fermi-like
configuration change. The algebra of Hubbard operators is predetermined by the
right-hand side of Eq. (4). If the commutation relations form a closed set of equa-
tions, one may speak of an algebra, which reflects the dynamical symmetry of the
manifold {Λ}.

To characterize the dynamical symmetry of a quantum mechanical object in
terms of Hubbard operators, we consider a system described by a Hamiltonian H0

whose eigenstates |Λ〉 = |Mµ〉 form a basis for an irreducible representation of some
Lie group G0. It should be emphasized that the interaction is included in H0. Using
the commutation rules (4), one easily finds that

[XΛΛ′ ,H0] = −(EM − EM ′)XΛΛ′ . (6)

for the Hamiltonian (2). The Hubbard operators XΛΛ′ , which describe transitions
between states belonging to the same irreducible representation with EM = EM ′ ,
commute with the Hamiltonian and, according to the general theory of quantum
mechanical symmetries, they form generators of the symmetry group of the Hamil-
tonian H0. If the states Λ and Λ′ belong to different irreducible representations of
the group G0, the corresponding operators X̃ΛΛ′ do not commute with H0. The
whole set of operators XΛΛ′ and X̃ΛΛ′ form a closed algebra, provided the Hamil-
tonian H0 possesses the definite dynamical symmetry group D0. An interesting
case (hidden symmetry) emerges if the interaction part of H0 results an additional
degeneracy of states belonging to different irreducible representations M and M ′:
Certain linear combinations of Hubbard operators, which describe the correspond-
ing transitions form a set of vector operators characterizing the hidden symmetry of
the system. This scenario of emergence of new operators due to the special form of
the interaction is analogous to the appearance of the Runge-Lenz vector operator,
which describes the hidden SO(4) symmetry of the manifold of bound states (closed
orbits) in an attractive Coulomb potential. These operators do not appear explicitly
in the Hamiltonian H0, but rather, enter the Casimir relation, which describe the
symmetry invariants. Another manifestation of dynamical symmetry arises when
an accidental degeneracy of eigenstates occurs, which does not reflect the symmetry
of the Hamiltonian.
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Leaving more detailed discussion of the origin of hidden and dynamical sym-
metries for the last chapter containing the mathematical Addendum, we briefly
describe here several examples of Hamiltonians which exhibit definite dynamical
symmetry. A simple nontrivial Hamiltonian whose associated dynamical symmetry
is characterized by a non-Abelian Lie group is that governing the physics of a pair
of electron spins coupled by an exchange interaction. This Hamiltonian describes,
for example the spin spectrum of hydrogen molecule, as well as spin dimers which
are constituents of various complex molecules, spin ladders, etc. The pertinent spec-
trum of spin excitations consists of a singlet ES and a triplet ET . The energy gap
between these states is due to exchange interaction J = ∆ETS = ET − ES , which
can either be positive (antiferromagnetic coupling) or negative (ferromagnetic cou-
pling). The dynamical symmetry of the {S, T} manifold is that of the SO(4) group.
Two vectors generating this group are constructed by means of Hubbard operators
(6) in the following way:

S+ =
√

2
(
X10 + X0−1

)
, Sz = X11 −X−1−1. (7)

R+ =
√

2
(
X1S −XS−1

)
, Rz = − (

X0S + XS0
)
.

Here S is the spin 1 operator, while the second vector R describes S/T transitions.
Its appearance is due to dynamical symmetry of a spin rotator. Below we call
operators of this type R-operators The corresponding Lie algebra o4 is exhausted
by the commutation relations

[Sα, Sβ] = ieαβγSγ , [Rα, Rβ] = ieαβγSγ , [Rα, Sβ] = ieαβγRγ . (8)

Here (α, β, γ are Cartesian coordinate indices, and eαβγ is the anti-symmetric Levi-
Civita tensor). These two vector operators are orthogonal, S ·R = 0, and the
representation is fixed by the Casimir operator is S2 + R2 = 3. In terms of these
operators the Hamiltonian H0 (2) with Λ = S, Tµ, and µ = 0,±1 acquires the form

H0 =
1
2

(
ETS2 + ESR2

)
+ Const. (9)

In this simple Hamiltonian all states belong to the same spin sector of the Fock
space, N = 1, ∆N = 0.

The second example is again concerned with an elementary object, the Wannier-
Mott exciton. It is also characterized by transitions with ∆N = 0. Here the
manifold {Λ} consists of the ground state (completely occupied valence band and
no excitations, Λ = G with N = 0) and two excitonic states (bound electron-hole
pair in singlet and triplet states, Λ = S, Tµ). The system of Hubbard operators
describing two singlets, one triplet and all allowed transitions between these states
generate (via linear combinations) the group SO(5). Here, beside the vector S
describing the triplet exciton, there are two R-vectors R1,R2 and a scalar operator
A describing G/T, S/T and G/S transitions. Altogether, there are ten operators
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whose linear combinations generate the group SO(5). Explicitly, these generators
are expressed in terms of Hubbard operators as follows:

R+
1 =

√
2

(
X1G −XG1

)
, R1z = − (

X0G + XG0
)
,

R+
2 =

√
2

(
X1S −XS1

)
, R2z = − (

X0S + XS0
)
,

A = i(XGS −XSG). (10)

To close the algebra the commutation relations (8) which are valid for Rlα (l = 1, 2)
should be completed by

[Rlα, R1β] = iδαβA, (11)
[A, Rlα] = iR1α, [A,Slα] = 0.

The system of commutation relations (8), (11) is that of the o5 algebra, and the
manifold {G,S, T} obeys an SO(5) dynamical symmetry. The Casimir operator
determining the pertinent representation of the SO(5) group in this case is S2 +
R2 + R1

2 + A2 = 4. In terms of these operators the exciton Hamiltonian H0

acquires the form

H0 =
1
2

(
EGR2

1 + ETS2 + ESR2
)

+ Const. (12)

Our last example of a relatively simple Hamiltonian possessing dynamical sym-
metry is the s-shell of a hydrogen atom (or hydrogen-like impurity in semiconductor),
with a neutral state H0 and ionized states H± included in the manifold of eigenstates.
Now the index Λ acquires four values, Λ = 0, σ, 2. Here Λ = 0 stands for an empty
s-shell (positive ion H+), Λ = σ =↑, ↓ corresponds to the neutral state H0 occupied
by an electron with spin σ, and Λ = 2 means double electron occupation (nega-
tive ion H+). In this system sixteen operators inducing transitions within a given
charge sector (that is, Xσσ′ , X00, X22) as well as those with ∆N = ±1 (namely,
Xσ0, Xσ2, X0σ, X2σ) and ∆N = ±2 (explicitly X20, X02) are involved in the set of
generators of the dynamical group SU(4). This generic model is interesting per se,
but it also plays an important role in the physics of strongly correlated electron
systems. Indeed, the Hamiltonian H0 (2) with Λ = 0, σ, 2 describes the ”elementary
cell” of the famous Hubbard Hamiltonian [5], and its symmetry properties are the
key ingredient for studying the structure of its excitation spectrum.

In many generic situations, the state Λ = 2 is quenched by strong Coulomb
repulsion between two electrons occupying the elementary shell. The dynamical
group of this reduced Hamiltonian is the group SU(3) with eight generators (two
vectors, R1, and R2 and two scalars A+ and A−):

Rz
1 =

1
2

(
X00 −X↑↑

)
, R+

1 = X0↑,

Rz
2 =

1
2

(
X00 −X↓↓

)
, R+

2 = X0↓ (13)

A+ =
√

3
2

X↑↓, A− =
√

3
2

X↓↑,
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The closed u3 algebra is given by the following commutation relations:

[Rz
i , R

±
i ] = ±R±

i , [R+
i , R−

i ] = 2Rz
i , i = 1, 2

[Rz
1, A

±] = ∓1
2
A±, [Rz

2, A
±] = ±1

2
A±

[R+
1 , A+] =

√
3

2
R+

2 , [R−
1 , A−] = −

√
3

2
R−

2 ,

[R+
2 , A−] =

√
3

2
R+

1 , [R−
2 , A+] = −

√
3

2
R−

1 ,

[R−
1 , A+] = [R+

1 , A−] = [R−
2 , A−] = [R+

2 , A+] = 0,

[A+, A−] =
3
2
(Rz

2 −Rz
1). (14)

The Casimir operator is determined as R2
1 + R2

2 + A+A− + A−A+ = 3/2. In terms
of the above operators the Hamiltonian (2) with Λ = 0, ↑, ↓, acquires the following
form:

H0 =
4
3
E0(R2

1 + R2
2) +

4
3
E1(A+A− + A−A+) + Const. (15)

Here E1 = E↑ = E↓ (in the absence of an external magnetic field). A similar u3

algebra can be constructed for the case where the states Λ = 2, ↑, ↓ are included in
the reduced manifold. If all four states are included in the manifold, the dynamical
group is SU(4).

In the above examples we formally analyzed the dynamical symmetry of sev-
eral simple Hamiltonians without discussing concrete physical situations where this
symmetry may be revealed. One may find other model systems possessing SO(n)
and SU(n) symmetries (see, e.g., [6]), but the above examples illustrate clearly the
general principles of the theory. It is obvious that transitions described by Hubbard
operators X may be activated only due to the presence of an external perturba-
tion, which breaks the symmetry of the Hamiltonian H0. Such perturbation may
affect the low-energy part of the spectrum. Possible physical mechanisms involve,
for example, an interaction with external reservoirs (roughly speaking, a reservoir
is a thermal bath with continuous spectrum).

Another example of a symmetry breaking perturbation which activates a dynam-
ical symmetry is the inclusion of an elementary cell described by the Hamiltonian
H0 into a ladder or a lattice. In both cases the symmetry violation is character-
ized by a definite energy scale δε, and only states separated by an energy gaps
∆ ≤ δε from the ground state are involved in the dynamical processes. External
magnetic field may influence the dynamics of the system by introducing an acciden-
tal symmetry in the spectrum of H0. The high-energy part of the spectrum may
be activated by a time-dependent external field, both electric and magnetic. If this
field is characterized by a frequency Ω, then those states with ∆ ∼ ~Ω are involved.

It is important to emphasize that a quantum mechanical object with rich enough
energy spectrum manifests different types of dynamical symmetry in different ex-
periments. For example, transitions between neighboring charge sectors may be
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involved in spin-related phenomena only as virtual processes. Electron hopping
from site to site in a ladder or a lattice involves transitions with ∆N = 1 and,
maybe spin reversals. Resonance excitation excites only inter-level transitions with
definite energy difference, etc. From the group-theoretical point of view, this ”dy-
namical ambivalence” follows from the fact that the dynamical groups SO(n) and
SU(n) with n > 2 may be presented as a product of several simple groups, and
the corresponding algebras may be presented as direct sums of several subalgebras.
This representation is not unique, and the choice of factorization procedure depends
on the type of interaction breaking the symmetry of the Hamiltonian H0. Several
examples of such reduction will be demonstrated below.

Physical systems of nanometer size appear to be excellent candidates for investi-
gating dynamical symmetry effects. First, one may select a few-particle nano-object
with definite quantum-mechanical symmetry and an easily calculable energy spec-
trum and describe it by the Hamiltonian H0. Second, the interaction of this object
with environment may be changed and controlled by means of various external fields.
Third, one may fabricate artificial nano-objects with non-trivial symmetry proper-
ties and thus, model numerous structures which cannot be found in natural atoms,
molecules or crystals.

The aim of this short review is to analyze the symmetry properties of quantum
dots with due emphasis on the concept of dynamical symmetry. Quantum dots are
nanometer size objects confining a few number of electrons, which are fabricated by
means of advanced technologies from semiconductor materials. Both shape and size
of quantum dot can be controlled and varied. The quantum dot is usually integrated
within an electrical circuit, and the leads or wires connecting the quantum dot with
a voltage source partially play the role of electron reservoirs or thermal baths. The
number of electrons in a quantum dot may be easily tuned by a gate voltage, and
there is no principal difficulty in applying an external magnetic field in any desired
direction. Besides, one may fabricate complex quantum dots . A complex quantum
dot consists of several (simple or elementary) dots with possible electron tunnelling
and/or electrostatic interaction between them. A special example (which we discuss
in the next section)is a periodic array of self-assembled quantum dots.

