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Paramagnetic labeling as a method for the soft spectroscopy of electronic states
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A self-consistent microscopic theory of the relaxation of the crystal-field levels of an impurity
ion in a state with an integer valence implanted in a normal metal is devised. A
microscopic approach based on the Coqblin–Schrieffer–Cooper approach, rather than the formal
model of thes f exchange interaction, makes it possible to take into account the specific
details of both the crystal-field states of the impurity ion and the electronic band spectrum of the
metal. A new method for the soft spectroscopy of electronic states based on measurements
of the temperature dependence of the widthGMM8(T) of transitions between the crystal-field states
uM & of a paramagnetic ion implanted in the compound being studied is proposed. To make
specific use of this method in neutron and optical spectroscopy, a classification of the types of
temperature dependence of the natural relaxation widthgM(T) of the levels is devised,
and procedures for possible experimental methods are proposed. A nonzero value of the natural
relaxation widthgG(T) of the crystal-field ground stateuG& of an impurity ion at zero
temperature is obtained within the proposed self-consistent model, but is beyond the scope of
perturbation theory. It is shown that the widely accepted estimate of the characteristic
temperature of Kondo systemsT* 5GG(T50)/2 from the quasielastic scattering width at zero
temperatureGG(T50)/2 is incorrect in the case of strong relaxation in a system with
soft crystal fields. The proposed model is applied to the quantitative analysis of the relaxation of
the crystal-field levels of paramagnetic Pr31 ions implanted in CeAl3 and LaAl3. The
results of the calculations are in quantitative agreement with the experimental data. ©1998
American Institute of Physics.@S1063-7761~98!02005-8#
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1. INTRODUCTION

The methods that have been developed for studying e
tronic states in metals~angle-resolved photoemissio
spectroscopy;1 quantum oscillations of the magnet
susceptibility,2 conductivity,3 magnetostriction,4 and elastic
moduli5 associated with the de Haas–van Alphen effect;
frared spectroscopy;6 Raman scattering;7 etc.! provide
complementary information regarding the structure of el
tron spectra. A comparison of the experimental data obtai
by different methods with the results of band calculations
the electronic structure provides fairly reliable data on
properties of the compounds studied.

The methods for investigating electronic states can
divided into ‘‘hard’’ and ‘‘soft’’ methods. In the case of har
spectroscopy, the influence of the measurement proces
the system exceeds the scalesW* of the characteristic inter
actions forming the electronic spectrum of the system~in
Kondo systemsW* is of the order of the Kondo temperatu
TK ; in variable-valence systemsW* is of the order of the
valence fluctuations!. Therefore, compounds with stron
electron correlations, which have low-energy modes in
spectrum of elementary excitations, can be investigated m
effectively by soft spectroscopic methods, in which the m
surement process does not destroy the eigenstates of the
tem being investigated. The conditions imposed on spec
scopic measurements by the softness of the elemen
excitations in variable-valence and Kondo systems gre
1001063-7761/98/86(5)/12/$15.00
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restricts the set of methods that are applicable to the inv
tigation of highly correlated systems. For example, the int
pretation of photoemission measurements~because of the
large energy transfers in the measurement process! and data
from methods based on de Haas–van Alphen oscillati
~because of the large magnetic fields, which can destroy
structure of soft excitations! requires a special investigatio
of the influence of the measurement process on the l
energy properties of the compound being studied. Theref
the development of new soft spectroscopic methods
highly correlated electronic systems is an important und
taking.

