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The Kondo effect, originally observed in the form of
an anomalously strong resonance scattering of elec-
trons by magnetic impurities in metals, has proved to be
a universal mechanism of interaction between an elec-
tron gas and localized quantum objects possessing
internal degrees of freedom [1]. In particular, a mag-
netic impurity within the barrier between two metal
contacts, as well as a quantum dot (QD) with uncom-
pensated spin occurring in a tunneling junction
between metal electrodes, can account for anomalously
high tunneling transparency of the barrier for electrons
from the contacts [2, 3]. Shortly after the experimental
discovery of such Kondo resonances in the tunneling
via planar QDs [4], it was established that the spectrum
of phenomena related to the effective magnetic
exchange in QDs is by no means restricted to simple
passage from the problem of Kondo scattering to that of
Kondo transfer. In particular, it was found that the res-
onance Kondo tunneling via QDs with an even number
of electrons and zero total spin is possible under the
action of an external magnetic field [5] or the electric
field of a gate [6].

The large variety of manifestations of the Kondo
effect in QDs is related to the fact that these nanodi-
mensional objects are essentially a kind of artificial
atom possessing complicated spectra. The tunneling of
electrons from outside via QDs breaks their spin sym-
metry and induces transitions to low-lying excited
states. The transitions at energies comparable with the
Kondo temperature (

 

T

 

K

 

) are involved into resonance
interactions and modify the pattern of the Kondo scal-
ing as compared to that typical of the canonical Kondo
effect in metals. Thus, within the limits of the Kondo
energy scale, it is necessary to take into account the
dynamic symmetry of a given QD [7]. This symmetry
is determined both by the spin and by other vectors

involved in the algebra of the corresponding dynamic
group. As a result, the effective Hamiltonian describing
the Kondo tunneling acquires a more complicated form
than that of the 

 

sd

 

-exchange Hamiltonian describing
the Kondo effect in metals: all the above vectors con-
tribute to the cotunneling with spin reversal via the QD.
A theory of the dynamic symmetry of composite (dou-
ble and triple) QDs has been recently developed in [8],
where it is also demonstrated how an external magnetic
field or the gate electric field can influence the dynamic
symmetry.

Below, we consider a new class of phenomena
related to the dynamic symmetry of QDs. It will be
demonstrated that violation of the thermodynamic
equilibrium between contacts may induce resonance
Kondo tunneling not observed in the equilibrium sys-
tem. The nonequilibrium Kondo effect in QDs at a
finite voltage applied between the source and sink has
been extensively studied (see, e.g., [9]). In most cases,
however, researchers were interested in the influence of
nonequilibrium conditions on the Kondo effect existing
in the equilibrium state. In such a situation, relaxation
of the system related to the finite lifetime of excited
states probably hinders attaining a strong coupling
regime (see, e.g., the discussion in [10, 11]).

We are interested in a different situation, whereby
no channel of nonequilibrium induced spin relaxation
exists in the ground state (e.g., for 

 

S

 

 = 0). In this case,
the spin degrees of freedom are excited only in QDs
possessing a dynamic symmetry. Such a symmetry is
inherent, for example, in a double quantum dot (DQD)
structure experimentally realized and studied recently
[12]. In the simplest nontrivial case, the DQD contains
two electrons occupying energy levels according to the
Heitler–London scheme (Fig. 1). The system occurs
under the conditions of a strong Coulomb blockade 
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A new mechanism of resonance Kondo tunneling via a composite quantum dot (QD) is proposed. It is shown
that, owing to the hidden dynamic spin symmetry, the Kondo effect can be induced by a finite voltage 
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 applied
to the contacts at an even number 
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 of electrons in a QD with zero spin in the ground state. As an example, a
double QD is considered in a parallel geometry with 

 

N

 

 = 2, which possesses the SO(4) type symmetry charac-
teristic of a singlet–triplet pair. In this system, the Kondo peak of conductance appears at an 

 

eV

 

 value compen-
sating for the exchange splitting. 
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suppressing the tunneling 

 

v

 

 between potential wells.
The spectrum of spin states represents a singlet–triplet
(

 

S

 

–

 

T

 

) pair with zero spin in the ground state (because
the effective exchange between the two valleys, 

 

I

 

 

 

≈

 

v

 

2

 

/

 

Q

 

, has an antiferromagnetic character). As demon-
strated previously [6, 8], an isolated DQD represents a
quantum spin rotator with the 

 

SO

 

(4) symmetry, in con-
trast to the 

 

SU

 

(2) symmetry of a QD with odd occupa-
tion usually considered in the theory of the Kondo type
tunneling. The 

 

SO

 

(4) group is generated by the spin
vector 

 

S

 

 and the vector 

 

P

 

 describing the 

 

S

 

–

 

T

 

 transition
matrix.

