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Explicit and Hidden Symmetries in Quantum Dots and Quantum Ladders
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The concept of dynamical hidden symmetries in the physics of electron tunneling through compos-
ite quantum dots (CQD) and quantum ladders (QL) is developed and elucidated. Quite generally,
dynamical symmetries are realizable in the space of low energy excited states in a given charge sector
of nanoobjects, which involve spin variables and/or electron-hole pairs. While spin multiplets in an
individual rung of a QL or in an isolated CQD form a representation space of the usual rotation
group, this SU(2) symmetry is broken due to spin transfer (in QL) electron cotunneling through
CQD. Dynamical symmetries in the space of spin multiplets are then unravelled in these processes.
The corresponding symmetry groups are described by SO(n) or SU(n) depending on the origin of
rotation group symmetry breaking. The effective spin Hamiltonians of QL and CQD are derived
and expressed in terms of the pertinent group generators. We employ fermionization procedure for
analyzing the physical content of these dynamical symmetries, including Kondo tunneling through
CQD and Haldane gap formation in QL.

PACS numbers: 72.10.-d, 72.15.-v, 73.63.-b

INTRODUCTION

Symmetry considerations play a central role in the
physics of low-dimensional systems, and serves as a key
for understanding their peculiar properties [1]. It pre-
determines their thermodynamics, response to external
fields, transport properties, phase diagrams, etc. In
many cases, formulating the physics of strongly inter-
acting electrons in low dimensional systems (especially
nano-objects) should be constructed by employing group
theoretical concepts (among them non-commutative alge-
bras), whose specific structure have direct consequences
for observable physical properties. It appears that not
only the symmetry of a given Hamiltonian but also the
dynamical symmetry of low-energy excitations is relevant.

In order to clarify the above statements, let us con-
sider a system with Hamiltonian H0 whose eigenstates
|Λ〉 = |Mµ〉 form a basis for an irreducible representa-
tion of some Lie group G (µ enumerates the lines of this
representation). It is convenient to express the generators
of Lie algebras via Hubbard operators XΛΛ′

= |Λ〉〈Λ′|.
Then the Hamiltonian under consideration is expressed
in terms of diagonal Hubbard operators

H0 =
∑

Λ=Mµ

EΛ|Λ〉〈Λ| =
∑

Λ

EMXΛΛ , (1)

so that

[XΛΛ′

,H0] = −(EM − EM ′)XΛΛ′

. (2)

The symmetry group of the Hamiltonian is then gener-
ated by the operators XMµ,Mµ′

, which commute with
H0, whereas the dynamical symmetry of H0 is generated
by the whole set of operators {X}. This dynamical sym-
metry may be revealed, when H0 describes a quantum ob-
ject, which is part of larger system with Hamiltonian H,

and its symmetry is violated by interaction with this envi-
ronment. If the interaction scale is characterized by some
energy E , then the dynamical symmetry is determined by
transitions between those states from the manifold EΛ,
which fall into the interval E . We divide the Hubbard
operators acting within this low-energy interval into sub-
sets {S} and {R}. Here the S-operators generate the
symmetry group G, whereas the S- and R-operators to-
gether generate the dynamical group D. In this paper we
study spin properties of quantum dots and quantum lad-
ders, so the group G is in fact SU(2), namely, the group
of spin angular momentum. It will be shown that the
dynamical symmetry of this object is that of the SO(n)
group. We will construct the corresponding algebras by
means of Hubbard operators, rewrite the corresponding
Hamiltonians H in terms of the group generators, discuss
the possible ways of fermionization of these Hamiltonians
and consider some specific properties of quantum dots
and quantum ladders possesing these symmetries.