This paper proposes a method for analyzing the e
tronic structure based on measurements of the tempera
dependence of the relaxation of crystal-field levels of an
purity ion which has special properties~a paramagnetic la-
bel! and is implanted in the compound being investigated
similar idea for investigating semiconductor compounds
an electron paramagnetic resonance technique was prop
back in Ref. 8. The method discussed in this paper relies
the technique of measuring the neutron or optical respons
the system and is intended for studying metallic compoun
A spectroscopic procedure employing a paramagnetic la
can be divided into two stages. In the first stage highly co
plete information on the energies and wave functions of
paramagnetic label P must be obtained. To this end a c
bined study~neutron scattering or Raman scattering me
surements; magnetic susceptibility and specific heat m
8 © 1998 American Institute of Physics
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surements! must be made of a reference single crystal
Pl$B% ~$B% is the chemical formula without the paramagne
label!. In the second stage small quantities of the A ions
the compoundAl$B% under investigation are replaced by th
paramagnetic label P. Scrutiny of the temperature dep
dence of the relaxation of crystal-field levels of the param
netic label P in the compound (A12xPx) l$B% can provide
unique information regarding the electronic structure of
compound under investigation when several conditions
fulfilled. First, the inequalityx!1 is a necessary condition
which allows us to treat the relaxation of the crystal field
the paramagnetic label as a purely single-ion effect. Sec
it must be shown that the structure of the crystal field of
paramagnetic label P in (A12xPx) l$B% does not differ signifi-
cantly from the structure of the crystal field in the pure r
erence crystal of Pl$B%. Fulfillment of the second condition
has already been demonstrated for several compound
which the main contribution to the formation of the crys
field is made by the nearest neighbors from a formula uni
$B%, and hence the structures of the crystal fields of the p
magnetic label P in Pl$B% and (A12xPx) l$B% are practically
identical. Examples of such compounds include RAl3,

9–11

RNi5,
12–14 and RNi14–16 ~R is a rare-earth ion!.

It should be noted that the existing methods for calcu
ing the temperature dependence of the relaxation of crys
field states cannot be applied to the analysis of spec
highly correlated systems. Some of the methods employ
formal Hamiltonian, i.e., one which is not related in any w
to the electronic structure, of thes f model.17–19Another de-
ficiency of the previously developed methods is the use
nonself-consistent second-order perturbation theory,17,18,20,21

which is inapplicable in the case of the large relaxat
widths characteristic of highly correlated systems.

The goal of the present work is to devise a se
consistent theory for the relaxation of crystal-field leve
which can serve as a tool for studying the electronic struc
of particular, highly correlated electronic systems w
strong relaxation broadening. Section 2 presents the de
tion of a microscopic interaction Hamiltonian, an analysis
the differences between it and the formal Hamiltonian of
s f model, and a discussion of the Coqblin–Schrieffer mod
In Sec. 3 self-consistent equations are obtained for the n
ral relaxation widths of the crystal-field levels, and their i
fluence on the cross section for magnetic inelastic neu
scattering is analyzed. In Sec. 4 qualitatively different typ
of temperature dependence of the relaxation width are c
sified. The effects associated with departure from the we
relaxation approximation are analyzed in Sec. 5. In Sec. 6
conditions which must be satisfied by the paramagnetic la
are analyzed in detail, and experimental procedures wh
provide the most easily interpreted information are p
sented. The results of measurements of the relaxation wi
of the crystal-field states of the paramagnetic label Pr31 in
the compounds LaAl3 and CeAl3 are considered in Sec. 7
The conclusions are presented in Sec. 8.
f
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2. SPECIFIC DETAILS OF THE INTERACTION OF CRYSTAL-
FIELD STATES WITH CONDUCTION ELECTRONS IN
THE COQBLIN–SCHRIEFFER MODEL

The interpretation of the relaxation of a real parama
netic label in a particular compound requires the formulat
of a problem which takes into account both the specific
tails of the state of the impurity and the features of the el
tronic structure of the metal. Therefore, thes f exchange
Hamiltonian, which is often employed to analyze the rela
ation of crystal-field levels,17–19

Hs f5 (
MM8

~ f M
† ĴMM8 f M8!~ca

†sabcb! ~1!

~whereM andM 8 are the indices of the crystal-field states,a

and b are the spin indices of the conduction electrons,Ĵ is
the total momentum operator, ands denotes a Pauli matrix!
is unsuitable for analyzing relaxation in a particular syste
since it is a purely formal object, which is not related in a
way to the features of the electronic structure of the meta
to the real character of the interaction of an impurity w
conduction electrons.

The specific features of the relaxation occurring as
consequence of the interaction of an impurity with condu
tion electrons can be taken into account in t
approaches22–25 based on the Schrieffer–Wolff and Cornut
Coqblin formalisms.26–28 A scheme permitting a first-
principles calculation of the relaxation of a paramagnetic
bel can be devised within the method proposed in Refs. 2
25. The Anderson Hamiltonian describing an impurity ion1!

with one f electron implanted in a metal is represented in
form of the sum

H5H01H1 . ~2!

