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ELECTRONIC TOPOLOGICAL TRANSITION IN 2D ELECTRON SYSTEM ON
A SQUARE LATTICE AS A MOTOR FOR THE ‘STRANGE-METAL’
BEHAVIOUR IN HIGH-T. CUPRATES
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Abstract—We show that a 2D system of free electrons on a square lattice with hoping between more than nearest
neighbours is characterised by two quantum critical points associated with a change in topology of Fermi surface as
a function of electron concentration. This simple model (when taking into account a positive interaction in a triplet
channel) allows us to consistently explain some crucial experiments in the underdoped regime of hole-doped high-
T. cuprates (ARPES, neutron scattering)1998 Elsevier Science Ltd. All rights reserved
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1. TWO QUANTUM CRITICAL POINTS IN A 2D FREE response function. The critical exponents associated with

ELECTRON SYSTEM ON A SQUARE LATTICE QCP1 and QCP2 are respectivety'= 1/2,2; = 2, s, =
v12;=1,07;=2—[(D=2) + z]v, =0 (logarithmic sin-

We study a 2D system of noninteracting electrons ongularity in the density of states) ang = 1, z, = 1,

square lattice with hoping between nearest neighbaurs § = v,z =1, =2 —[(D =2) + z]v, = — 1 (no singu-

and next nearest neighbourg)( We show that it is larity in the density of states).

characterised by two quantum critical points, QCP1 and The distance between QCP1 and QCP2 diminishes

QCP2, associated with a change in topology of Fermiith decreasingt’/tl and the two points coincide whéf

surface (FS) as a function of electron concentration,d.  t = 0. In the latter case (nesting) we arrive at a quantum

Their criticality shows up in the electron polarisability,multicritical point with a (In} singularity.

x%k,w), at T = 0. The calculated’(Q ar = (m,7),0) is Aséd > 0ands, < 0 (foranyt'/t), itis a doping range

shown in Fig. 1 as a function of hole dopifglt reveals around QCP1 which is actual for the hole doped cuprates

two singularities: a logarithmic one at QCBL: 6 (n = and around QCP2 for the electron doped. As we are
4t"), and a square-root one at QCBZ: 6, (v = 0), for interested here in the former we consider below only
each negative value ofit (It'/tl < 1/2). properties around QCP1 which are also influenced by

The character of these two quantum critical pointQCP2. We assumét’/tl to be not small in order to
appears when°(k,0) is analysed as a function &ffor ~correspond to the experimental FS observed by ARPES.
differents, see Fig. 2. Around QCP2: for boéh< 6, and One can check thaex® andimy® behave in a strongly
6> éthereis a closed (in the extended BZ) line of statianomalous way in the regimie, < 6 < 6. First of all
Kohn (square-root) singularities (KS'®,= Qe which taken at the characteristic for this regime wavevegter
reduces into the poirk = Qar até = 6,. An absolute  Q r, Rex%q,0) changes very weakly with doping starting
value of Qgp along a fixed direction is given by from some threshold value éf(see Fig. 1) as a conse-
Qg « 16 —8,l. Around QCP1: ab > 6., andd < 6. quence of the interplay between QCP1 and QCP2.
the line of KS'sk = Q related to QCP2 is preserved; inSecondly, energy dependencesRak° and Imy % for
addition there is a new closed lile= Qg até > 6, T = 0 and their temperature dependencesder O are
which is ended ai = 6, being reduced into the poikt=  characterised by a characteristic enesgy w, < 64 — 6
Qe An absolute value 0Q4 along a fixed direction is and a characteristic temperatufe= T* « §.; — 6 both
given byQq = 1/6 — 6.1 Exactly at QCP2 and QCP1 onebeing scaled with the doping distance from QCP1. The
has respectively: x°(k,0) =~ A—By/Ik — Q] and behaviour is anomalous in the regimes< w,, T < T*.
x°(k,0)  Inlk — Qagl. For exampleRex%(Q r,0) taken at fixed increases with

The criticality of QCP1 from another point of view is increasingT for T < T*. Thirdly, Rex%q,0) exhibits a
seen as a Lifshitz’s electronic topological transition [1] irplateau as a function d§! (see Fig. 1c) until very high
a 2D system with a saddle point (SP) in the electrotemperature,T < T < § — 8, Which scales with the
spectrum resulting in singularities in thermodynamidistance from QCP2. These and other anomalies are
properties, and an additional singularity in superconductirgjscussed in more detail in [2].
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Fig. 1. Electron-hole susceptibility°(Q ar,0) around two quantum critical points, QCP1 and QCP2.