The Hamiltonian of an isolated QD can be written as

(1)

where 

 

E

 

T

 

 = 

 

E

 

S

 

 + 

 

δ

 

; 

 

η

 

 = 

 

±

 

, 0 are the projections of the
spin total 

 

S

 

 = 1; and 

 

δ

 

 = 

 

I

 

 is the exchange coupling.
Since the direct tunneling 

 

W

 

 of electrons from contacts
to the DQD is suppressed by the Coulomb blockade 

 

Q

 

,
the charge transfer is possible only by means of second-
order processes (cotunneling). The effective Hamilto-
nian describing these processes is as follows [6, 8]:

(2)

where the subscript 

 

α

 

 = 

 

L

 

, 

 

R

 

 denotes electrons in the
left- and right-hand contacts, respectively;  are the

Pauli matrices;  is the unit matrix; and 

 

J

 

 

 

≈

 

 

 

W

 

2

 

/(

 

�

 

F

 

 –

 

E

 

S

 

/2)is the effective constant of exchange between the
DQD and contacts (we neglect a difference between
tunneling parameters in the 

 

S

 

 and 

 

T

 

 states of the QD).
The 

 

S

 

 and 

 

P

 

 vectors defined above are written in matrix
form as follows:

where a singlet state corresponds to the last row. The
corresponding algebra (

 

o

 

4

 

) is described by the commu-
tations relations

Hd ES S| 〉 S〈 | ET Tη| 〉 Tη〈 | ,
η
∑+=

H int J S P+( )sαα ' ,
αα '

∑=

sαα ' ckασ
† τ̂ck'α'σ' , nαα '

kk'

∑ ckασ
† 1̂ck'α'σ,

kk'

∑= =

τ̂
1̂

S+ 2

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0 
 
 
 
 
 

, Sz

1 0 0 0

0 0 0 0

0 0 1– 0

0 0 0 0 
 
 
 
 
 

,= =

P+ 2

0 0 0 1

0 0 0 0

0 0 0 0

0 0 1– 0 
 
 
 
 
 

, Pz

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0 
 
 
 
 
 

,–= =

S j Sk,[ ] ie jklSl, P j Pk,[ ] ie jklSl,= =

P j Sk,[ ] ie jklPl,=

where j, k, l are the coordinate indices and ejkl is the
Levi–Civita tensor.

As can be seen, both S and P vectors are involved in
the tunneling with spin reversal. However, since the
threshold energy for excitation of the spin degrees of
freedom is δ, the spin scattering under equilibrium con-
ditions is effective only provided that TK > δ. It will be
shown below that this threshold can also be surmounted
in the opposite limit, TK � δ, at a finite source–sink
voltage eV ≈ δ compensating for the S–T splitting
energy. In the weak coupling regime, T > TK, we use the
thermodynamic perturbation theory and assume that
electrons in the contacts obey the Fermi statistics with
the chemical potentials µR and µR + eV in the right- and
left-hand contacts, respectively. We can also assume
that weak tunneling currents do not violate thermody-
namic quasi-equilibrium (the validity of this approach
is discussed below).

In order to construct the perturbation theory, let us
perform fermionization of the generators of SO(4)
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Fig. 1. (a) A parallel double quantum dot configuration
(Hofmann et al. [12]) and (b) an energy band diagram illus-
trating tunneling and cotunneling processes contributing to
the differential conductance in this system.
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group—a generalizing procedure originally suggested
for SU(2) group [13, 14]:

(3)

Here,  are the operators of creation for fermions

with the spin projections 1 and –1;  and fs are the
operators of creation for zero-spin fermions in the trip-
let and singlet states, respectively. Representation (3)
automatically takes into account the local kinematic

constraint  = 1. A diagram technique of the
perturbation theory is provided by the temperature
Green’s functions for electrons between contacts,

GL, R(k, τ) = − , and for fermi-

ons in the DQD, �Λ(τ) = – . The Fou-
rier transform in imaginary time yields

(4)

where �n = 2πT(n + 1/2), ωm = 2πT(m + 1/3) [13, 14].
Figure 2 shows the main diagrams of the perturba-

tion theory. The first diagrams (Figs. 2b and 2c) deter-
mining the Kondo tiling in a standard theory give the
following expressions for the renormalized exchange
vertices:

