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Abstract—We show that a 2D system of free electrons on a square lattice with hoping between more than nearest
neighbours is characterised by two quantum critical points associated with a change in topology of Fermi surface as
a function of electron concentration. This simple model (when taking into account a positive interaction in a triplet
channel) allows us to consistently explain some crucial experiments in the underdoped regime of hole-doped high-
Tc cuprates (ARPES, neutron scattering).q 1998 Elsevier Science Ltd. All rights reserved
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1. TWO QUANTUM CRITICAL POINTS IN A 2D FREE
ELECTRON SYSTEM ON A SQUARE LATTICE

We study a 2D system of noninteracting electrons on a
square lattice with hoping between nearest neighbours (t)
and next nearest neighbours (t9). We show that it is
characterised by two quantum critical points, QCP1 and
QCP2, associated with a change in topology of Fermi
surface (FS) as a function of electron concentration, 1¹ d.
Their criticality shows up in the electron polarisability,
x0(k,q), at T ¼ 0. The calculatedx0(QAF ¼ (p,p),0) is
shown in Fig. 1 as a function of hole dopingd. It reveals
two singularities: a logarithmic one at QCP1,d ¼ dc1 (m ¼

4t9), and a square-root one at QCP2,d ¼ dc2 (m ¼ 0), for
each negative value oft9/t (lt9/tl , 1/2).

The character of these two quantum critical points
appears whenx0(k,0) is analysed as a function ofk for
differentd, see Fig. 2. Around QCP2: for bothd , dc2 and
d . dc2 there is a closed (in the extended BZ) line of static
Kohn (square-root) singularities (KS’s),k ¼ Qs2 which
reduces into the pointk ¼ QAF at d ¼ dc2. An absolute
value of Qs2 along a fixed direction is given by
Qs2 ~ ld ¹ dc2l. Around QCP1: atd . dc1 and d , dc1

the line of KS’sk ¼ Qs2 related to QCP2 is preserved; in
addition there is a new closed linek ¼ Qs1 at d . dc1

which is ended atd ¼ dc1 being reduced into the pointk ¼

QAF. An absolute value ofQs1 along a fixed direction is
given byQs1 ~

��������������
d ¹ dc1

p
. Exactly at QCP2 and QCP1 one

has respectively: x0(k, 0) < A¹ B
�������������������
lk ¹ QAFl

p
and

x0(k, 0) ~ lnlk ¹ QAFl.
The criticality of QCP1 from another point of view is

seen as a Lifshitz’s electronic topological transition [1] in
a 2D system with a saddle point (SP) in the electron
spectrum resulting in singularities in thermodynamic
properties, and an additional singularity in superconducting

response function. The critical exponents associated with
QCP1 and QCP2 are respectively:n1 ¼ 1/2,z1 ¼ 2, s1 ¼

n1z1 ¼ 1, a1 ¼ 2¹ [(D ¼ 2) þ z1]n1 ¼ 0 (logarithmic sin-
gularity in the density of states) andn2 ¼ 1, z2 ¼ 1,
s2 ¼ n2z2 ¼ 1,a2 ¼ 2¹ [(D ¼ 2) þ z2]n2 ¼ ¹ 1 (no singu-
larity in the density of states).

The distance between QCP1 and QCP2 diminishes
with decreasinglt9/tl and the two points coincide whent9/
t ¼ 0. In the latter case (nesting) we arrive at a quantum
multicritical point with a (ln)2 singularity.

Asdc1 . 0 anddc2 , 0 (for anyt9/t), it is a doping range
around QCP1 which is actual for the hole doped cuprates
and around QCP2 for the electron doped. As we are
interested here in the former we consider below only
properties around QCP1 which are also influenced by
QCP2. We assumelt9/tl to be not small in order to
correspond to the experimental FS observed by ARPES.

One can check thatRex0 andImx0 behave in a strongly
anomalous way in the regimedc2 , d , dc1. First of all
taken at the characteristic for this regime wavevectorq ¼

QAF, Rex0(q,0) changes very weakly with doping starting
from some threshold value ofd (see Fig. 1) as a conse-
quence of the interplay between QCP1 and QCP2.
Secondly, energy dependences ofRex0 and Imx0/q for
T ¼ 0 and their temperature dependences forq → 0 are
characterised by a characteristic energyq ¼ qc ~ dc1 ¹ d

and a characteristic temperatureT ¼ T* ~ dc1 ¹ d both
being scaled with the doping distance from QCP1. The
behaviour is anomalous in the regimesq , qc, T , T*.
For example,Rex0(QAF,0) taken at fixedd increases with
increasingT for T , T*. Thirdly, Rex0(q,0) exhibits a
plateau as a function oflql (see Fig. 1c) until very high
temperature,T , Tp

q ~ d ¹ dc2, which scales with the
distance from QCP2. These and other anomalies are
discussed in more detail in [2].
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2. 2D INTERACTING SYSTEM: PROPERTIES OF CUO 2

PLANE

The anomalous behaviour of the free electron system in
the presence of the two QCP is at the origin of an
anomalous behaviour of interacting system. We concen-
trate below on properties related to long-range and short-
range density wave (DW) order. (Obviously, in the
presence of interactions of a certain sign, QCP1 gives
rise to DW and superconducting (SC) instabilities around
it due to logarithmic divergences of the corresponding
response functions. What is important is that a positive

interaction in a triplet channel (exchange interaction) is
enough to createboth instabilities. Such an interaction
exists in thet–J model.)