2 Nanostructures as artificial atoms and molecules

Nanosize quantum dots with controllable occupation and variable configurations are
ideal objects for studying numerous physical manifestations of dynamical symmetry.
Recall that a quantum dot is an artificial structure, which consists of finite number of
electrons confined within a tiny region of space. If the electron de Broglie wavelength
(∼ 13 nm) exceeds the confinement radius, the energy spectrum of electrons in the
dot is discrete. As a result, the dot can be treated as a ”zero-dimensional artificial
atom”.

These nano-objects may be fabricated in numerous ways. Nanosize silicon micro-
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crystallites embedded in a matrix of amorphous SiO2 [7] are examples of quantum
dots obtained by means of three-dimensional quantum confinement. Nanocrystal-
lites preserving the structure of bulk elemental, III-V and II-VI semiconductors were
synthesized by the methods of colloidal chemistry [8]. Defect-free quantum dots of
various shapes can be grown as islands built in highly strained host semiconductors
[9]. In the latter case, quantum dots may form self-assembled periodic or nearly peri-
odic two-dimensional structures. Quantum dots may be fabricated also by imposing
confining electrodes on two-dimensional electron gas formed near the interface of
heterostructures [11]. Such structures are widely used in the experimental studies
of single electron tunnelling and related many-body effects. Quantum dot devices
may be prepared in a form of disks or pillars (vertical quantum dots) [10]. In this
case they preserve the cylindrical symmetry, and the electron energy spectrum ac-
quires the two-dimensional shell structure analogous to the three-dimensional shell
structure of ”natural” atoms. Another example of artificial quantum object is a
nanoscale ring [12].

Further technological advance enabled fabrication of more sophisticated nano-
objects such as (for example) double quantum dots [13]. By this we mean a quantum
dot consisting of two wells coupled by electrostatic and/or tunnelling interaction.
In the same manner that a simple quantum dot is considered as an artificial atom,
a complex structure such as double quantum dot can be looked upon as an artificial
molecule. The closest natural analog is the hydrogen molecule H2 or the corre-
sponding molecular ions H±2 . As far as further complexity is concerned, there is
no principal obstacles against fabrication of composite quantum dots consisting of
more than two wells. They are the artificial analogs of complex natural molecules.

rv vv

left lead right lead
QD

l g

Figure 1: Equivalent circuit for a QD connected to two metallic leads (left and right).
Bias voltage is vb = vl − vr , gate voltage vg regulates the number of electrons in
the QD.

The main experimental tool used for studying of electronic properties of QD is
tunnelling current measurements where the nano-object is incorporated in an electric
circuit (Fig. 1). From the quantum statistical point of view such a setup can be
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treated as an artificial atom or molecule in a tunnel contact with electron reservoirs
(metallic leads). The response of the system to an external bias voltage applied to
it is the tunnelling current. One may learn about the charge and spin properties
of strongly correlated electrons in the QD by means of measuring its conductance
g as a function of temperature, applied bias, gate voltages and external magnetic
field. One may also study the optical properties of QD, which are determined by
the linear and non-linear response of QD at high frequencies. We are interested
in manifestations of dynamical symmetry in these measurements. The pertinent
properties of several types of quantum dots are discussed below.

2.1 Planar dots

A planar (lateral) quantum dot is formed in a 2D depletion layer on the interface
between two semiconductors (usually, GaAs/Ga1−xAlxAs). The electrodes imposed
on this structure form both the confining potential well (quantum dot) and the
dot-lead junctions (Fig. 2). If the junction is narrow enough, a single electron
mode connects the dot and the Fermi reservoirs of electrons in the ”metallic” leads.
The discrete energy spectrum of electrons in the confined region is characterized by
single-particle levels εi with typical inter-level spacing δε and charging energy Q,
which is predetermined by the capacitance C of the dot, namely, Q = e2/2C. Typical
values of the parameters characterizing planar quantum dots are δε ≈ 100−150µeV ,
Q ≈ 500−600µeV , so the charging energy is large enough, and it predetermines the
character of electron tunnelling through the dot.

100 nm

gate

left lead

right lead

QD

Figure 2: Planar quantum dot. Electrodes imposed on a semiconductor heterostruc-
ture are drawn schematically as shaded profiles.

Now one may schematically represent the energy spectrum of a planar quantum
dot coupled by tunnel contacts to the leads in the following way: The discrete
electron levels in the dot and the metallic electron continuum in the leads in an
equilibrium state have the same chemical potential µ = µL = µR, where the indices
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L,R denote the electron liquid in the left and right lead, respectively (see Fig.
3a). However, tunnelling through planar quantum dots is blocked by the charging
energy Q in the weak coupling limit, where the tunnelling rates γL,R are the smallest
energies compared with all other energy parameters characterizing electrons in the
circuit,

γL,R ¿ δε < Q ¿ DL,R. (16)

(here DL,R is the bandwidths characteristic for the kinetic energy of electrons in the
leads). This is the familiar Coulomb blockade effect responsible for single electron
tunnelling in nano-size devices [14]. The Coulomb blockade fixes the number of
electrons N in planar quantum dots. In the neutral state of planar quantum dots
the value of N = N0 is determined by minimization of the total energy of the dot
E(N ). Then, injection of one more electron into the initially neutral dot costs an
addition energy εN0 = E(N0 + 1)− E(N0)− µ. This energy equals

εN0 =
{

Q− µ for odd N0

δε + Q− µ for even N0
(17)

(see Fig. 3b,c). The planar quantum dot with odd occupation is characterized by its
spin 1/2, whereas a dot with even occupation is generically in a singlet spin state due
to the Pauli principle. It is clear from Eqs. (17), that electron tunnelling through
planar quantum dots is possible only provided the additional energy vanishes. To
achieve this resonance condition, a gate voltage vg is applied to the dot, so that
resonance tunnelling occurs when εN − vg = 0. Then, increasing vg one may reach
the resonance conditions for εN with N = N0 + 1, N0 + 2, N0 + 3, etc. This is
the mechanism of single electron tunnelling, which was realized in various devices
manifesting Coulomb blockaded features [15].

Returning now to the dynamical symmetry aspect of this phenomenon, one
should consider only the low-energy part of the electron spectrum in planar quantum
dots, which is comparable with the energy scale characteristic for the interaction
with the metallic reservoirs (electrons in the leads). This scale is determined by the
tunnelling rates γL,R and the energy kBT0 of more subtle many-particle effects, which
will be specified below (kB is the Boltzmann constant). As has been shown in the
previous section, dynamical symmetries become essential when intrinsic or extrinsic
level degeneracy exists in a nano-object. Having this in mind, one can ignore most
states of planar quantum dots except the ground state with its energy E(N0) and
those states which may enter the resonance under the influence of external fields
(gate voltage, magnetic field, etc). In case of odd occupation, the only possibility
is the Coulomb resonance determined by the condition εN0 ≈ (γL,R, kBT0). Then
only the following states,

EΛ(N0) = εd − vg, Λ = σ

E′
Λ(N0 + 1) = 2(εd − vg) + Q, Λ′ = S, (18)
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left lead QD right lead QD lead

Q

δε

µ
r

µ
l

(odd N) (even N)

QD

(b) (c)(a)

Figure 3: Energy levels for electrons in planar quantum dot. (a) General level scheme
for oddN0; (b) Zoomed highest occupied states and lowest unoccupied states for odd
N0; (c) Zoomed highest occupied states for even N0. Electron tunnelling processes
between leads and QD (a),(b) and within QD (c) are shown by dashed arrows.

should be retained in the Hamiltonian (2). Here εd is the last occupied electron
level in the dot. Thus, an accidental degeneracy is possible only between the states
belonging to adjacent charge sectors N = (N0,N0 + 1).

A richer situation emerges for even occupation. In this case the Coulomb
resonance is also possible, but there arises an additional possibility of dynamical
processes within a given charge sector N = N0. The energy states in this sector are

EΛ(N0) = 2(εd − vg), Λ = S

EΛ′(N0) = 2εd + δε− 2vg − Jd, Λ = ET ,

EΛ′′(N0) = 2εd + δε− 2vg, Λ = ES . (19)

The second and third levels above correspond to triplet and singlet excitonic states,
where one of the electrons moves from the highest occupied level to the lowest
empty level. The parameter Jd is the intra-dot exchange interaction responsible for
the singlet/triplet level splitting. The symmetry of this manifold is SO(5) according
to the classification scheme given above. If not all these states are involved in the
interaction with reservoir, the symmetry is effectively reduced. Several examples of
symmetry reduction will be discussed below.

2.2 Vertical dots

Vertical dots have been fabricated in numerous experiments. The main feature of
such device is that the geometrical symmetry of the dot (usually cylindrical) oc-
curs also in the lead. This implies that electrons has, beside spin, an additional
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quantum number which is attached to them wherever they are. Electrostatic con-
finement potential in vertical quantum dots with cylindrical symmetry can be ap-
proximated by a 2D harmonic potential. Such potential gives rise to shell structure
of discrete electron states. Like in ”natural” atoms, these states are classified as
1s, 2s, 2p, 3s, 3p, 3d... and electronic states are filled sequentially in accordance
with Hund’s rule. The occupation numbers corresponding to filled shells can be
regarded as ”magic numbers” N̄ with maximum addition energy ∆EN̄ . Indeed, the
atom-like character of filling these artificial atoms with tunable number of electrons
in the dot 0 ≤ N ≤ 23 was observed experimentally [16].

Like in the case of real atoms the structure of electron shells is predetermined
by the single-particle quantum numbers and full orbital and spin momenta of elec-
trons in the last partially filled shell. Having in mind possible manifestations of
dynamical symmetry, we are especially interested in hidden and accidental degen-
eracies characterizing the electron spectrum of vertical dot. These features may be
revealed already for non-interacting electrons in parabolic potential described by the
Fock-Darwin equation [17]. In this case the electron levels are characterized by the
main quantum number n, radial number nr = 1, 2, 3..., z-component of angular
momentum m = 0, ± 1, ± 2... and spin projection σ = ±1/2. The degeneracy
intrinsic to the spectrum is determined by the condition

n = 2nr + |m|+ 1, (20)

whereas the discrete energy levels εn are determined by the law εn = n~ω0, where
~ω0 is the electrostatic confinement energy. Besides, the electrons in the vertical
dot possess orbital diamagnetism, so that the energy spectrum in the presence of a
magnetic field B applied along the cylindrical axis is split in accordance with the
following equation

εn(B) = (2nr + |m|+ 1)~
√

ω2
0

4
+ ω2

c −
m

2
~ωc , (21)

where ωc = eB/m∗c is the cyclotron frequency (the Zeeman splitting is negligibly
small in comparison with diamagnetic shift in GaAs) . It follows from Eqs. (20) and
(21) that (i) the magic numbers are N̄ = 2, 6, 12, 20, etc, and (ii) that crossing of
levels with different nr,m at some values of magnetic field is feasible (see Fig. 4a ).

The level crossing pattern becomes even more complicated when the electron-
electron interaction is taken into account [18]. In the simplest case of N̄ = 2 the
two-electron states are characterized by the total spin S and total orbital momentum
M . At zero magnetic field the ground state is singlet 2S : (S = 0,M = 1) and the
excited state is triplet 1T : (S = 1, M = 0). These levels cross at certain B = Bc

(Fig. 4b), and the effective symmetry of the vertical dot is SO(4) in the vicinity
of level crossing. When the second shell is partially filled (N = 3, 4, 5) more than
two multiplets are involved in the level crossing pattern [19], so that the dynamical
symmetry becomes really complicated.
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Figure 4: Energy levels for electrons in vertical quantum dot. (a) single electron
energy levels [see Eq. (21)]; (b) two-electron singlet and triplet energy levels.

2.3 Semiconductor nanoclusters

Semiconductor nanocrystals prepared by means of colloidal chemistry methods [8]
and self-assembled dots grown as islands in strained lattice-mismatched films [9]
have regular geometrical shapes and conserve the bulk crystal structure. As a result,
the discrete electron spectrum in these nanoclusters retains many feature of Kane
electron-hole spectrum of bulk III-V or II-VI semiconductors [20]: the characteristic
energy is in the eV scale, the same as in bulk materials. The nomenclature of
discrete highest occupied states in the valence band and lowest unoccupied states
in the conduction band is inherited from the sp-hybrid states in the vicinity of the
Γ point of the 3D Brillouin zone.