FROM SPIN ROTATOR TO KONDO
TUNNELING

The symmetry of spin rotator is an intrinsic property of
many low-dimensional spin systems. As was shown in [2],
this symmetry predetermines the low-energy dynamics of
zero-dimensional quantum dots with even occupation in
tunneling contact with metallic reservoirs. Let us con-
sider a double quantum dot (DQD)occupied by two elec-
trons in a neutral state in a T-shaped parallel geometry
(Fig.1) as a representative example. In this geometry,
two valleys of DQD are coupled by tunneling V . In a
limit of strong Coulomb blockade Q, such that V ≪ Q,
the energy spectrum of an isolated DQD consists of a
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FIG. 1: Parallel Double Quantum Dots in contact with source
(S) and drain (D) metallic leads. V and W are tunneling
coupling constants, vg is a gate voltage.

ground state singlet with energy ES , a spin triplet with
the energy ET separated by an exchange gap δ = 2V 2/Q
above ES and two charge transfer excitons with large ex-
citation energies ∼ Q, the charging energy for a given
well of DQD. Thus the indices Λ in the Hamiltonian H0

(1) stand for Λ = S, Tµ with µ = 1, 0, 1̄ denotes the three
projections of the spin S = 1.

The dynamical symmetry of the {S, T } manifold is
that appropriate for the SO(4) group. Two vectors gen-
erating this group are constructed by means of Hubbard
operators (2) in the following way:

S+ =
√

2
(
X10 + X0−1

)
, S− =

√
2
(
X01 + X−10

)
,

Sz = X11 − X−1−1. (3)

R+ =
√

2
(
X1S − XS−1

)
, R− =

√
2
(
XS1 − X−1S

)
,

Rz = −
(
X0S + XS0

)
. (4)

The first one, S is the conventional spin 1 operator, while
the second vector is the R-operator describing S/T tran-
sitions. The spin algebra is o4, which is characterized by
the commutation relations

[Sα, Sβ] = ieαβγSγ , [Rα, Rβ ] = ieαβγSγ , [Rα, Sβ ] = ieαβγRγ .(5)

(α, β, γ are Cartesian coordinates, eαβγ is a Levi-Civita
tensor). These vectors are orthogonal, S · R = 0,, the
Casimir operator is S

2 + R
2 = 3.

A gate voltage vg applied to DQD, makes the level
positions essentially asymmetric, and the charging en-
ergy Q may be nearly compensated for at least one of
the charge transfer singlet excitons (say, the right one,
Λ = Er). In this case we encounter a ”Coulomb res-
onance” excitations, where the spin singlet and charge
transfer exciton (also a singlet!) are strongly intermixed,
but the spin triplet is untouched by this resonance tun-
neling. This means that the corresponding manifold is
{S, T, Er}. Besides, one more R-vector R1 and a scalar
A operators should be included in the set of group genera-
tors. These generators are expressed in terms of Hubbard

operators as follows:

R+
1 =

√
2
(
X1Er − XEr1

)
, R−

1 =
√

2
(
XEr1 − X−1Er

)
,

R1z = −
(
X0Er + XEr0

)
,

A = i(XSEr − XErS). (6)

To close the algebra the commutation relations (5) which
are valid also for R1α should be completed by

[Rlα, R1β ] = iδαβA, [R1α, A] = iRlα, (7)

[A, Rlα] = iR1α, [A, Slα] = 0.

The system of commutation relations (5), (7) is that of
the o5 algebra, and the manifold {S, T, Er} obeys SO(5)
dynamical symmetry, provided all three levels are in-
volved in the interaction within the Hamiltonian H. The
Casimir operator for the SO(5) group in this representa-
tion is S

2 + R
2 + R1

2 + A2 = 4.
In terms of these operators H0 has the form

H0 =
1

2

(
ET S

2 + ESR
2
)

+ Q(N̂ − 2)2. (8)

and

H0 =
1

2

(
ET S

2 + ESR
2 + EEr

R
2
1

)
+ Q(N̂ − 2)2. (9)

for the SO(4) and the SO(5) groups, respectively. The
last terms in (8) and (9) control the number of electrons
given by the operator N̂ in the DQD.

As is seen from this equation, spin is still conserved in
the isolated DQD. However, a tunnel contact with metal-
lic leads breaks the spin rotation invariance and reveals
the dynamical symmetry of the DQD. The physical mech-
anism of this symmetry breaking is electron cotunneling

with spin flips, when an electron with spin σ enters the
DQD, whereas another electron with spin σ′ leaves it.
This process is known to be a source of Kondo effect in
tunnel barriers and quantum dots [3]. Eliminating charge
degrees of freedom by means of the Schrieffer-Wolff trans-
formation, one usually arrives at an exchange-like cotun-
neling Hamiltonian of the type JcotS·s, where Jcot ∼ W 2,
and W is a lead-dot tunneling amplitude (which is anti-
ferromagnetic, Jcot > 0) .