2. 2D INTERACTING SYSTEM: PROPERTIES OF CUO , interaction in a triplet channel (exchange interaction) is
PLANE enough to creat®oth instabilities. Such an interaction

The anomalous behaviour of the free electron system ﬁ%('StS in thet—J model.)

the presence of the two QCP is at the origin of an Aphase diagramis shown in Fig. 3. Agis maximum
anomalous behaviour of interacting system. We concenté =, (see [3]), the regimé < 6, is underdoped andl

trate below on properties related to long-range and shott- 8, is overdoped. Although the DW phase for realistic
range density wave (DW) order. (Obviously, in thevalues oft/J is hidden under the SC phase, it is DW
presence of interactions of a certain sign, QCP1 givesitical fluctuations which determine a fundamentally
rise to DW and superconducting (SC) instabilities aroundnomalous metal behaviour beloWw and aboveTs.

it due to logarithmic divergences of the correspondin¢gregime 1) (the temperatur€ = T*(6) discussed above
response functions. What is important is that a positiviar the non-interacting system appears as a characteristic

Fig. 2. Wavevector dependencesdq,0) for increasing doping (&)< 8¢, (b)6 =8¢, (C) 62 < 6 < 8¢ and (d)s > 8¢1 (Qy = O/,
Qy =gy, t'lt= —0.3).
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Fig. 3. Phase diagram with the lines of DW and SC instabilities and thdtif® (t'/t = — 0.3,t/J = 1.9).

temperature for the interacting system). The state ih flat shape around SP;

regime | is reentrant in temperature and frozen i2. ‘disappearance’ of the spectruimthe direction K,)
doping rigid DW liquid [2]: the correlation length slightly ~ — (wr,w) above some threshold value of wavevedtor
increasewith T (being maximal aT = T*(§)) andalmost (the residue tends to zero), both features being con-
does not change with dopindyloreover, the parameter  sequences of the hybridisation of the two parts of the
determining a proximity to the ordered DW phase does bare spectrum around two SP’s with a different
not practically change along the liffe= T*(6), therefore curvature;

remaining quite low in regime 1. (All this stems from the3. existence of the gap in a vicinity of @Px §.; — 6 (the
properties ofy® discussed at the end of the previous increase of the gap with decreasing dopisthe other
section and is valid when the interactidft is not too side of the reentrant behaviour of DW phase). Details
small.) The ordered DW phase is also ‘reentrafipy are given in [4].

increases with increasiniy, — 6.

All properties in the metal DW phase and in the metal The density of states (DOS) is shown in Fig. 5. It
regime | are anomalous. Below we show severaleviates from the bare DOS in two parts, A and B, related
examples. to QCP1 (A) and QCP2 (B). For the doping range around

First in Fig. 4 we show the electron spectrum in thé = 6 it is the A-feature which determines properties of
long-range ordered DW phase. Prominent features of thige system. Itis characterised by a logarithmic singularity
spectrum are: at ¢° and by two jumps at" and ¢~ instead of the
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Fig. 4. Electron spectrum in DW phase around SP. The thin dot—dash line corresponds to the spectrum witkrésidaad the
dashed line to the bare spectrutiit(= — 0.3,t/J = 1.85,6 = 0.19).
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Fig. 5. Density of states with renormalised spectrum. The dashed line corresponds to the bare sp&ttesm - 0.3,
t/J=1.8,6=0.25).

logarithmic singularity in the bare spectrum. There is &ve show howlmx(Qar,w) changes with decreasing
pseudogap on Fermi level. when one crosses the life= T*. One can clearly see the
The electron spectral functiod(k,e) in regime | existence in the regim@ < T* of the characteristic
calculated in a standard way based on the loop containiegergyw = wq « 6pw(0) — 6 (unchanging withT) at
the electron Green function and the boson Green functiavhich Imy is strongly peaked. FAr > T* the curves lose
corresponding to the susceptibility is shown in Fig. 6. Tha maximum and resembley°. In Fig. 7b we see that for
‘spectrum’ deduced from it has the same shape as in Figlaw w,0 < ., Imx peaks ak = Q a. For largerw, Imx°
for w < 0. The pseudogaj is also proportional té,; — becomes flat and then even ‘incommensurate’ with a
6. The difference is that for regime | the spectral functiomaximum determined by the wavevec®(w) related
has a characteristic damped form o< 0. The form of to QCP2 (a dispersion like effect). These results are in
the ‘spectrum’, of the spectral function and the trend ofood agreement with recent INS data [6].
increasingA with decreasing doping are in very good Summarising, a simple model taking into account the
agreement with ARPES data abovg[5]. existence of two QCP’s in a 2D electron system on a
The dynamic spin properties are also unusual. In Fig. &gjuare lattice consistently explains certain experimental
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Fig. 6. Spectral functio\(k,e) in regime | calculated for the directidio, 7) — (m, 7). (k=q/x,t'/t= —0.3,t/J=1.8, T/t = 0.12,
6=0.1).
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Fig. 7.Imyx for the underdoped regime at fixed dopth= 1.83,t'/t= — 0.3,6 = 0.1: () as a function a$ for different temperatures
(T*/J = 0.2); (b) as a function of in the direction §,) for different values ots/J (the existence of SC state is ignored).

facts considered today as crucial for understanding high-
T, cuprates.
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