The excitonic spectrum of these nanoclusters is of primary interest. Single ex-
citon lines due to interband excitations are observed in optical and tunnel spectra
[21]. High-excitation spectroscopy methods allow experimental observation of exci-
ton complexes [22] and even exciton droplets [23] in arrays of self-assembled dots.
These multiexciton levels may be degenerate due to geometrical and dynamical
symmetries.

The idea of hidden symmetry of excitonic states in quantum dots [24] is bor-
rowed from the theory of excitons in 2D electron gas in an Integer Quantum Hall
Effect regime [25]. The algebra of exciton operators is predetermined by the spe-
cial properties of Coulomb interaction for this two-component Fermi liquid. These
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operators form a vector P with the following spherical components:

P+ =
∑

i

e†pσh†p,−σ, P− =
∑

p

hp,−σepσ, Pz =
1
2

(
(N e

σ + Nh
σ )−Ntot

)
. (22)

Here e†pσ, h†p,−σ are, respectively, creation operators for the electron and hole with

respective single-particle energies E
(e,h)
p . The operators P± create/annihilate an

exciton, and the operator Pz measure the population inversion on a shell with or-
bital degeneracy Ntot. In terms of dynamical symmetry, these operators describe
transitions from the ground state (with zero energy) to a single exciton state. In
accordance with Eq. (6) these operators do not commute with the electron-hole
Hamiltonian Heh, which includes the single particle term and the Coulomb interac-
tion 〈pq|V |rs〉, where {pqrs} are various hole and electron states on a given shell of
the QD. Quite unexpectedly, the commutation relation (6) reads in this case

[P+,Heh] = −E0Hex, (23)

where E0 = E
(e)
p + E

(h)
p is the energy of an electron-hole pair. All Coulomb con-

tributions cancel each other exactly. This cancellation is a consequence of hidden
symmetry of Coulomb interaction in quantized two-component Fermi system: in-
teractions between particles of the same kind coincide with each other and (with
reversed sign) with that of different kinds. It follows from this property that cre-
ation of n excitons of the same kind described by the operator (P+)n costs an
energy nE0. This enables a strong degeneracy of the multi-exciton spectra: for
example, the energy level of biexciton is twice the energy of a single exciton, etc.
Of course, any small perturbation removes the degeneracy between a singlet-singlet
and triplet-triplet states of a biexciton, but the dynamical symmetry still exists.

2.4 Complex quantum dots

The isolated quantum dots considered above are typical examples of artificial atoms.
A double valley quantum dot with weak capacitive and/or tunnelling coupling be-
tween its two wells may be considered as a simplest case of artificial molecule. Such
double quantum dots (DQD) were fabricated several years ago [13]. Two wells in
DQD may be identical or have different size; the DQD may be integrated within an
electric circuit either in series or in parallel; different gate voltages may be applied
to each well. Moreover, one of the two wells may be disconnected from the leads
(side geometry). All these configurations are presented in Fig. 5. Vertical quantum
dots also may form a DQD. Such a variety of configurations promises even more
possibilities for manifestations of dynamical symmetry effects in artificial molecules
than in artificial atoms.

Let us consider the electron spectra of DQDs shown in Fig. 5 [26]. In Section
I we discussed dynamical symmetries of hydrogen-like systems (H0, H± states of
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Figure 5: Various types of double quantum dots (DQD). Tunnelling channels are
marked by dashed lines, V and W are tunnelling constants. (a) Symmetric DQD in
parallel geometry; (b) biased symmetric DQD in parallel geometry; (c) asymmetric
DQD in side (T-shaped) geometry; (d) DQD in series geometry.

atomic hydrogen). It is clear that the symmetric DQD shown in Fig. 5a has the
main features of hydrogen molecule H2 and molecular ions H±2 for the occupation
numberN = 2, 1, 3, respectively. To exploit this analogy, we assume that the neutral
state of DQD corresponds to N = 2, and each valley is also neutral when occupied
by a single electron, Ni = 1, i = l, r. Then two valleys are coupled only by tunnel
channel, and in case of strong Coulomb blockade in each valley, Q À V (V is a
tunnelling constant), the system is an analog of H2 in the Heitler-London limit. If
the two valleys are completely identical, the spectrum EΛ consists of two low-lying
spin states ES,T and two charge transfer excitons Ee,o (even singlet and odd triplet),
with

ES = 2ε− 2V β, ET = 2ε (24)
Eo = 2ε + Q, Ee = 2ε + Q + 2βV .

Here ε = εl = εr are the one-electron levels. The spectrum is calculated under the
assumption β = V/Q ¿ 1. The origin of a narrow spin gap ∼ βV and a wide charge



Dynamical Symmetries in Nanophysics 17

transfer gap ∼ Q in the two-electron spectrum is inter-valley tunnelling, which is
possible only in singlet configurations. Fig. 6a illustrates this mechanism.
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Figure 6: Energy level schemes for symmetric, biased and asymmetric DQD. Upper
panels: single electron levels. Tunnel processes responsible for formation of charge
transfer excitons are shown by dashed lines. Lower panels: degenerate two-electron
energy levels ωα without interwell tunnelling V and split two-electron levels EΛ

renormalized by interwell tunnelling in second order.

One may break the left-right symmetry by means of an external gate voltage
difference vgl−vgr applied to the DQD configuration (Fig. 5b). This voltage can be
tuned in such a way that one of two charge transfer excitons becomes ”soft” enough
to influence the low-lying spin excitations (Fig. 6b). In this case, only three levels
should be taken into account when discussing the dynamical symmetry: these are
the same singlet and triplet states plus a singlet charge-transfer exciton (”right”
exciton in the geometry illustrated by Fig. 6b. The corresponding energy levels are

ES = εl + εr − 2β1V, ET = εl + εr,

ER = 2εr + Q + 2β1V . (25)

Finally, the two constituents of a DQD may have different size (Fig. 5c). We discuss
this case in a side geometry, where the right dot of a smaller size Rr is disconnected
from the leads.

If Rr ¿ Rl, then Qr À Ql, and the relevant part of the spectrum of doubly
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occupied DQD shown in Fig. 6c is

ES = εl + εr − 2β2V, ET = εl + εr,

EL = 2εl + Ql + 2β2, (26)

In this case the ”right” charge transfer exciton is retained in the manifold.
It follows from the above analysis, that DQD may manifest SO(3), SO(4) or

SO(5) dynamical symmetries depending on the relevant physical processes, in which
the DQD is involved. The first of these symmetries is simply a symmetry of a spin
S = 1, while in the second case, both spin singlet and spin triplet are involved. In
the third case, the charge transfer exciton also plays its part. All these situations
will be discussed in subsequent sections.

Next, the symmetry of a DQD with N = 1 should be exposed. Again, we
consider the case of strong Coulomb blockades in both valleys, where the doubly
occupied states are eliminated. Although this restriction sounds rather formal in
the case of single electron occupation, it starts to play an essential role when the
interaction with the reservoir is switched on. The dynamical symmetry of this
system was analyzed in [27]. We restrict ourselves to the case of symmetric or
nearly symmetric DQD in a series geometry (Fig. 5d). If εl ≈ εr, then four states
have approximately the same energy, namely left or right dot occupied by an electron
with spin projection ↑ or ↓. One may introduce a pseudospin Tz = (Nl −Nr)/2 =
±1/2, which describes the electron configuration in the DQD. Denoting the two
components of this pseudospin states as ±, one may construct a ”hyperspin” χ4

including all four states
χ4 = {+ ↑, + ↓,− ↑,− ↓}. (27)

This spinor transforms in accordance with representations of the SU(4) group. If
the four-fold degeneracy of the DQD is violated by external fields (gate voltage or
magnetic field), the remaining symmetry is SU(2). In particular, one may imagine
the situation when only the pseudospin T is involved in the dynamical symmetry,
and spin variable plays part of ”flavor” [28, 29]. The case of a symmetric DQD with
N = 3 may be considered similarly because of particle-hole and spin up-spin down
symmetry of the nano-object.

Another way to obtain an artificial molecule is to fabricate two vertically stacked
columnar quantum dots coupled by tunnelling interaction [30]. Of course, the fa-
miliar singlet/triplet level crossing induced by diamagnetic level shift is expected
for a H2-like molecule with N = 2 [31]. More complex molecular spectra appear
at higher occupations N > 2. An especially exotic state such as a ”bipolar” mole-
cule arises when two vertically stacked quantum dots are populated by carriers of
different kinds – electrons and holes [32].

Recently it was shown that even richer picture of dynamical symmetries may
arise in triple quantum dots (TQD) with N = 4 both in parallel and sequential
geometries [33]. In addition to the situation of nearly degenerate singlet-singlet-
triplet manifold (SO(5) symmetry) the triplet-triplet-singlet level crossing can occur
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in TQD under certain conditions. The dynamical symmetry of this manifold is
SO(7). Following the arguments of Ref. [27], it is clear that the same TQD with
N = 1 should possess SU(6) symmetry.

To conclude, the notion of dynamical symmetries is the natural language, which
is extremely useful in the description of quantum dots. These nano-objects pos-
sess a plethora of dynamical symmetries, which may be unveiled due to interaction
with metallic reservoirs and external fields. Various physical realizations of these
dynamical symmetries will be described in subsequent sections.

3 Dynamical symmetries broken by interaction with
reservoir

As long as the dot is isolated from its environment, it conserves the symmetry related
to its spin state, charge state and as well as its geometrical symmetry. In a simple
case when only spin and charge are conserved quantities, the generic Hamiltonian
of an isolated QD may be written in terms of these conserved quantities

Hdot =
∑

iσ

εiniσ + Q(N −N0)2 − JS2. (28)

Here the first term describes the discrete spectrum of the QD and the two other
terms stem from electrostatic and exchange interactions and describe the Coulomb
blockade of charge states (deviating from the neutral state with N = N0) and the
total spin of the dot. A tunnelling contact with reservoir may break the symmetry of
H0 and, hence, violate spin and charge conservation. The global spin and charge in
a system as a whole is conserved, but interaction with environment can change both
these quantities in the dot. The simplest example of interaction, which changes the
charge in the dot is electron tunnelling between the dot and the electronic reservoir,
and the simplest spin-dependent interaction is that of direct exchange between the
dot and the lead electrons.

We discuss first the tunnelling contact. The basic tunnel Hamiltonian is

Htun =
∑

αkiσ

W iσ
αk

(
c†αkσdiσ + H.c.

)
. (29)

Here W iσ
αk is the tunnel matrix element, diσ is the operator destroying the dot elec-

tron in the level iεi and c†αkσ is the operator creating an electron in the lead α of
metallic reservoir described by the Hamiltonian

Hband =
∑

α=l,r

∑

kσ

εαkσc†αkσcαkσ. (30)

Below we discuss the case of weak tunnelling, where the QD is connected only by
one tunnelling channel with each lead and the inequalities

W iσ
αk ¿ δεi ¿ Q (31)
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are valid. In this case only the highest occupied levels of QD are involved in tun-
nelling, and the energy cost of single electron tunnelling between the lead and the
QD is

E± =
{

εN+1 − εαkσ, k < kF

εαkσ − εN , k > kF

Here εN+1 = EΛ′(N0 +1)−EΛ(N0) and εN = EΛ(N0)−EΛ′(N0−1) are electron
addition and extraction energies respectively, and kF is the Fermi momentum of
electrons in the lead [cf. Eqs. (17) – (19)].

It is convenient to rewrite Htun in terms of Hubbard operators:

Htun =
∑

αkσ


∑

Λλ

(
WΛλ

αk XΛλcαkσ + H.c.
)

+
∑

Λγ

(
W γΛ

αk XγΛcαkσ + H.c.
)

 (32)

Here the states from the charge sectors N0 ∓ 1 are denoted by indices λ and γ,
respectively. If the gate voltages are tuned so that either an addition or extraction
energy is zero, we are at resonance and tunnelling through the dot is possible. The
dot then becomes ”transparent” in accordance with the Breit-Wigner formula for
transmission coefficient T (ε):

T (ε) =
ΓlΓr

[ε− E±(kF )]2 + (Γl + Γr)2/4
, (33)

where Γα = πρ0α|W±
α |2 are the tunnelling rates for the left and right lead, ρ0α is

the density of electron states on the Fermi level of the lead α, W±
α are the matrix

elements for addition/extraction tunnelling taken from the Hamiltonian (32). These
processes are responsible for single-electron tunnelling through quantum dots, which
results if the ubiquitous Coulomb staircase for the current-voltage characteristics
prevails. This form of single electron transistor arises in tunnel junctions and, as
far as the tunnelling current is concerned, serves as a replacement of the Ohm’s law
[15].