Since ET − ES = δ > 0, the Kondo effect seems to
be irrelevant in DQD with even occupation. However,
one should remember that the tunneling W induces addi-
tional contribution of indirect exchange between the two
wells of the DQD. As is shown in Refs. [2] this contri-
bution may change the sign of δ provided the excitation
Er is soft enough, but the condition V/(ET − ES) ≪ 1
is still valid. Then the exciton Er is eliminated from the
manifold, the symmetry of the DQD reduces from SO(5)
to SO(4) and the Schrieffer-Wolff transformation yields
the effective spin Hamiltonian

H = H0 + JT
cotS · s + JST

cot R · s, (10)
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where JT
cot and JST

cot are two indirect exchange coupling
parameters which are renormalized by Kondo screening.
This screening affects both vectors S and R.

The problem of Kondo tunneling within the frame-
work of the Hamiltonian (10) has been solved in the weak
coupling limit (see [2] and references therein), so we do
not elaborate upon it here. For further progress it is
important to note that this example demonstrates how
the dynamical symmetry is realized in the S/T subspace
due to interaction with the electrons in the leads, which
breaks the rotational symmetry of the isolated spin sys-
tem. This interaction introduces its own energy scale E
into the problem (in example considered above it is just
the Kondo temperature TK), and the dynamical symme-
try of the DQD as a spin rotator becomes relevant when
the T/S energy splitting is comparable with TK . In more
complicated quantum dots the spin manifolds consist of
several S/T pairs, and the dynamical symmetry of such
dots is described by the SO(n) groups (see Ref. [4] where
the cases of n = 3, 5, 7 are discussed).

FROM SPIN ROTATOR TO SPIN LADDER

In this section we show that an SO(4) symmetry is an
intrinsic property of S=1/2 spin ladders and decorated
spin chains (defined below) . A generic Hamiltonian for
the spin systems under consideration is of the Heisenberg-
type, consisting of spin 1/2 moments residing on the sites
of a two leg ladder,

H(SL) = Jt

∑

〈i1,i2〉

si1 · si2 + Jl

∑

α

∑

〈iα,jα〉

siα · sjα. (11)

Here, the index α = 1, 2 enumerates the legs of the
ladder, and the sites 〈i1, i2〉 belong to the same rung
(Fig.2a).

A chain of dimers of localized spins illustrated by Fig.
2b is described by the simplified version of this Hamilto-
nian

HSRC = Jt

∑

〈i1,i2〉

si1 · si2 + Jl

∑

〈ij〉

si1 · sj1 (12)

The geometry of alternate rungs is chosen in a system
(12) to avoid exchange interaction between spins si2 and
sj2. The transverse coupling may emerge either from di-
rect exchange (in case of localized spins) or from indirect
Anderson-type exchange induced by tunneling (similarly
to the case encountered in QD). In the latter case the
sign of Jt is antiferromagnetic (AFM), in the former case
it may be ferromagnetic (FM) as well. The same is valid
for Jl.

It is useful to start with diagonalization of the Hamil-
tonian of a perpendicularly aligned dimer (cf. Ref. [5]).
The SO(4) symmetry stems from the obvious fact that
the spin spectrum of a dimer {i1, i2} is formed by the
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FIG. 2: Spin Ladder (a), Spin Rotator Chain (b), Spin ladder
in the CDW phase (c) and Alternate Spin Rotator Chain (d)

same singlet-triplet (ST) pair as the spin spectrum of
DQD studied in the previous section. This analogy
prompts us a canonical transformation connecting two
pairs of spin vectors, {si1, si2} and {Si,Ri}: The two
sets of spin operators are connected by a simple rotation

si1 =
Si + Ri

2
, si2 =

Si − Ri

2
, (13)