A phase diagram is shown in Fig. 3. AsTsc is maximum
atd ¼ dc1 (see [3]), the regimed , dc1 is underdoped andd
. dc1 is overdoped. Although the DW phase for realistic
values of t/J is hidden under the SC phase, it is DW
critical fluctuations which determine a fundamentally
anomalous metal behaviour belowT* and aboveTsc

(regime I) (the temperatureT ¼ T*(d) discussed above
for the non-interacting system appears as a characteristic
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Fig. 1. Electron-hole susceptibilityx0(QAF,0) around two quantum critical points, QCP1 and QCP2.

Fig. 2. Wavevector dependences ofx0(q,0) for increasing doping (a)d , dc2, (b)d ¼ dc2, (c)d c2 , d , d c1 and (d)d . dc1 ðQx ¼ qx=p,
Qy ¼ qy/p, t9/t ¼ ¹ 0.3).



temperature for the interacting system). The state in
regime I is reentrant in temperature and frozen in
doping rigid DW liquid [2]: the correlation length slightly
increaseswith T (being maximal atT¼ T*(d)) andalmost
does not change with doping. Moreover, the parameter
determining a proximity to the ordered DW phase does
not practically change along the lineT ¼ T*(d), therefore
remaining quite low in regime I. (All this stems from the
properties ofx0 discussed at the end of the previous
section and is valid when the interactionJ/t is not too
small.) The ordered DW phase is also ‘reentrant’:TDW

increases with increasingdc1 ¹ d.
All properties in the metal DW phase and in the metal

regime I are anomalous. Below we show several
examples.

First in Fig. 4 we show the electron spectrum in the
long-range ordered DW phase. Prominent features of the
spectrum are:

1. flat shape around SP;
2. ‘disappearance’ of the spectrumin the direction (k,p)

¹ (p,p) above some threshold value of wavevectork
(the residue tends to zero), both features being con-
sequences of the hybridisation of the two parts of the
bare spectrum around two SP’s with a different
curvature;

3. existence of the gap in a vicinity of SPD ~ dc1 ¹ d (the
increase of the gap with decreasing dopingis the other
side of the reentrant behaviour of DW phase). Details
are given in [4].

The density of states (DOS) is shown in Fig. 5. It
deviates from the bare DOS in two parts, A and B, related
to QCP1 (A) and QCP2 (B). For the doping range around
d ¼ dc1 it is the A-feature which determines properties of
the system. It is characterised by a logarithmic singularity
at e0 and by two jumps ateþ and e¹ instead of the
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Fig. 3. Phase diagram with the lines of DW and SC instabilities and the lineT*(d) (t9/t ¼ ¹ 0.3, t/J ¼ 1.9).

Fig. 4. Electron spectrum in DW phase around SP. The thin dot–dash line corresponds to the spectrum with residue, 0.1, and the
dashed line to the bare spectrum (t9/t ¼ ¹ 0.3, t/J ¼ 1.85,d ¼ 0.19).



logarithmic singularity in the bare spectrum. There is a
pseudogap on Fermi level.

The electron spectral functionA(k,e) in regime I
calculated in a standard way based on the loop containing
the electron Green function and the boson Green function
corresponding to the susceptibility is shown in Fig. 6. The
‘spectrum’ deduced from it has the same shape as in Fig. 4
for q , 0. The pseudogapD is also proportional todc1 ¹

d. The difference is that for regime I the spectral function
has a characteristic damped form forq , 0. The form of
the ‘spectrum’, of the spectral function and the trend of
increasingD with decreasing doping are in very good
agreement with ARPES data aboveTc [5].

The dynamic spin properties are also unusual. In Fig. 7a

we show howImx(QAF,q) changes with decreasingT
when one crosses the lineT¼ T*. One can clearly see the
existence in the regimeT , T* of the characteristic
energyq ¼ q0 ~ dDW(0) ¹ d (unchanging withT) at
which Imx is strongly peaked. ForTq T* the curves lose
a maximum and resembleImx0. In Fig. 7b we see that for
low q,q p qc, Imx peaks atk ¼ QAF. For largerq, Imx0

becomes flat and then even ‘incommensurate’ with a
maximum determined by the wavevectorQs2(q) related
to QCP2 (a dispersion like effect). These results are in
good agreement with recent INS data [6].

Summarising, a simple model taking into account the
existence of two QCP’s in a 2D electron system on a
square lattice consistently explains certain experimental
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Fig. 5. Density of states with renormalised spectrum. The dashed line corresponds to the bare spectrum (t9/t ¼ ¹ 0.3,
t=J ¼ 1:8; d ¼ 0:25Þ.

Fig. 6. Spectral functionA(k,e) in regime I calculated for the directionðq;pÞ¹ ðp;pÞ. ðk¼ q=p; t9=t ¼ ¹ 0:3, t=J ¼ 1:8, T/t ¼ 0.12,
d ¼ 0:1Þ.



facts considered today as crucial for understanding high-
Tc cuprates.
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Fig. 7.Imx for the underdoped regime at fixed dopingt/J¼ 1.83,t9/t ¼ ¹ 0.3,d ¼ 0.1: (a) as a function ofq for different temperatures
(T*/J ¼ 0.2); (b) as a function ofq in the direction (q,p) for different values ofq/J (the existence of SC state is ignored).