The second order tunnelling processes described above cannot reveal any dynam-
ical symmetry of QD because they do not change the state of the dot (see Fig. 7a).
On the other hand, dynamical symmetries can be exposed by cotunnelling processes
out of resonance (on the Fermi level) (Fig. 7b): in the first step of a two-stage
cotunnelling process an electron from the occupied level ε1 leaves the dot and then,
in the second step, an electron from the same or another lead replaces it in the
empty level ε2. The many-electron state of a QD changes from Λ1 to Λ2, and if
the operator XΛ2Λ1 belongs to a set of generators of a dynamical group, this inelas-
tic cotunnelling may be described by means of the group theoretical manipulations
introduced above.

The effective vertex Γ for this inelastic cotunnelling has the form

ΓΛ1Λ2
αkσ,α′k′σ′(ε) ∼

WαWα′

(ε− δε)
c†αkσcα′k′σ′X

Λ2Λ1 (34)
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Figure 7: Cotunneling through planar QD with odd (a) and even (b) occupation.

Here δε is the additional energy of the dot in the process of two-stage cotunnelling.
The fact that cotunnelling process is accompanied by spin reversal, σ 6= σ′ is

crucial. At the bottom line it means that this two-particle process may be treated
also as an effective exchange, which involves the dot particles and electrons from
both leads. In a situation where the system is set away from a Coulomb resonance,
E±(kF ) À Wα, the only process, which survives is this indirect exchange (in its
full quantum-mechanical sense), where only the electron residing on the highest
occupied level εh of the dot is involved in cotunnelling. Then δε = Q, and the vertex
Γ combines with direct exchange between the dot and lead electrons to generate the
effective spin Hamiltonian for an elastic cotunnelling

Hcot =
∑

αα′

∑

kk′
Jαα′S · sαk,α′k′ . (35)

with Jαα′ = Γ0
αkF ,α′k′F (0) Here the upper index ’0’ indicate that only the spin state

of the dot is changed in the course of cotunnelling.
The Hamiltonian (35) has the form of the well known Kondo Hamiltonian, which

was introduced in order to explain the anomalous shallow minimum in the resistance
of metals doped be magnetic impurities. This analogy between magnetic scattering
in bulk metal and magnetic tunnelling through insulating barrier was noticed in
the mid 60ies [34]. Later on, this idea was extended to the physics of tunnelling
through nano-objects such as quantum dots [35]. For quite a number of years now,
resonance Kondo tunnelling is at the focus of contemporary physics of quantum dots
and related objects (such as carbon nanotubes or organometallic complexes). There
are several reasons for this exceptional interest. First, the Kondo effect per se is a
complex many-particle phenomenon, which can be formulated in terms of integrable
1D problem (using e.g Bethe Ansatz). Second, Kondo tunnelling manifests itself
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as an enhanced quasi elastic resonance, and thus, it can be detected as a zero
bias anomaly (ZBA) in a tunnelling conductance away from Coulomb resonance
peaks in the so called Coulomb windows which form a diamond-shape lattice of
valleys in the plane (vb, vg) [15]. (here vb and vg are external bias and gate voltage,
respectively). These zero-bias anomalies were detected in planar QD in the late
90ies [36]. Thereafter, similar effects were found in nanotubes [38] and vertical dots
[37, 39]. In the two latter cases, the anomalies related to the the SO(4) dynamical
symmetry in Kondo tunnelling were noticed for the first time.

3.1 Dynamical symmetry in Kondo cotunnelling

Prima facie, the cotunneling Hamiltonian (35) in conjunction with the Hamiltonian
(28) for the isolated QD leaves no room for manifestations of dynamical symmetry.
The only operator characterizing the excitations in the QD which are involved in
the interaction with reservoirs is the spin S. This exchange interaction, of the form
Js ·S breaks the SU(2) symmetry of the QD, and the multiple creation of electron-
hole pairs with spin reversal results in the formation of a singlet ground state in
case when the spin of the dot is S = 1/2 [35]. This situation is realized in QD
with odd occupation number (see Fig. 3b). Indeed in the first experiments [36],
Kondo-type ZBA were observed only in Coulomb windows with odd N . Soon after,
though, theoretical predictions about possible realizations of Kondo mechanism of
cotunneling in QD with even N in external magnetic field were reported [40, 41, 42].
They were promptly verified experimentally [38, 39]. Later on, possible occurrence
of Kondo effect in evenly occupied double quantum dots without magnetic field
assistance was suggested [26].

Most of theoretical investigations pertaining to even N appealed implicitly or
explicitly to the concept of dynamical symmetry of the QD, which was discussed in
Section II. The simplest case of even occupation is N = 2 of course. This situation
may be easily realized in planar QD (see Section II.A), vertical QD (Section II.B)
and double QD (Section II.D). Let us recall that in case of odd N where there
is a single electron in the highest occupied level of QD, its spin may be reversed
due to cotunneling together with creation of electron-hole pair, thus resulting in the
effective Hamiltonian (35). A similar process may result in a singlet-triplet transition
in case of two electrons in the highest occupied level. Thus the vector operator
R describing these singlet-triplet transitions (7) enters the effective Hamiltonian
together with the spin vector operator S:

Hcot =
∑

αα′

∑

kk′

(
J

(1)
αα′S · sαk,α′k′ + J

(2)
αα′R · sαk,α′k′

)
. (36)

One should remember, however, that in all cases mentioned above the ground
state of the isolated QD is singlet. The energy gap ∆s = ET − ES between the
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triplet and singlet levels is

∆s =





δε− Jd in planar QD
Jd in vertical QD
2βV in double QD

(37)

[see Eqs.(19)) and (24)]. The Kondo effect is characterized by the energy scale EK

(Kondo energy), which is exponentially small: in the simple case described by the
Hamiltonian (35),

EK = kBTK ∼ D0 exp(−1/ρ0Jmax), (38)

where Jmax is the maximum of all coupling constants entering this Hamiltonian and
D0 is the effective energy band width for the electrons in the leads. If ∆s À EK

Kondo screening is ineffective and no ZBA in the conductance develops. In accor-
dance with general principles described in Section I, the dynamical symmetry enters
the physical considerations provided ∆s ∼ EK , so the special mechanisms compen-
sating the spin gap ∆s should exist to allow Kondo screening in quantum dots with
even occupation. Such mechanisms exist in all three systems under discussion. A
concrete description of singlet-triplet crossover in QDs is given below.

Let us start with vertical dots, where the mechanism of singlet-triplet crossover
is simple from a theoretical point of view and may be easily realized experimentally.
As was mentioned in Section II.B, the occasional singlet-triplet degeneracy arises
due to diamagnetic shift of single electron levels in an external magnetic field ( Fig.
4b). To derive the effective spin Hamiltonian, one should start with the Anderson
Hamiltonian

HA = Hdot +Hband +Htun, (39)

where the approximation (28) is not enough even for adequate description of the
charge sector N = 2, in which the states {Λ = S, Tµ} from the singlet/triplet
manifold should be included. In terms of the group generators this term in the
Anderson Hamiltonian may be rewritten as

Hdot =
1
2

(
ETS2 + ESR2

)
+ Q(N̂ − 2)2. (40)

Besides, states from adjacent charge sectors, {λ, γ} which are admixed due to the
interaction Htun (32) should be taken into account. Projecting out the virtual
transitions to charge states with N = 1, 3 by means of second order perturbation
theory [43] or by employing the Schrieffer-Wolff (SW) canonical transformation [44]
(which eliminates Htun), one maps the initial problem onto a reduced Fock space
with conserved N = 2. Before performing the SW transformation, it is worthwhile,
in many cases, to execute a rotation in the lead Hamiltonian

clkσ = c1kσ cosϑkσ + c2kσ sinϑkσ

crkσ = −c1kσ sinϑkσ + c2kσ cosϑkσ (41)
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with

ϑkσ = arcsin
(

W σ
lk/

√
|W σ

lk|2 + |W σ
rk|2

)

By this transformation the odd combination c2kσ is eliminated from the tunnel
Hamiltonian [35], and eventually one arrives at the Hamiltonian (36) with diagonal
coupling constants

Hcot =
∑

kk′

(
J (1)S · skk′ + J (2)R · skk′

)
. (42)

At this stage, the cotunneling problem can be approached by standard methods of
the theory of Kondo scattering generalized to the case of SO(4) symmetry, where
the ”scatterer” is described by a six-dimensional vector {S,R} instead of the usual
SO(3) vector S for spin 1.

The conventional Kondo problem [43, 45] is easily manageable at high tem-
peratures T > TK , where perturbation theory may be constructed by using the
dimensionless quantity j(ε),

j(ε) = ρ0J ln(D0/ε), (43)

as a small parameter. This approach works until the current energy parameter ε is
big enough to keep j(ε) ¿ 1. The energy EK defined by the equality j(EK) = 1
is defined as the Kondo energy mentioned above as a characteristic energy of the
Kondo problem. The crossover from the weak Kondo coupling to the strong coupling
regime occurs around ε ≈ EK [see Eq. (38)].

Summation of complicated perturbation series can be carried out by using the
parquet equation technique [46], but one also may elegantly pack the same se-
ries in the solution of scaling equations within renormalization group (RG) theory
[43, 47, 48, 49, 50] due to occurrence of logarithmic terms in the effective vertex
which indicates that all energy scales in the Kondo problem are of equal impor-
tance. According to the RG scheme, one investigates the evolution of vertices and
pertinent propagators by reducing the energy scale D (the bandwidth of the conduc-
tion electrons) in the Hamiltonian Hband +Hcot from the bare bandwidth D = D0

to the limiting value of D ∼ EK . The resulting low-energy spectrum is universal,
which means that there exists a single energy scale EK for all thermodynamic and
dynamic variables.

If one employs Eq. (35) for the cotunneling Hamiltonian, the scaling flow trajec-
tories are determined by a single equation for the effective dimensionless exchange
vertex J (D)

dJ /dL = −J 2, (44)

which should be solved with initial condition J (D0) = ρ0J . The solution is then,

J (D) =
ρ0J

1− j(D)
, (45)
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which implies that the effective coupling strength flows toward infinity when D →
EK or, in a temperature scale, J (T ) = 1/ ln(T/TK). This stable infinite fixed point
determines the universality class of the Kondo problem. The scaling flow trajectory
is trivial in this case: it is simply a ray (half line) emanating from the point J (D) =
ρ0J and flowing to ∞. The RG approach cannot describe the subtle behavior of the
system at T → 0, but it encodes generic feature of Kondo cotunneling, i.e. formation
of ZBA in Kondo regime. In the weak coupling regime T > TK the formation of the
ZBA in tunnel conductance g = dI/dVb, Vb → 0 follows the scaling form [52]

g(T )/g0 ∼ ln−2(T/TK), (46)

where

g0 =
2e2

h

4ΓlΓr

(Γl + Γr)2
,

is the resonance conductance of the quantum dot (see Eq. 33). More sophisticated
calculations at T < TK [53] allow one to describe the appearance of ”Abrikosov-
Suhl resonance” on the Fermi level εF responsible for the unitarity limit for the
transmission coefficient T (ε → εF ).