Then the Hamiltonian Hi of a single dimer i is the same
as the Hamiltonian (8) of DQD. The total spin of a dimer
is not conserved in such a spin chain, so the dynamical
symmetry of an individual rung is revealed by the modes
propagating along the chain [5]. Applying the rotation
operation (13) to the Hamiltonians (11) and (12), we
transform them into an equivalent form

H = H0 + Hint. (14)

Here H0 =
∑

i Hi is common for both models. It is useful
to include the Zeeman term in Hi,

Hi =
1

2

(
ESR

2
i + ET S

2
i

)
+ hSiz. (15)

We confine ourselves by a charge sector Ni = 2 and omit
the Coulomb blockade term for the sake of brevity. The
interaction part of the SL Hamiltonian transforms under
rotation (13) to the following expression

HSL
int =

1

4
Jl

∑

〈ij〉

(SiSj + RiRj) (16)

The interaction part of the SRC Hamiltonian is

HSRC
int =

1

4
Jl

∑

〈ij〉

(SiSj + 2RiSj + RiRj) (17)

One may also consider the alternate SRC model (ASRC,
see Fig. 2(c)). After an appropriate rotation (13)its in-
teraction Hamiltonian acquires the form

HASRC
int =

1

4
Jl

∑

〈ij〉

(SiSj + SiRj). (18)
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Now we see that all three effective Hamiltonians be-
long to the same family. In all cases the initial lad-
der or ”semi-ladder” Hamiltonian is transformed into
a one-dimensional spin-chain Hamiltonian, which, how-
ever, takes into account the hidden symmetry of a dimer.
The effective Hamiltonians (16), (17), (18) contain opera-
tors R describing the dynamical symmetry of the dimers.
This dynamical symmetry turns the spectrum of this
Hamiltonians to be richer than that of a standard Heisen-
berg chain. Like in many other cases, rotation transfor-
mation eliminates the antisymmetric combination of two
generators.

Thus, the transformation (13) reveals the hidden sym-
metry of a spin 1/2 ladder (16). It maps the Hamiltonian
onto a pair of coupled chain Hamiltonians: one is the con-
ventional spin 1 chain, while the other is a pseudospin
chain. A spin Si and a pseudospin Ri are kinematically
coupled by the commutation relations and by the local
Casimir constraint

S
2
i + R

2
i = 3. (19)

One may also compare the Hamiltonian (16) with the
effective Hamiltonian of a spin 1 chain, which arises after
decomposition of spin-one operators into a pair of spin
1/2 operators, Si = si + ri [6]. This decomposition op-
eration transforms the initial Hamiltonian into a form
similar to HSRC but for spin-one-half operators si, ri.
The difference between the two cases is that these effec-
tive spins commute, (unlike operators Si, Ri). In other
words, the difference is that the local symmetry of spin-
one chain is SO(3) whereas the local symmetry of SRC
is SO(4). The spin rotator chains (17), (18) are in some
sense intermediate between spin chains and spin ladders.
In these cases the spin-pseudospin symmetry is obviously
broken by the cross terms 2SiRj .

The excitation spectrum of spin ladders may be calcu-
lated in terms of operators Si and Ri. For example, the
well known expression for a gap ∆E in excitation spec-
trum in the limit of strong transversal exchange Jt ≫ Jl

for AFM interaction [5] looks like

∆E = Jt+
(Jl/4)2

∑
ij,αβ

(
〈T αβ

ij |RiRj |SiSj

)2

(ET − ES)
= Jt+

3J2
l

8Jt

(20)

(here T αβ
ij and SiSj stand for possible triplet projections

and spin states at the sites i, j, respectively). The singlet-
triplet excitations above this gap are given by the disper-
sion law ω(k) = ∆E + Jl cos k.

In all cases the simplified versions of Heisenberg Hamil-
tonians may be considered. The simplified SL models are
well known [7]. The anisotropic versions of the Hamilto-
nian (17) are: Ising-like SRC model:

H =
1

4
Jl

∑

〈ij〉

(Sz
i Sz

j + 2Sz
i Rz

j + Rz
i R

z
j ). (21)

Anisotropic SRC model:

H =
1

4
Jl

∑

〈ij〉

[
(S+

i S−
j + S+

i R−
j + S−

i R+
j + R+

i R−
j ) (22)

+ ∆(Sz
i Sz

j + 2Sz
i Rz

j + Rz
i R

z
j )

]
.