(5)

S+ 2 f 0
† f 1– f 1

† f 0+( ), S– 2 f –1
† f 0 f 0

† f 1+( ),= =

P+ 2 f 1
† f s f s

† f 1––( ), P– 2 f s
† f 1 f 1–

† f s–( ),= =

Sz f 1
† f 1 f 1–

† f 1– , Pz– f 0
† f s f s

† f 0+( ).–= =

f ±1
†

f 0
+

f Λ
† f ΛΛ∑

T τcL Rσ, k τ,( )cL Rσ,
† k 0,( )〈 〉

T τ f Λ τ( ) f Λ
† 0( )〈 〉

Gkα
0

�n( ) i�n �kα µL R,+–( ) 1– ,=

�η
0 ωm( ) iωm ET–( ) 1– , η 1 0 1,, ,–= =

�s
0

�n( ) i�n ES–( ) 1– ,=

Γ LR
2b( ) ω( ) J2 1 f �kL eV–( )–

ω �kL µL δ–+–
--------------------------------------,

k

∑∼

Γ LR
2c( ) ω( ) J2 f �kL eV–( )

ω �kL µL δ+ +–
--------------------------------------.

k

∑∼

Replacing �kL by �kL – eV at the vertex (Fig. 2b), we
obtain

.

where D ~ εF is the truncation parameter determining
the effective width of continuum between contacts, ν is
the density of states on the Fermi level, and f(ε) is the
Fermi function. As can be seen, a bias compensating for
the exchange splitting |eV – δ| � max[eV, δ] gives rise
to a logarithmic singularity (typical of the Kondo
effect) independent of eV. In the second vertex correc-
tion (Fig. 2c), the compensation is absent and the cor-
responding contribution for eV ~ δ � T, ω can be esti-
mated as

Analogous estimates for the diagrams in Figs. 2d and
2e give

(6)

Only the first of these contributions survives in the main
logarithmic approximation. Thus, a logarithmic singu-
larity in the tunneling amplitude is actually restored by
applying an electric field to a DQD with zero spin in the
ground state, whereby a sequence of divergent tiling
diagrams degenerates into the sequence of ladder dia-
grams.

The perturbation theory diagrams at T > TK can be
summed using the renorm group method, which is
applicable under both equilibrium and nonequilibrium
conditions [15]. The set of renorm group equations for

the tunneling vertices  obtained upon reduction of
the high-energy part of the spectrum is as follows:

(7)

Solving these equation with the boundary conditions

, we obtain

(8)

The structure of the renorm group equations (Fig. 3)
shows that the Kondo singularity arising in the T-chan-

Γ LR
2b( ) ω( ) J2ν D/max ω eV δ–( ) T, ,{ }( )ln∼

Γ LR
2c( ) ω( ) J2ν D/ eV δ+( )( )ln  � Γ LR

2b( ) ω( ).∼

Γ LR
2d( ) ω( ) J3ν2 D/max ω eV δ–( ) T, ,{ }( ),ln

2∼

Γ LR
2e( ) ω( ) J3ν2 D/max ω eV δ–( ) T, ,{ }( )ln∼

× D/max ω eV T,,{ }( ).ln

Jαα '
ΛΛ'

dJLL
T

d Dln
------------- ν JLL

T( )2
,

dJLL
ST

d Dln
-------------– νJLL

ST JLL
T ,–= =

dJLR
T

d Dln
------------- νJLL

T JLR
T ,

dJLR
ST

d Dln
-------------– νJLL

ST JLR
T ,–= =

dJLR
S

d Dln
-------------

1
2
---ν JLL +,

ST JLR –,
TS 1

2
---JLL z,

ST JLR z,
TS+ 

  .=

Jαα '
ΛΛ' D( ) J=

Jα α ',
TT J

1 νJ D/T( )ln–
------------------------------------, Jα α ',

ST J
1 νJ D/T( )ln–
------------------------------------,= =

JLR
SS J

3
4
---νJ2 D/T( )ln

1 νJ D/T( )ln–
------------------------------------.–=

Fig. 2. Perturbation theory diagrams determining (a) J, (b,
d) the main corrections to J, and (c, e) corrections contain-
ing a lower power of the logarithm. Solid curves refer to
electron between contacts; dashed curves refer to the QD
states.
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nel influences conductance in the S-channel. This influ-
ence is related to the presence of the operator P in the
tunneling Hamiltonian, which breaks the spin symme-
try of the DQD. Thus, the Kondo effect in this system
exists only due to the dynamic symmetry inherent in the
DQD.