The situation with the RG flow diagram for a QD possessing dynamical symme-
try is more complicated. Since the Hamiltonian (42) contains two effective vertices,
one gets a system of scaling equations [26, 42]

dJ1/dL = −[(J1)2 + (J2)2],
dJ2/dL = −2J1J2. (47)

The vertex J2 describes effective exchange due to S/T transitions, which are generi-
cally inelastic, because one has to absorb or release the energy of exchange splitting
∆s to excite the singlet state in a situation when the ground state is a triplet
(∆s < 0). The scaling procedure for J2 stops at D ∼ |∆s| and below this energy,
only J1 continues to grow with decreasing D. Due to this effect the Kondo tun-
nelling is no more universal: unlike the conventional Kondo effect, it is impossible
to draw the family of flow scaling diagrams in the plane {J1,J2}. The flow trajec-
tory for J1(D) still ends at stable infinite fixed point, but J2 is quenched at an
intermediate energy, so the Kondo temperature becomes a function of ∆s, which
characterizes this quenching. Since one can change ∆s in vertical QD by varying
the magnetic field (see Fig.4b), one may reach the point of accidental degeneracy
∆s = 0 and change its sign. It is easily seen that TK has maximum at ∆s = 0. In
this case the system (47) reduces to a single equation (44) for the effective vertex
J + = J1 + J2. The corresponding Kondo temperature is

TK0 = D0 exp [−1/ρ0(J1 + J2)] . (48)

At finite |∆s| the Kondo temperature decreases and at |∆s| À TK0 it obeys a kind
of universal law

TK/TK0 = (TK0/∆s)ζ , (49)
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where ζ . 1 is a numerical constant specific for a given type of QD [26, 42, 54].
Unlike the case of vertical dots, the singlet/triplet crossover in planar dots and

double dots with even N may be achieved without the application of an external
magnetic field due to somewhat rich and complicated structure of the low-energy
states in an isolated QD. The most important fact is that the tunnelling amplitudes
WΛλ in the Hamiltonian (32) may be different for singlet (Λλ = Sσ̄) and triplet
(Λλ = Tσ) states. In planar QD the origin of this distinction is that electrons
from different single electron states ε1 and ε2 are involved in the formation of S
and T states, respectively (see Fig. 7b). Besides, one should remember that the
singlet exciton also enters the manifold of low energy states [see Eq. (19)]. Although
this manifold obeys SO(5) dynamical symmetry, transitions to the highest singlet
excitonic state does not enter explicitly into the set of dynamical variables involved in
Kondo cotunneling. However the virtual transitions to this state may also influence
the properties of S/T pair.

This situation is especially important for tunnelling through DQD with N = 2
(see [26]). In this case the wave functions of electrons in S and T states are different
because the intradot tunnelling V intermixes two singlet states [ES and ER in Eq.
(25), ES and EL in Eq. (26)], while the triplet ET is not affected by this process.
As a result, a difference in tunnelling rates arises like in the case of planar QD, but
in this case the sign of the difference is strictly determined, namely W Tσ > WSσ̄.

In a generic situation, one starts from the original Anderson Hamiltonian (40),
(30), (32) and then arrives at the renormalized Kondo Hamiltonian (42) with effec-
tive vertices J1,J2 by two steps [51]. First, one has to take into account renormal-
ization of the bare energies EΛ in Hdot due to reduction of the energy scale D0 → D.
This reduction is governed by the scaling equations

dEΛ/dL = −ΓΛ/πD. (50)

The scaling trajectory for EΛ(D) is determined by a scaling invariant [43, 51]

E∗
Λ = EΛ(D)− π−1ΓΛ ln(πD/ΓΛ) (51)

Due to the above mentioned difference in tunnel matrix elements, ΓT > ΓS the flow
trajectories ES(D) and ET (D) may intersect. The necessary conditions for such
level inversion in the situations illustrated by Fig. 6b,c are discussed in [26].

The physical reason for the level crossing is relatively transparent: tunnelling
from DQD to metallic leads induces indirect electron exchange between two wells,
and this ”kinetic exchange” favors parallel aligning of spins in each well. If this ”fer-
romagnetic” coupling overcomes antiferromagnetic indirect coupling 2βiV in (25),
(26), the S/T transition occurs due to accidental degeneracy, which stems from the
dynamical SO(4) symmetry of Hdot.

Apparently, S/T transition is a widespread phenomenon in the physics of quan-
tum dots with even occupation. It was observed in vertical dots [39], in lateral
dots [37, 55, 56], in quantum rings [57] and discussed in many theoretical studies
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[41, 58, 59, 60, 61, 62]. One should note that the enhancement of Kondo tem-
perature in the crossover region mentioned above is accompanied by more refined
manifestations of the pertinent accidental degeneracies.

0

Singlet

ε

Τ (ε)

Triplet

Figure 8: Tunnelling transparency of QD with even occupation on triplet (solid line)
and singlet (dashed line) side of T/S crossover.

Indeed, on the triplet side of the Kondo cotunneling regime, one deals with
underscreened S = 1 Kondo model [63], where only half of the impurity spin is
dynamically screened by conduction electrons, provided the transformation (41)
eliminates one of the two tunnel channels (otherwise the screening is complete).
The role of low-lying singlet excitation is manifested by a modification of the Kondo
temperature TK(∆s) [see Eq. (49) and discussion around]. On the singlet side
of this transition where ∆s > 0, formation of singlet ground state is a two-stage
process [58]. Until the characteristic energy ε or temperature T exceeds ∆s > 0
the spin S = 1 is still underscreened, Kondo resonance in cotunneling enhances the
transmission coefficient T (ε), so the latter grows with decreasing ε. This growth
ceases at ε ∼ ∆s, and T (ε) falls off rapidly, because at zero energy/temperature
the Kondo regime is completely quenched. Thus, the ZBA of the conductance
should have a form of a narrow Kondo peak like at the triplet side of the S/T
transition, however, a pronounced dip should emerge at low energies ε < ∆s, so
that conductance disappears at zero energy (see Fig.8). Such behavior was reported
in [58] for a DQD in the parallel geometry (Fig. 6b) employing methods of numerical
renormalization group (NRG) [64]. Later on, a similar behavior was substantiated
for a planar QD with anomalously small interlevel spacing δε [62]. In this case, the
intradot exchange Jd nearly compensates δε (see upper line in Eq. 37), the gap ∆s

is close to zero and the S/T transition may be induced by an external magnetic field
applied perpendicular to the plane of the dot. One may neglect the Zeeman shift
in comparison with orbital effects due to the small value of the g-factor in GaAs .
Consequently, the ZBA peak in the conductance as a function of ∆s should have a
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pronounced maximum at ∆s = 0 with asymmetric slopes at the singlet and triplet
sides of this crossover (Fig. 9). Apparently, all above effects were observed in the
experiment [37].

g

s0 ∆

g

Figure 9: Conductance of QD with even occupation as a function of exchange gap
∆s at fixed temperature T . ḡ is a limiting value of conductance for completely
quenched singlet, |∆s| → ∞.

A two-stage Kondo effect may occur also on the triplet side of the S/T transition
in planar QD due to the difference between the tunnelling amplitudes for the levels ε1

and ε2 [60]. In this case, one has two tunneling channels for each lead characterized
by the coupling constants W1l,W1r, W2l, W2r. The 2 × 2 tunnelling matrix can be
diagonalized by a transformation similar to (41). Then one is left with two channels
instead of four. These two channels are sufficient for a complete screening of the spin
S=1. To describe the screening of a spin rotator under these conditions, one may
use the mathematical option of representing the group SO(4) as a direct product
SU(2)× SU(2). This can be carried out by a simple transformation [2, 3, 26, 60]:

S = s1 + s2, R = s1 − s2. (52)

Here s1,2 are two fictitious spins 1/2 operators. Then the original problem can be
mapped on the two-site Kondo problem, where each spin is coupled to the reser-
voir with its own exchange constant, J1 6= J2. Unlike the case encountered in the
conventional two-impurity Kondo effect [65], these fictitious spins are not indepen-
dent, but the RG equations still may be derived, and the two-stage Kondo screening
means that each channel is characterized by its own Kondo temperature TK(Ji). As
a result, the unitarity limit is reached first in the channel with larger Ji, so that
half of the spin 1 is screened, and then the remaining part of this spin is screened at
lower temperatures. As a result, the conductance versus temperature curve acquires
a stepwise form.
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All these characteristics can be regarded as direct manifestations of dynamical
SO(4) symmetry inherent in the S/T multiplet. The picture becomes even richer
when a parallel magnetic field is applied. a Zeeman splitting has a special role in the
context of dynamical symmetry within the physics of Kondo cotunnelling through
QD. These features are discussed in the next subsection.
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Figure 10: Top panel: TQD in parallel and series geometry. Lower panel: energy
levels of isolated TQD occupied by four electrons. The last electron is poised between
the left and right dot.

More refined cases of accidental degeneracy within spin multiplets arise in com-
plex QD containing more than two valleys. One of such examples, a triple quantum
dot (TQD) was considered in Ref. [33]. One can arrange a TQD both in parallel
and in series geometry (see Fig. 10a,b). It possesses a richer low-energy spectrum
than DQD and planar QD structures considered above. In particular, if the central
dot has a smaller size (and hence larger value of Coulomb blockade parameter Qc),
than the side dots, and if the latter two are identical, then, beside other features,
the isolated TQD has an additional mirror symmetry.

Let us discuss the representative case of TQD with even occupation N0 = 4 ( see
Fig. 10c for the energy level scheme). Then three electrons occupy the levels εl, εc, εr

and the last one is shared between the states εi+Qi (i = l.r) avoiding the central well
due to its high charging energy. When the inter-well tunnelling amplitudes Vl,r are
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taken into account, five low-energy states determine the dynamical symmetry: these
are two singlets, two triplets and one charge transfer exciton. The mirror symmetry
of such TQD may be broken by the gate voltages applied to the l and r wells.
Then, the above mentioned Haldane-Anderson two-stage RG procedure applied to
the system TQD + leads results in flow diagrams for these levels. Depending on
the initial conditions, one encounters various cases of accidental degeneracy, which
are connected with numerous SO(n) groups. In the completely symmetric case,
the relevant group is P × SO(4) × SO(4) (two singlets and two triplets entering
the effective SW Hamiltonian). Here P stands for the l − r permutation operator
describing the mirror symmetry of the TQD. Another interesting cases which arise
when the mirror symmetry is broken are described by the familiar SO(5) group
(two singlets and one triplet) and by a more exotic SO(7) group (two triplets and
one singlet). The effective SW Hamiltonian for Kondo cotunneling is an obvious
generalization of (36):

Hcot =
∑

αβ

(
J

(1)
αβ Sαβ · sαβ

+ J
(2)
αβ Rαβ · sαβ

)
. (53)

(α, β = l, r). The number of vertices in this Hamiltonian is predetermined by the
number of vectors in the Fock space for the SO(n) group.

A general phase diagram of the TQD system is presented in Fig. 11. One
may find in Ref. [33] the full list of group generators and various scaling equations
with solutions for TK specific for each dynamical group. As a result, in addition to
the S/T transition, which in this phase diagram is a transition between the SO(3)
and the (shaded) singlet domains, one gets a rich variety of other transitions and
continuous crossovers, which may be tested experimentally by changing gate voltages
vgi and tunnel rates Γi and observing the variation of the ZBA peak as a function
of these parameters and temperature.

3.2 Kondo cotunnelling in an external magnetic field

In the previous section we discussed the role of magnetic field as a source of acciden-
tal level degeneracy due to diamagnetic shift (21) of single electron levels in QD. Here
we discuss its role as a source of Zeeman splitting. Zeeman effect directly influences
the symmetry properties of spin states because it violates rotational invariance. Its
contribution to conventional Kondo effect is well known [45, 47, 66]. Due to lifted
Kramers degeneracy of the impurity spin 1/2 state, the external magnetic field splits
the Abrikosov-Suhl resonance into two peaks and eventually suppresses the Kondo
effect, when the Zeeman splitting EZ essentially exceeds kBTK . Dynamical symme-
try inherent in QD may radically change this relatively simple picture. The most
striking effect of magnetic field on quantum tunnelling through QD is a magnetic
field induced Kondo effect, which is absolutely counterintuitive from the point of
view of conventional Kondo physics. This effect predicted in [40] and immediately
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Figure 11: Dynamic symmetries in TQD: Phase diagram in coordinates x = Γl/Γr,
y=(εl−εc)/(εr−εc).

confirmed experimentally [38] on single-wall nanotubes was in fact the first explicit
manifestation of dynamical symmetry in Kondo tunnelling.