SRC in strong magnetic field: SO(4) group reduces to
SU(2) group in magnetic field, when the Zeeman splitting
exactly compensates the exchange gap in a single dimer,
h0 = |ET −ES |. Then at low T, the states |i0〉 and |i−1〉
are quenched, and only two components, R± survive in
the manifold (3), (4). As a result, the Hamiltonian (17)
is mapped onto a XY -model for spin 1/2:

H
(R)
XY =

1

4
Jl

∑

〈ij〉

(R+
i R−

j + H.c.). (23)

This means that starting from a singlet ground state for
Jt ≡ ET − ES > 0, one may induce development of spin
liquid-like excitations by applying strong magnetic field.
In a near vicinity of this point of degeneracy, Hint acquire
the features of XY model in transverse magnetic field.

FERMIONIZATION

To describe the elementary excitations in SRC, one
should generalize the SU(2)-like semi-fermionic represen-
tation for S operators [8]

S+ =
√

2(f †
0f1̄ + f †

1f0), S− =
√

2(f †
1̄
f0 + f †

0f1),

Sz = f †
1f1 − f †

1̄
f1̄, (24)

where f †
1 , f †

1̄
denote creation operators for fermions with

spin “up” and “down” respectively whereas f0 stands for
spinless fermion [8, 9]. Fermionization of SO(4) group
is completed by introducing one more spinless fermion
fs which represents the singlet state. As a result, P -
operators are given by the following equations:

P+ =
√

2(f †
1fs − f †

sf1̄), P− =
√

2(f †
s f1 − f †

1̄
fs),

P z = −(f †
0fs + f †

s f0). (25)

Then the single-site Hamiltonians may be represented in
a form

Hi = −δf †
isfis + h(f †

i1fi1 − f †
i1̄

fi1̄) (26)

The Casimir operator S
2+P

2 = 3 transforms to the local
constraint

∑

Λ=±,0,s

f †
ΛfΛ = 1.
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We start the studies of elementary excitations in SRC
with the anisotropic XXZ version. of general effective
Hamiltonian. The simplest of all is the case (18). The
problem is reduced to a standard XY-model for spin one
half, and the spinon spectrum may be easily obtained ei-
ther by bosonization or by spinon-type fermionisation. In
former case one deals with hard-core bosons, and in lat-
ter one the problem is mapped onto the non-interacting
incompressible fermions at half-filling.

We concentrate on a more complicated case of XXZ-
SRC model (22) specifically on its simplified alternate
version, which is obtained from the Hamiltonian (18).
The Hamiltonian of this model is

H =
1

4
Jl

∑

〈ij〉

(S+
i S−

j +S+
i P−

j +S−
i P+

j +∆(Sz
i Sz

j +2Sz
i P z

j ).

(27)
The S-S part of this Hamiltonian describes the S=1 chain,
with the Haldane gap in the excitation spectrum (see,
e.g.,[10, 11]). The question is, how do the S-P interaction
modifies the gap. We consider the case of FM dimers,
when the triplet is the ground state. In this case one
has one more gap mode, where the gap equals Jt. This
mode is coupled to Haldane branch only via S-P exchange
terms in (27).

The spin liquid fermionization approach adopted here
is a convenient tool for description of Haldane spec-
trum. Unlike the S=1/2 model, where the spin-liquid
state is easily described by globally U(1) invariant modes

TijTji =
∑

σ f †
iσfjσ|2, in case of S=1, one deals with

variables which effectively break this symmetry. One
can rewrite the effective Hamiltonian of SRC model with
∆ = 0 in a form