The differential conductance G(eV, T)/G0 ~ 
[15], where G0 = e2/π�, is a function of the universal
parameters T/TK and eV/TK,

, (9)

with a maximum at eV – δ = 0 (see Fig. 4). Thus, in con-
trast to the usual situation [9], whereby the Kondo peak
(representing a zero bias anomaly) exhibits evolution or
splitting at finite eV values, the Kondo peak in our case
appears at a threshold bias of eV0 = δ. Owing to this
threshold character, the peak is asymmetric (cf., e.g.,
[11]).

The asymmetry, as well as the broadening of the
Kondo resonance are related to nonequilibrium charac-
ter of the tunneling process. In contrast to the usual sit-
uation [11, 16], when relaxation takes place in the
ground state of the QD, the spin triplet in our case
appears only as a virtual state (Fig. 3) and, hence, the
nonequilibrium effects are not as destructive. Both
relaxation and asymmetry are determined by the imag-
inary part of the self-energy of the Green’s function
�T(ω). Figure 5 shows diagrams describing the self-
energy in the same order as the renormalization of ver-
tices. The diagrams of Figs 5a and 5b determine the
main contribution to the imaginary part �/τd. For ω ~
eV, this contribution amounts to ~(eV)(J/D)2 and con-
tains no logarithmic corrections. Such corrections
appear in the third order, but still outside the limits of
the main logarithmic approximation, and are estimated
as eV(J/D)3ln(D/eV). As a result, we obtain as an esti-
mate

Comparing this damping to TK and taking into account
that (under the resonance conditions) eV ~ δ ~ J, we
arrive at the following condition for the existence of the
anomalous Kondo peak at a finite bias:

(10)

Here, the right-hand inequality resembles the Doniach
criterion for the stability of a Kondo singlet with
respect to antiferromagnetic correlations (see, e.g., [1]).
The conditions (10) are satisfied in a broad range of
parameters since δ/D � 1.

Another contribution, related to the reoccupation of
levels as a result of the tunneling of nonequilibrium
electrons, leads to asymmetry of the resonance line.
These processes are described by the diagrams in
Figs. 5e and 5f, in which at least one of the virtual sates
is triplet. Such transitions, as well as the corresponding

JLR
ST 2

G/G0 max eV δ–( ) T,[ ] /TK( )ln
2–∼

�/τd eV νJ0
ST( )2

1 O J0
S D/ eV( )( )ln( )+[ ] .∼

δ δ/D( )2
 � TK  � δ.

second-order processes, possess a threshold character
and give small contributions to �/τd. As can be seen
from Fig. 4, the asymmetry is small even at a significant
damping.

Fig. 3. Irreducible diagrams determining renorm group
equations. Cross-hatched squares and circles represent ver-
tices of the T–T and S–T transitions, respectively; other
notations as in Fig. 2.

Fig. 4. The Kondo peak of the differential conductance as a
function of two universal parameters eV/TK and T/TK (inset)
and a curve for δ/TK = 10 and �/τTK = 0.1.

Fig. 5. The diagrams determining the main contribution to
�/τTK (a–d) (see text). The diagrams (e–f) describe thresh-
old processes leading to the Kondo peak asymmetry.

T

T
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Thus, we have described a situation in which the
Kondo effect exists only under nonequilibrium condi-
tions and is induced by an external voltage applied to
electrodes in tunneling contact with a composite QD. In
this case, the Kondo-type tunneling is induced by
dynamic processes of the excitation of low-lying spin
states of the QD, the ground state of which is a spin sin-
glet. The simplest example of such a system is offered
by a double QD with even occupation under the condi-
tions of strong Coulomb blockade. The spin symmetry
of such a QD is essentially that of a quantum spin rota-
tor. Since a singlet ground state in quantum mechanics
is always accompanied by triplet excitations, this situa-
tion is not very unusual and can probably be manifested
as a peak in the differential conductance, observed at a
nonzero bias in a Coulomb window with an even num-
ber of electrons. Such a peak should be distinguished
from a maximum corresponding to the cotunneling via
excited electron states [17].
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