The physical mechanism of magnetic field induced Kondo tunnelling in QD with
even occupation is rather transparent. In the absence of strong exchange forces, the
ground state of such QD is spin singlet (see above), and the lowest excited state is
a triplet (see Figs. 3c and 6). These two states are separated by the spin excitation
with the gap energy ∆s (37). The Zeeman splitting energy EZ may compensate
this gap for the triplet state with spin up projection and thus result in an accidental
degeneracy of a spin multiplet (Fig. 12). Mathematically, this means that the
symmetry of a non-compact group SO(4) = SU(2)×SU(2) is reduced to an SU(2)
symmetry of the degenerate {S, T1} ”doublet”. This reduction can be described in
terms of generators of a dynamical group [26] by means of the vector operator P1

with components,

P+
1 =

√
2X1S , P z

1 = X11 −X00, (54)

which generates the SU(2) subgroup describing the doublet ES , ET1. The comple-
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Figure 12: DQD: accidental degeneracy in Zeeman field.

mentary vector operator P2 defined as

P+
2 =

√
2X01̄, P z

2 = X00 −X 1̄1̄, (55)

generates a second subgroup SU(2). Then the effective Hamiltonian describing
Kondo cotunnelling induced by magnetic field in this QD has the form,

HZ
cotun = EGP0 + J (2)P1 · s . (56)

This Hamiltonian should be compared with that of equation (36). Here P0 = X11 +
X00 and EG = ES = ET1 is the degenerate ground-state energy level of a QD in a
”resonant” Zeeman field Bc. The Hamiltonian (56) describes Kondo-like tunnelling,
which arises at Ez = ∆s and disappears once the resonance conditions are not
met. Precisely this effect was observed in measurements of conductance through a
segment of nanotube confined by two metallic electrodes [38]. The Kondo-type ZBA
in the Coulomb windows with even N was absent at zero B, then suddenly appeared
at B = Bc = 1.38 T and afterward disappeared again at B > Bc.

A similar situation is possible in TQD [33]. However, in this more complicated
structure, additional accidental approximate degeneracy between two singlet levels,
e.g., El

S and Er
S and one triplet state, e.g., Er

T1 is feasible. In this case the symmetry
of TQD in magnetic field Bc is SU(3) [see Eqs. (13), (14)], Kondo tunnelling vio-
lates this symmetry, and the corresponding cotunneling Hamiltonian is generically
anisotropic. Similar situation arises when the Zeeman splitting induces crossing of
two triplet states El

T and Er
T with one singlet state, say Er

S .
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Another example of unusual sensitivity of conductance to Zeeman effect in lateral
QD with even occupation was discussed in [62]. As was shown in Section II.A [see
also discussion around Eq. (52)], the conductance in this case is predetermined
by existence of two tunnelling channels, since two single electron levels ε1,2 are
involved in formation of S/T multiplet. Tunnelling through each of these levels is
characterized by the scattering phase shift δnσ [35, 67], and the conductance can be
expressed via these phase shifts at the Fermi energy (n = 1, 2). For example, in a
specific case Wl1 = −Wr1, Wl2 = Wr2 this expression is especially simple:

g(B) =
1
2

∑
σ

sin2(δ2σ − δ1σ). (57)

Zeeman splitting results in repopulation of the levels εnσ. In a singlet state δ1σ = π,
δ2σ = 0 for both spin projections σ. At finite B these shifts evolves under Friedel-
Langer sum rule constraint ∑

nσ

δnσ(B) = 2π,

in compliance with the occupation number N = 2. As a result of this repop-
ulation the conductance as a function of the magnetic field B acquires a highly
non-monotonous dependence with a maximum occurring within the S/T crossover
region.

To conclude this subsection, we emphasize that the main role of magnetic field
is that it leads to violation of rotational symmetry in spin space. This violation
results in the appearance of magnetic anisotropy of Kondo cotunnelling observables
and non-trivial dynamical symmetries from SU(n) family.

4 Dynamical symmetries at finite frequencies

Various manifestations of broken dynamical symmetry of quantum dots in the Kondo
regime discussed in Section III were related to the low-energy sector of the spin ex-
citation spectrum scaled by the Kondo temperature TK . In principle, one may
imagine a situation where the accidental degeneracy of energy levels arises in some
limited interval separated by finite energy from the ground state of a nanoobject.
Tunnelling into and out of electron reservoirs at finite energies should then be de-
scribed by an effective Hamiltonians operating in the pertinent chosen interval ∆ε.
An appropriate method for studying dynamical properties of such systems is, for
example, functional RG approach where a given Hamiltonian is diagonalized by
continuous unitary transformation [68].

However, if one intends to remain within a definite manifold of discrete eigen-
states of the QD, a frequency dependent perturbation should keep the system in
quasiequilibrium, where the response is still determined by the thermodynamic par-
tition function rather than by essentially non-equilibrium distribution functions of
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the electrons in the leads. This restriction includes the experimentally important
probe, that is, an interaction with a monochromatic electromagnetic field.

Now the question is, what kind of dynamical symmetry might prevail in photo-
excited states, i.e., at finite excitation energy hν of an absorbed light quantum. The
main mechanism of light absorption in QDs is formation of excitons. Internal hidden
symmetry of exciton spectra was briefly discussed in Subsection II.C in connection
with multiexciton absorption in semiconductor nanoclusters. Here we focus our
attention on dynamical effects involving Kondo processes and address the problem
of whether it is possible to observe Kondo effect at energies hν À Tk.

The Kondo effect in the presence od an alternating electromagnetic field was
intensively studied during the last decade [69]. In these studies, the interest was
focused on the interaction between spin degrees of freedom of the QD on the one
hand, and electron-hole photo-excitations in the leads on the other hand. The main
effect of coherent light absorption in the leads is reflected through the occurrence of
higher Kondo harmonics in the tunnel current as a response to the corresponding
harmonics in the metallic band continuum (see recent review [70] for general view on
the photon-assisted transport through QDs). Yet, from the point of view emphasized
here, this interesting effect is not related directly to the dynamical symmetries of the
QD. Indeed, the object of our interest has to do with the manifold of eigenstates of
the QD, so we will discuss the Kondo aspects of excitonic states created by resonance
light absorption in the quantum dot itself.

The problem of dynamically induced Kondo effect in QD with even occupation
N was formulated in Ref. [71]. The theory was addressed first of all to systems
composed of semiconductor nanoclusters (see Subsection II.C). The ground state of
such nanocluster is fully occupied valence states divided by the energy gap ∆g from
the empty conduction states, so that the occupation N is always even. External
visible light with hν ∼ ∆g may create electron-hole pairs (excitons) but the occu-
pation of a QD remains, of course, even. The Hamiltonian responsible for creation
of electron-hole pairs has the form

H′ =
∑
cv

∑
σ

Dcvd
†
cσdvσ exp(−iωt) + h.c. (58)

Here Dcv is the matrix element of the dipole operator D̂, while the indices c, v stand
for electrons in conduction and valence levels, respectively . This term should be
added to the conventional Anderson Hamiltonian Hdot +Htun. To demonstrate the
mechanism of dynamically induced Kondo tunnelling, it is sufficient to retain in
Hdot only the ground state |0〉 and the lowest singlet exciton

|E〉 =
1√
2

∑
σ

d†cσdvσ|0〉, (59)

(triplet excitons remain dark in the context of optical transitions). One may then
substitute the configuration changing operator XE0 for d†cσdvσ in the Hamiltonian
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(58). The tunnel Hamiltonian intermixes the states |0〉 and |E〉 with the continuum
states

|kc〉 =
1√
2

∑
σ

d†cσckσ|0〉, |kv〉 =
1√
2

∑
σ

c†kσdvσ|0〉. (60)

Using these definitions, Htun can be written in terms of new configuration changing
operators,

Ht = Vc

∑

k

(
|kc〉〈0|+ 1√

2
|kv〉〈E|

)
+ Vv

∑

k

(
|kv〉〈0| − 1√

2
|kc〉〈E|

)
+ H.c. (61)

The building blocks for the secular equation, which determine the response func-
tion R(ε)

R(ε) = 〈0
∣∣∣∣D̂

1
ε−HD̂

∣∣∣∣ 0〉, (62)

are shown in Fig. 13. One immediately recognizes the two intermediate states as
the first terms of a Kondo series for a state with one excess electron and one excess
hole in the QD. To lowest order in Vc,v, this secular equation reads,

det
∣∣∣∣

ε− Σ00(ε) −ΣE0(ε)
−Σ0E(ε) ε−∆− ΣEE(ε)

∣∣∣∣ = 0. (63)

The real parts of the self energies contain the familiar Kondo logarithmic divergen-
cies

ReΣjl(ε) ∼
Γjl

2π
ln

(ε−∆c,v)2 + (πT )2

D2
,

with Γjl = πρ0V
∗
j Vl. These functions have sharp maxima at energies ∆c,v = ∆g−εc,v,

which can be considered as ”precursors” of Kondo peaks in a weak coupling regime
T À TK .

The secular equation (63) describes a dynamical mixing between the states |0〉
and |E〉 with maxima at finite frequencies hν ∼ ∆c,v À TK within the multiplet
of eigenstates of the QD. This scenario has no analogs in our previous examples of
broken dynamical symmetry. Here, the Kondo processes arise only in the interme-
diate states of light absorption, when either 1 or 3 electrons occupy the relevant
levels of the QD (Fig. 13), whereas there is no Kondo screening in the initial and
final states of exciton absorption due to the even occupation Ni and Nf . The above
maxima of the self energies should be observed as satellite peaks in optical lineshape
∼ Im R(hν) at energies ∆c,v, which accompany the main peak of exciton absorption
at hν ∼ ∆g. In spectroscopic nomenclature these midgap excitonic states may be
regarded as ”Kondo shake-up peaks”.

An important constraint is imposed on dynamical Kondo screening by the finite
lifetime of electrons and holes in the photoexcited QD. Indeed, too short photo-
electron, photo-hole or photo-exciton lifetimes, τl < ~(kBTK)−1, prevents even the
formation of a precursor of the Kondo resonance, not to mention the impossibility of
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Figure 13: Building blocks of secular equation (62).

reaching the strong coupling Kondo regime. To ensure conditions for the observation
of shake-up Kondo satellites, one should design the heterostructure lead/dot/lead in
such a way that at least one of the two carriers in the QD has a negligible tunnelling
width (we refer the reader to Ref. [71] for a detailed analysis of this problem). The
problem of finite lifetime for excited Kondo states will be addressed in more details
in the next section.

In principle, dynamically induced Kondo effect may arise not only in excitonic
spectra, but also in photoemission spectra, where the electron leaves the QD for the
metallic lead under light irradiation [72]. In this case only two blocks from Fig. 13
are involved in dynamical mixing, namely the ground state |0〉 and the state with
excess hole |kv〉 in a QD. This mixing manifests itself as an edge singularity in the
absorption spectrum

Im R(hν) ∼ (hν −∆cv)α

where the power α is predetermined by the phase shift of electrons on the Fermi
level of the lead. In case of inverse process, when the excess electron is captured by
the dot with light quantum emission, the state |kc〉 is involved in dynamical mixing.
Of course, all these shake-up processes go back to the celebrated edge-singularity in
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X-ray absorption spectra discovered theoretically in mid sixties [73].

The dynamical mixing processes discussed above arise in linear response to ex-
ternal electromagnetic field. It is clear that similar processes may arise also in
non-linear optical response, but the variety of possibilities is richer in this case. One
such possibility, which may be realized in pump-probe spectroscopy was discussed
in Ref. [74]. According to the proposal outlined therein, a strong monochromatic
pumping field with frequency ν1 modifies the position of the deep electron level in
the dot, εd → εd +hν1, and induces a Kondo-resonance on the Fermi level described
by the self-consistent equation

ε = Σ(ε)

(cf. Eq. (63). The quantity πρ0(d̄E1)2 can be interpreted as ”tunnelling width”
Γ in the self energy Σ(ε) (d̄ is the dipole moment and E1 is the amplitude of the
probe electric field). On top of it one should measure the probe light absorption.
The analysis of third order pump-probe polarization shows that when the resonance
condition ν1 ' ν2 is valid, a dynamical mixing between the pumped level Ed =
εd +hν1 and the Kondo resonance at the absorption threshold hν2 = εF − εd arises.
As a result, a narrow shake-up satellite appears below the absorption threshold.