H =
1

4
Jl

∑

ij

(
f †

i1fj1 + f †
i1̄

fj1̄

)
B̄0S

j B0S
i

+f †
i1̄

f †
j1C

0S
j B0S

i + B̄0S
i C̄0S

j fj1fi1̄, (28)

where B0S
j = f0j+fSj , C0S

j = f0j−fSj. The terms in the
first line of Eq. (28) describe coherent propagation of spin
fermions accompanied by a backflow on neutral fermions,
whereas the terms in the second line are ”anomalous”
(they do not conserve spin fermion number). For exam-
ple the propagator 〈S+

i S−
j 〉 contains anomalous compo-

nents f †
i1f

†
j1̄

fj0fi0 → F ∗
ij,11̄Fji,00 along with normal ones

f †
i1fj1f

†
j0fi0. Here Fij,ΛΛ′ = fjΛfiΛ′ . The first term in

(28) describes the kinetic energy spinon excitations, and
two last anomalous term breaking U(1) symmetry are re-
sponsible for the Haldane gap. To reveal the contribution
of dynamical symmetry on the Haldane gap, one have to
note that the terms B0S and B0S appear both as a coun-
terflow in the first term and as gauge symmetry breaking
terms in the second line. In spin 1 ladder the counter-
flow term ∼ f †

i0fj0 predetermines the width of spinon
band described by the first line of Eq. (28). Apparently,

the one more channel (tripet/singlet transitions in B0S)
enhances this effect, because in this case the local con-
straint imposes more restrictions of phase fluctuations.
The gap itself is due to anomalous correlations described
by the second line of Eq. (28). Here the appearance of
second channel of spinless excitations results in formation
of even and odd operators B0S

j and C0S
j . The Haldane

gap closes when the |0〉 and |S〉 states are degenerate (the
odd operator C0S

j nullifies the anomalous terms respon-
sible for its formation). This means that appearance of
0S channel favors closing of the Haldane gap.

In a strong coupling case of Jt ≫ Jl both above trends
may be considered at least in the lowest order of a per-
turbation theory. In case of spin ladders [5] the 1-st and
2-nd-order in g = Jl/Jt anomalous diagrams are repre-
sented in Fig.3.

j= +

1 1 1

−1 −1 −1

0

0

0

0 0

0
−1,

−1, s

s

i i ij j

FIG. 3: Lowest order contributions to anomalous propagator.

SO(N) DYNAMICAL SYMMETRIES FOR A
TWO-LEG QUANTUM LADDER

It was mentioned in Section II that the dynamical sym-
metry of DQD becomes SO(5), if the charge transfer ex-
citonic state is involved (see Eq. 9). In this section we
discuss the origin of this symmetry in spin ladders. This
problem arose in a context of SO(5) symmetric t − J
model of 2D cuprate superconductors [12]. Later on the
version of this theory was formulated for cuprate two-leg
ladders [13]. Here we show that the dynamical SO(5)
group arises in description of Heisenberg ladder, but ex-
citonic states are involved in this symmetry instead of
Cooper states.

Let us consider a two-leg quantum ladder depicted
in Fig.2a under condition of strong Coulomb blockade
imposed on each rung i. We allow electron tunneling
tαij along both legs. This tunneling is described by the
Hamiltonian

Htun =
∑

ij

∑

ασ

tαd†iασdjασ . (29)

(only a nearest-neighbor hopping along the leg is al-
lowed). This hopping results in appearance of charged

rungs because each hopping act creates a hole on a rung
j and an electron on a rung i. To treat this charging
properly the Coulomb blockade term in the Hamiltonian
Hi (15) should be restored (see Eq. 9), and the terms
with excess electron and excess hole should be added. It
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is more convenient to represent the Hamiltonian Hi of in-
dividual rung i in terms of diagonal Hubbard operators
[see (1)]

Hi =
∑

i

[
∑

Λ

EΛXΛΛ
i +

∑

γ

EγXγγ
i +

∑

Γ

EΓXΓΓ
i

]
(30)

Here index γ = ασ stands for the states with one electron
with spin σ on a site iα of the rung i, index Γ = ασ stands
for three-electron states of a rung, where two electrons
occupy site iα and one electron with spin σ is located in
a site iᾱ (ᾱ = 2 if α = 1 and v.v). The energy levels Eγ

and EΓ are separated by a Coulomb blockade gap ∼ Q
from the two-electron states EΛ. The Hamiltonian (29)
in these terms is

Htun =
∑

ij,α

∑

γΓΛ

tαXΓΛ
i XγΛ

j + H.c. (31)

It is seen from (31) that the intersite hopping ”charges”
two neighboring rungs in a ladder, which was initially
neutral, and one should pay the energy ∼ Q for each
hopping act, like in the generic Hubbard model at half-
filling. This energy loss is reduced if an electron-hole pare
is created at a given rung i. In this case the electron-hole
attraction V < 0 partially compensates charging energy
Q. Let us assume the hierarchy Q ≫ Q− |V | ≫ t. Then
the states |Γ〉 may be excluded from the manifold in fa-
vor of excitonic states |iEα〉 similar to the states |Er〉
introduced in (6). Here α = 1(2) for the electron occu-
pying site i1(i2). If the ground state of a rung is singlet,
|iS〉, then electron and hole have antiparallel spins and
the excitation energy is Q′ = Q−|V |. Even combination
of two states |iE(1,2)〉 form a singlet exciton |iE〉. Such
exciton can propagate coherently along the ladder unlike
single electron, whose tunneling leaves a trace of charged
states according to (31). Indeed, translation of e-h pair
from a rung i to a neighboring rung i + 1 can be pre-
sented as coherent tunneling of electron from a site iα
to a site i + 1, α and another electron in the opposite di-
rection (from i + 1, ᾱ to i, ᾱ. The exciton propagation is
described by the following term in effective Hamiltonian:

Hex =
∑

i

KSXSE
i XES

i±1 (32)

with effective exchange coupling constant KS =
|t1t2|/Q′, and the dispersion law describing coherent ex-
citon propagation is ǫS(k) = 2KS cos k. As was shown
in Section 2, the manifold {iS, iT, iE} possesses the lo-
cal dynamical symmetry SO(5) [see Eqs. (6), (7)], and
this symmetry allows existence of coherent collective sin-
glet exciton mode. The Hamiltonian (32) acquires a form

Hex = (KS/4)
∑

ij ÃiÃj in terms of generators of SO(5)

group (6), where Ãi = (R2
i − 1)Ai. There is one more

collective mode, namely triplet exciton |Eµ〉 (µ = ±1, 0)

separated by the gap ∼ Jt from the singlet exciton. In
case of triplet ground state (Jt < 0), this mode becomes
the lowest one, and the Hamiltonian similar to (32) may
be derived for triplet exciton propagation with opera-

tors X
TEµ

i replacing XSE
i . In this case the manifold

{iS, iT, iEµ} consists of one singlet and two triplets, and
the corresponding dynamical group is SO(7) [4]. If ex-
change and excitonic gaps are comparable in magnitude,
then the interplay between exciton and magnon modes
is possible, and dynamical symmetry will result in ob-
servable physical effects. Like in cuprate ladder, [14],
the excitonic instability can develop for certain values of
model parameters, which results in phase separation and,
in particular in formation of CDW phase illustrated by
Fig. 1c (where double and empty circles stand for doubly
occupied and empty sites respectively.

CONCLUDING REMARKS

We rederived a family of Hamiltonians for quantum
dots and quantum ladders in terms of SO(4) group,
which describes the dynamical symmetry of spin rotator
[2]. We exploited the fact that in case, when the Hamilto-
nian H contains blocks Hi formed by two sites occupied
by spins 1/2, one may use its eigenstates (singlet-triplet
manifolds) as a basis for representing the spin invariants
entering H. These invariants contain the Runge-Lenz-
like vectors Ri along with the usual spin vectors Si. If the
electron-hole pairs are also included in the set of eigen-
states, then the local dynamical symmetry of Hi is char-
acterized by the SO(n) group with n = 5 or 7 for a singlet
and triplet ground state of Hi, respectively. The elemen-
tary excitations in quantum dots and quantum ladders
are described by means of generators of SO(n) groups
and the interplay between different branches of excita-
tion spectra is a direct manifestation of local dynamical
symmetry violated by non-local interactions.
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