One more peculiar possibility of Kondo shake-up processes for charged excitons
was discussed in Ref. [75]. Charged exciton is a multiparticle complexes consist-
ing of several valence holes and conduction electrons trapped in a self-consistent
potential well. Such excitons containing one hole and n + 1 electrons are observed
in self-assembled InAs/GaAs quantum dots discussed in Section II.C [76]. These
complexes are usually labelled as Xn−. The surface of wetting GaAs layer may
be filled with 2D electrons, and tunnelling between the trap and the 2D electron
continuum is possible. Some of these excitons have non-zero spin, so the possibil-
ity of Kondo screening opens up. According to Ref. [75], the best candidate for
Kondo screening is the X2− exciton, which possesses nonzero spin and sufficiently
long lifetime necessary to form a screening Kondo cloud. This exciton consists of
a hole in an s state and three electrons (two of them are in s-states and one in a
p-state). Electron tunnelling between the trap and the 2D electrons in the wetting
layer admixes the state |X3−cks|0〉 with an additional electron captured into the
trap to the state |X2−|0〉 in analogy with Eqs. (60),(61). The narrow shake-up
peak arises in the photoluminescence spectrum as a result of Kondo screening like
in the cases discussed above. Hybridization between these states induced by photon
emission was registered experimentally in photoluminescence spectrum measured
in a strong magnetic field, where the 2D electronic states become discrete due to
Landau quantization, and the excitonic levels are subject to diamagnetic shift [77].
Of course, there is no room for Kondo effect in case of fully discrete spectrum, but
the dynamical hybridization seems to become an established fact.
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5 Dynamical symmetries in non-equilibrium state

Unlike the problem of magnetic scattering in doped metals, where the Kondo effect
in a strong coupling regime is described in terms of equilibrium thermodynamics
both in the strong coupling (T ¿ TK) and in the weak coupling (T > TK) limits,
Kondo tunnelling through QD may occur also under non-equilibrium conditions [78].
We discussed in Section IV the special case of Kondo effect under the influence of
a monochromatic ac field, which is applied either on the leads or to the QD. Here
we turn our attention to the case, where equilibrium conditions are violated by the
finite bias applied on the metallic leads.

There is an extensive literature on the Kondo tunnelling through QD under
non-equilibrium conditions. Referring the reader to recent papers [79], where this
problem is discussed in details, we concentrate here only on the manifestations of
dynamical symmetry violation in non-equilibrium Kondo effect. Such a possibil-
ity arises when the S/T transitions induced by finite bias are involved in Kondo
cotunneling [80].
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Figure 14: DQD at finite bias.

To be concrete let us consider a T-shaped double quantum dot (Fig. 5c) as
an example of an experimental setup, where an electric field induced Kondo effect
can be realized. The S/T energy gap ∆s in a T-shaped DQD (37) is controlled by
the height and width of the barrier separating the two dots. The tunnelling ampli-
tude W between the DQD and the metallic contacts is controlled by gate voltages
generating the corresponding barriers. If the total number of electrons N = 2n is
even and ∆s À T eq

K , where T eq
K characterizes the equilibrium Kondo temperature

of an underscreened S = 1 Kondo effect, the ground state of the dot is a singlet
and there is no Kondo enhancements of the differential conductance associated with
co-tunnelling processes in equilibrium (infinitesimally small voltage between source
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and drain). However, a finite bias applied to the leads changes this situation dra-
matically. The electrons, accelerated by the bias vb, gain an additional energy ∼ evb

which may compensate the energy ∆s necessary for spin flips, and thus make Kondo
co-tunnelling possible (see Fig. 14 where the processes involved in cotunneling are
shown by dashed lines). Recalling that the pertinent charge conserving system is
not the isolated dot, but, rather, the closed circuit composed of source-dot-drain,
we may draw the conclusion that the non-equilibrium Kondo tunnelling, which de-
velops in a ”moving frame” of a system with dynamical symmetry results in a finite
bias anomaly (FBA) in contrast with the ubiquitous ZBA characteristic for the
conventional (equilibrium) Kondo effect.

To characterize non-equilibrium Kondo effect in DQD, we adopt the SO(4)
Kondo Hamiltonian (53). This Hamiltonian can be derived for nonzero bias with
the help of out of equilibrium SW transformation ([52]). As a result, at small bias
(linear response regime) the exchange integrals JΛΛ′

αα′ become time-dependent, but
the scaling equations can be derived from the condition of the invariance of the linear
conductance. However, the Hamiltonian (53) may be derived in a different fashion
assuming that both leads remain in quasi equilibrium and possess their own chemi-
cal potentials µL,R under the constraint µL = µR + eV . The relaxation processes in
the leads are negligible provided the leads are sufficiently hot and phonon-assistant
thermalization processes are fast enough compared with other characteristic time
scales involved in this analysis. This fact allows us to adopt an RG procedure
for frequency - dependent vertices ([79]). However, the dynamical symmetry of the
problem implies a possible further simplification of the RG scheme. The key distinc-
tion between the formalism suggested in Ref. ([80]) for DQD and the Keldysh type
description of an s = 1/2 dot in an external magnetic field under non-equilibrium
condition [79, 81] is this: In the first case, the presence of an additional adjustable
parameter, namely |∆s − eV | justifies the standard RG scheme if the resonance
condition |∆s − eV | ¿ T ¿ T eq

K is fulfilled. Therefore, under non-equilibrium con-
ditions illustrated by Fig. 14, the dynamical symmetry backs the quasi-equilibrium
RG approach generally inapplicable to conventional Kondo effect out of equilibrium.

As a result, the equations for tunnelling vertices JΛΛ′
αα′ at finite temperatures are

written as follows:

dJ T
ll

dL
= −ρ0(J T

ll )2,
dJ ST

ll

dL
= −ρ0J ST

ll J T
ll , (64)

dJ T
lr

dL
= −ρ0J T

ll J T
lr ,

dJ ST
lr

dL
= −ρ0J ST

ll J T
lr ,

dJ S
lr

dL
=

1
2
ρ0

(
J ST

ll,+J TS
lr,− +

1
2
J ST

ll,z J TS
lr,z

)
(65)

(cf. Eq. 47). The solution of the system of equations (65) supplemented by the
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boundary condition J ΛΛ′
αα′ (D0) = JΛΛ′ are given by

J T
α,α′ =

JT

1− ρ0JT ln(D/T )
, J ST

α,α′ =
JST

1− ρ0JT ln(D/T )
,

J S
lr = JS − 3

4
ρ0(JST )2

ln(D/T )
1− ρ0JT ln(D/T )

. (66)

and determine a new non-equilibrium Kondo temperature Tneq
K ∼ D exp(−1/ρ0J

T )
∼ (T eq

K )2/D. This temperature should be compared with the relaxation rate τ−1
ST

determined by singlet-triplet transitions in the dot. The condition ~/τST ¿ Tneq
K de-

fines a stability domain for the finite bias anomaly against the decoherence processes
associated with effects of re-population of the dot by the finite bias. For realistic
dots, the estimate ~/τST ∼ (∆s)3/D2 holds (see [80]), and the Kondo effect is robust
in a broad domain of external parameters. This means that FBA arises at eV ≈ ∆s

instead of conventional Kondo ZBA (see Fig. 15).

T/T K
0

10

20 1

2g/g
0

0.1

eV /TKb

Figure 15: Finite bias anomaly (FBA) in double quantum dot. Here g0 = e2/π~
is the unitarity limit for quantum conductance, which may be achieved at T = 0
under condition of perfect Kondo screening.

The perturbative corrections corresponding to re-population effects result in
asymmetry of the FBA in the differential conductance. The origin of this asym-
metry (threshold character of the relaxation associated with transitions between
different components of the triplet state) is however different from that for the con-
ventional non-equilibrium Kondo effect [79] and is also attributed to the hidden
dynamical symmetries associated with the SO(4) Kondo problem. The FBA of the
type shown in Fig. 15 was observed in tunnel conductance of carbon nanotubes [82]

An interesting question which arises here is whether the non-equilibrium Kondo
effect falls into the class of strong-coupling regime. It has been extensively stud-
ied during the last few years (see discussion and references in [79, 81]). The same
question when addressed to systems characterized by hidden dynamical symmetries
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allows a simple and straightforward answer: the strong coupling limit is not achiev-
able in this situation. There is always an energy scale determined by an external
bias, decoherence effects associated with AC or effects related to repopulation of the
dot which prevent the system from both one-stage and two-stage Kondo scenario
[58, 62] and suppress the Kondo effect in the ground state.

6 Addendum. Dynamical algebras

This chapter is a mathematical supplement to Chapter I. Here we clarify the origin
of spin dynamical symmetries and describe several useful bosonization and fermion-
ization procedures for the generators of SO(n) groups.

To demonstrate specific properties of dynamical algebras and various represen-
tations of groups possessing hidden dynamical symmetries we consider a group of
4-dimensional rotations. We start with referring to the well known description of
a hidden symmetry implicit in spherical quantum mechanical rotator. The Hamil-
tonian of rotator is

Hr =
1
2I

L2 (67)

where L is the operator of orbital moment and I is the moment of inertia.
Lie algebras o(n) are defined on a basis of 1

2n(n − 1) operators of infinitesimal
rotation

Dαβ = −Dβα = xβ
∂

∂xα
− xα

∂

∂xβ
, (α < β = 1, 2, ...n) (68)

which possess the following commutation relations

[DαβDµν ] = (δαµDβν − δανDβµ − δβµDαν + δβνDαµ). (69)

(see, e.g., [3, 83]. The antisymmetric tensor Dαβ for o(4) algebra acts in 4-
dimensional space. It can be parametrized in terms of two vectors L and M as
follows

−i




0 L3 −L2 M1

0 L1 M2

0 M3

0


 (70)

where the infinitesimal operators of SO(4) group [83] in 4-dimensional space
(x, y, z, t) are given by

L1 = i

(
y

∂

∂z
− z

∂

∂y

)
, L2 = i

(
z

∂

∂x
− x

∂

∂z

)
, L3 = i

(
x

∂

∂y
− y

∂

∂x

)
,

M1 = i

(
t

∂

∂x
− x

∂

∂t

)
, M2 = i

(
t

∂

∂y
− y

∂

∂t

)
, M3 = i

(
t

∂

∂z
− z

∂

∂t

)
. (71)
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¿From here we deduce the commutation relations:

[Lj , Lk] = iejklLl, [Mj ,Mk] = iejklLl, [Mj , Lk] = iejklMl. (72)

Six generators of SO(4) group are defined in a 4-dimensional spherical coordinate
system characterized by 3 angles θ, φ, α,

x1 = x = R sinα sin θ cosφ x2 = y = R sinα sin θ sinφ

x3 = z = R sinα cos θ x4 = t = R cosα. (73)

Returning back to spherical rotator, one may treat angle α as an angle between
the rotation axis and fixed Cartesian z-axis. Two rest angles characterize rotation
in a 3D subspace with fixed rotation axis. The operators of infinitesimal rotations
are is given by

L3 = −i
∂

∂φ
, L± = e±iφ

(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
,

M3 = i cos θ
∂

∂α
− i sin θ cotα

∂

∂θ
,

M± = e±iφ

(
cotα

[
∓ 1

sin θ

∂

∂φ
+ i cos θ

∂

∂θ

]
+ i sin θ

∂

∂α

)
,

where ladder operators L± = L1 ± iL2 and M± = M1 ± iM2. The angular moment
L is parameterized by only two angles, θ, φ according to standard representation of
SO(3) group [84]. Although the Hamiltonian (67) contains only the invariant L2,
describing 3D rotation, the hidden 4th dimension is accessible due to additional gen-
erator M, which determines the transitions from 3D space to the true 4D manifold
[85]. As a result the operator L2 is no more conserving quantity for SO(4) group.
The Casimir operator

L2+M2 = − ∂2

∂α2
−2 cotα

∂

∂α
−cosec2α

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ cosec2θ

∂2

∂φ2

)
= 3 (74)

and the orthogonality condition

L ·M = M · L = 0 (75)

determine the hyperspherical harmonics as the eigen functions of the angular part
of 4-D Laplacian,

Ynlm(α, θ, φ) = in−1−l2l+1l!
[
n(n− l − 1)!
2π(n + l)!

]1/2

sinl αC l+1
n−l−1(cosα)Y m

l (θ, φ).

Here C l+1
n−l−1 is Gegenbauer polynomial [86] and Y m

l (θ, φ) stands for standard three
dimensional spherical harmonics.
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It is known, that three generators of SU(2) group together with the Casimir
operator L2 define a sphere S2 where each state is parameterized by two angles.
The coherent states of SU(2) group may be constructed [87] by making a standard
stereographical projection of the sphere from its south pole to the complex plane
z. The space of generators of SO(4) group is 6-dimensional, while 2 constraints
determine 4-dimensional surface, where each state is characterized by four angles.
The stereographical projection of this surface on a 4-D complex hyperplane allows
to construct coherent states for SO(4) group.

The commutation relations (72) can be transformed into another form by making
the linear transformation to the basis

Ji =
Li + Mi

2
, Ki =

Li −Mi

2
(76)

giving more simple commutation relations

[Jj , Jk] = iejklJl, [Kj ,Kk] = iejklKl, [Kj , Jk] = 0. (77)

The operators Li,Mi as well as Ji,Ki form the elements of the Lie algebra o(4). The
operators (J1, J2, J3) and (K1,K2,K3) are separately closed under commutations,
each describing a subalgebra of o(4), namely o(3) = u(2). The Lie algebra o(4)
is the direct sum of two o(3) algebras. This splitting of the o(4) algebra into two
o(3) subalgebras is directly associated with the local isomorphism between the Lie
group SO(4) with the direct product group SU(2)× SU(2). The triads (J1, J2, J3)
and (K1,K2,K3) each form proper ideals [83] in o(4), and the Lie algebra o(4) is
semi-simple.

The symmetry group of spin rotator is defined in close analogy with the above
construction, but all rotations are performed in a spin space. The triplet/singlet pair
is formed in a simplest case by two electrons represented by their spins s = 1/2. Let
us denote them as ~s1 and ~s2. The components of these vectors obey the commutation
relations

[s1j , s1k] = iejkls1l, [s2j , s2k] = iejkls2l, [s1j , s2k] = 0 (78)

In similarity with (77) these vectors may be qualified as generators of o(4) algebra,
which represents a spin rotator. Then, the linear combinations

Si = s1i + s2i, Ri = s1i − s2i (79)

are introduced in analogy with (76), which define 6 generators of SO(4) group pos-
sessing the commutation relations (8). These generators are represented in terms of
the Pauli-like matrices as follows

S+ =
√

2




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , S− =

√
2




0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0


 ,
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Sz =




1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


 , Rz = −




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


 , (80)

R+ =
√

2




0 0 0 1
0 0 0 0
0 0 0 0
0 0 −1 0


 , R− =

√
2




0 0 0 0
0 0 0 0
0 0 0 −1
1 0 0 0


 . (81)

where the ladder operators S± = Sx ± iSy, R± = Rx ± iRy. The constraints (74),
(75) now acquire the form

S ·R = 0, S2 + R2 = 3.

By construction S is the operator of the total spin of pair, which can take values
S = 0 for singlet and S = 1 for triplet states. The second operator R is responsible
for transition between singlet and triplet states. Thus we come to the dynamical
group SO(4) for spin rotator introduced in Chapter I [see Eqs. (7) and (8)].

Similar procedure is used for the SO(5) group. The corresponding o(5) algebra
has 10 generators Dαβ = −Dβα (68) satisfying commutation relations (69). These
10 generators may be identified as 3 vectors and a scalar in a following fashion

−i




0 Sz −Sy Rx P x

0 Sx Ry P y

0 Rz P z

0 A
0




(82)

where the operators S,R,P and the scalar operator A obey the following commu-
tation relations

[Sj , Sk] = iejklSl, [Rj , Rk] = iejklSl, [Pj , Pk] = iejklSl,

[Rj , Sk] = iejklRl, [Pj , Sk] = iejklPl, [Rj , Pk] = iδjkT,

[Pj , A] = iRl, [A,Rj ] = iPj , [A,Sj ] = 0. (83)

[cf. Eqs. (8), (11)]. The operators R and P are orthogonal to S, while the Casimir
operator is K = S2 +R2 +P2 +A2 = 4. These operators act in 10-D spin space, and
the kinematical restrictions reduce this dimension to 7. Similarly to SO(4) group,
the vector operators describe spin S=1 and transitions between spin triplet and
two singlet components of the multiplet, whereas the scalar A stands for transitions
between two singlet states. Then the vectors R and P may be identified with R1

and R2, and the spin algebra is connected with the algebra for Hubbard operators
by equations (10).
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The group SO(5) is non-compact, and the parametrization (82) is not unique.
As an alternative, one may refer to another representation of Dαβ used, the theory
of high-Tc superconductivity [92]:

−i




0
πx + π†x 0
πy + π†y −Sz 0
πz + π†z Sy −Sx 0

Q −i(π†x − πx) −i(π†y − πy) −i(π†z − πz) 0




(84)

with 10 generators identified as a scalar Q and three vectors ~S, ~π and ~π† standing
for the total charge, spin and π triplet S = 1 superconductor order parameter. Both
representations (82) and (84) are connected by the unitary transformation.

It is well known that the spin space may be projected onto bosonic or fermionic
space by various transformations useful for specific physical applications. Here we
show the way of generalization of several popular spin-boson and spin-fermion rep-
resentations to the dynamical algebras o(4) and o(5). Like in the case of pure spin
operators, these representations should preserve all kinematical constraints.

Schwinger [88] has shown that it is possible to make a realization of SU(2) group
for spin S in terms of boson operators ai, a

†
i , (i = 1...2S + 1) with

[ai, a
†
j ] = δij .

In particular, for S = 1/2 Schwinger’s bosonization reads

~s =
1
2
a†~τa, a† = (a1, a2). (85)

(~τ is the set of 2×2 Pauli matrices). One should introduce the local constraint a†1a1+
a†2a2 = 1 to get rid of spurious states associated with this bosonic representation.

Using local isomorphism of SO(4) and SU(2)× SU(2), one may derive a repre-
sentation of SO(4) generators in terms of 4-component Schwinger bosons as

~S = ~s1 + ~s2 =
1
2
(a†~τaa + b†~τbb), ~R = ~s1 − ~s2 =

1
2
(a†~τaa− b†~τbb) (86)

where 4× 4 τ -matrices act on a− and b− subsets of 4-vector qT = (a†1, a
†
2, b

†
1, b

†
2).

An alternative approach is based on use of Abrikosov [46] or Popov-Fedotov
[89, 90] auxiliary fermions fλ, where λ = −1, 0, 1, s. Making use of (7) we represent
6 generators of SO(4) as follows

S+ =
√

2(f †0f−1 + f †1f0), S− =
√

2(f †−1f0 + f †0f1), Sz = f †1f1 − f †−1f−1,

R+ =
√

2(f †1fs − f †sf−1), R− =
√

2(f †sf1 − f †−1fs), Rz = −(f †0fs + f †sf0).
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with the only constraint
n1 + n0 + n−1 + ns = 1 , (87)

whereas the orthogonality condition is fulfilled automatically. The constraint (87)
is respected by means of introducing real chemical potential λ →∞ for Abrikosov’s
auxiliary fermions or imaginary chemical potentials µt = −iπT/3 for Popov-Fedotov
semi-fermions (see details in [91]). The advantage of semi-fermionic representation
is that it allows to construct a real-time Schwinger-Keldysh formalism [91] neces-
sary for description of strongly non-equilibrium effects in systems with dynamical
symmetries.

The fermionic representation of SO(5) group is easily constructed by use
of Hubbard operator representation and is characterized by 5-vector qT =
(f †−1f

†
0 , f †1 , f †s , f †r )

S+ =
√

2(f †0f−1 + f †1f0), Sz = f †1f1 − f †−1f−1,

R+ =
√

2(f †1fs − f †sf−1), Rz = −(f †0fs + f †sf0),

P+ =
√

2(f †1fr − f †r f−1), P z = −(f †0fr + f †r f0). (88)

and
A = i(f †r fs − f †sfr)

The constraint
n1 + n0 + n−1 + ns + nr = 1 (89)

is respected either by real infinite chemical potential (Abrikosov pseudofermions) or
by set of complex chemical potentials (semi-fermions). We do not present here ten
5× 5 matrices characterizing SO(5) representation to save a space. The reader can
easily construct them using representations (10) or (88). There exists also a bosonic
representation based on Schwinger bosons which might be derived by the method
similar to used above for SO(4) group.

The representations of higher SO(n) groups can be constructed in a similar
fashion. We address the reader to the papers [33] for further details of systematic
classifications of SO(n) groups where numerous examples of application of higher
dynamical groups for quantum dots can also be found.

Kinematic constraints imposed on auxiliary fermions and bosons is in strict com-
pliance with the Casimir and orthogonality constraints in spin space. Accordingly,
the number of fermionic and bosonic fields reproduces the dimensionality of spin
space reduced by these constraints. We have seen that the 6-D space of generators
of SO(4) group is reduced to D=4. Then the minimal (unconstraint) fermionic rep-
resentation for this group should contain two U(1) fermions. This means that the
representation (87) is not minimal. Apparently, the best way to find such represen-
tation is to use Jordan-Wigner-like transformation [93]. The same kind of arguments
applied to SO(5) group tells us that the spinor field should contain seven compo-
nents. This means that the representation (88) should be completed by one more
(Majorana) fermion, and this fact points to one more hidden Z2 symmetry [93].
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7 Conclusion

The concept of dynamical symmetry in quantum mechanics has been (probably) first
noted in the hydrogen atom and the isotropic harmonic oscillator. In these systems,
there is a high degree of degeneracy of energy levels, which cannot be explained
merely on the basis of rotational symmetry of the relevant Hamiltonian. In 50-es
and 60-es the approach based on the ideas of dynamical symmetry was a powerful
tool in high energy physics in an extremal situation, when the theoreticians had no
relevant Lagrangian for description of experimentally observed hadron multiplets,
but the symmetry of the system could be restored by group-theoretical methods,
namely by constructing corresponding dynamical algebras.

Today, the concept of dynamical symmetry is ubiquitous in many branches of
modern physics, such as quantum field theory, nuclear physics, quantum optics and
condensed matter physics in low dimensions. Quantum dots are especially suitable
objects for the group theoretical approach because the fully discrete spectrum of
low-lying excitations in these systems often may be characterized by the definite
dynamical symmetry, and the interaction with the metallic reservoir of metallic
electrons in the leads provides a powerful tool of symmetry breaking.

In this review we concentrated on the spin excitations in quantum dots. Another
promising class of nanoobject for applications of these ideas is spin ladders. In this
case the role of object with definite dynamical symmetry is played by a single rung or
pair of neighboring rungs bound by diagonal bonds, whereas the longitudinal modes
violate this symmetry. The application of of dynamical symmetry approaches in
this field are seldom enough as yet [94, 95], but the field seems to be really wide.

One more field for application of ideas developed in this review is the rapidly
developing area of molecular electronics [96]. In artificially fabricated 2D molec-
ular electronic circuits individual organic molecules are incorporated in electronic
devices as basic elements. Molecular bridges containing one or several molecular
groups and bound by tunnel contact with the rest network are the potential objects
for description in terms of dynamical symmetry. Especially interesting is the case
when the magnetic ions are caged within such a molecular group. One may expect
manifestations of Kondo effect in current-voltage characteristics of such objects and
indeed, first observations of Kondo resonances in tunnelling through metallorganic
molecules are available [97]. In such objects the continuous symmetry of spin groups
should be combined with discrete symmetry of finite rotation groups, which char-
acterize the molecular symmetry. Possible involvement of vibrational degrees of
freedom open new horizons for studies of dynamical symmetry at finite frequencies.

At the end, we hope to convince the reader of the beauty and relevance of
dynamical symmetries in condensed matter physics and to stress its relation with
down to earth experiments which, following the impressive technological fabrication
techniques, can be performed in numerous laboratories.
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[76] R.J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M.
Garcia, W. Schoenfeld, and P.M. Petroff, Nature, 405, 926 (2000).

[77] K. Karrai, R.J. Warburton, c. Schullhauser, A. Högele, B. Urbaszek, E.J.
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