Here the first term

H05(
uks

eukcuks
† cuks1(

M
EM f M

† f M

1
U

2 (
MM8

MÞM8

f M
† f M f M8

† f M8 ~3!

describes the subsystem of delocalized conduction elect
with consideration of the single-particle potential of thef
subshell~which is treated as a core state! and the subsystem
of the crystal field of thef subshell in the single-particle
potential created by the conduction electrons. The oper
cuks

† (cuks) describes the creation~annihilation! of a conduc-
tion electron with the energyeuk , whose state is characte
ized by the Bloch wave

uuks&5uuk~r !eikr us& ~4!

with the wave vectork, the band indexu, and the spin pro-
jection s. The operatorf M

† ( f M) describes the creation~an-
nihilation! of the crystal-field stateuM & with the energyEM .
The wave functionsuM & of the states of anf electron trans-
form in accordance with the irreducible representationYM of
the point group of the site of the rare-earth impurity io
G imp :
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uM &5 (
m52Jimp

Jimp

Lm,Jimp

M um&. ~5!

Here theum& are spherical harmonics, which describe t
projectionsm of the total angular momentum of the impuri
Jimp , andU is the on-site Coulomb repulsion constant.

For a microscopic calculation procedure we must rep
sent the many-particle interaction of the localized and de
calized subsystems in terms of the nomenclature for the b
states of conduction electrons, rather than in the approxi
tion of symmetrized partial waves.27,28 In this nomenclature
the interaction Hamiltonian

H15 (
uksM

Vuks
M f M

† cuks1H.c. ~6!

describes the mixing of the localized stateuM & with the
Bloch waveuuks&, and the hybridization parameter

Vuks
M 5^uksuVmix~r !uM & ~7!

can be calculated by a band-calculation procedure. In
case of an impurity state with a nearly integer valence~the
hybridization scaleuVuks

M u is considerably smaller than th
distance from theEM andEM1U levels to the Fermi energy
eF!, the Coqblin–Schrieffer transformation,26,27which elimi-
nates the first order with respect to the hybridization from
Hamiltonian, is applicable. As a result, the interaction of t
localized and delocalized subsystems is described by el
and inelastic scattering processes of the conduction elect
on localized crystal-field states of the impurity:

Hex5 (
MM8

(
uks

(
u8k8s8

Juks,u8k8s8
MM8 f M

† f M8cuks
† cu8k8s8 . ~8!

The interaction constants of the effective Hamiltonian
expressed in terms of quantities which can be determine
band-calculation methods:22–25

Juks,u8k8s8
MM8 5

Vuks
M8 ~Vu8k8s8

M
!*

2 F 1

euk2EM
1

1

eu8k82EM8
G .

~9!

Although the nomenclature of the band states of cond
tion electrons is adequate in cases where the problem
first-principles calculation of the parameters, the nomen
ture of symmetrized partial waves, which permits the use
symmetry arguments, is more convenient for qualitat
analysis. As a result of the standard transformation into
representationsuukM& of the partial waves27,28

cuks
† 5 (

kM9
^uksuukM9&cukM9

† ~10!

~herecukM9
† is the annihilation operator of a conduction ele

tron in the state centered on the impurity ion with the wa
numberk, the total angular momentumJimp , and the angular
dependence described by the irreducible representa
YM9!, the Hamiltonian of the exchange interaction can
represented in the form
-
-
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Hex5 (
MM8

f M
† f M8 (

M9M-
(
kk8

(
uu8

QukM9
u8k8M-~M ,M 8!

3cukM9
† cu8k8M- , ~11!

where

QukM9
u8k8M-~M ,M 8!5(

kk8
(
ss8

^uksuukM9&

3^uk8M-uuk8s8&Juks,u8k
s8

MM8 . ~12!

The only restriction which is imposed on the symmetry
the exchange interaction is the condition that the interac
~11! have the symmetry of the point group of the impuri
site.31 Generally speaking, the seed basis of crystal-fi
states$uM &% obtained with consideration of only the single
particle crystal potential is not diagonal when the pertur
tion ~11! is taken into account. In low-symmetry systems th
perturbation can mix seed states of the crystal-field bas32

Therefore, in the general case the relation

QukM9
u8k8M-~M ,M 8!5 J̃uk,u8k8

MM8 dM-MdM9M8 , ~13!

which reduces the exchange Hamiltonian to the stand
Coqblin–Schrieffer expression in the partial-wave repres
tation

Hex5 (
MM8

f M
† f M8(

kk8
(
uu8

J̃uk,u8k8
MM8 cukM8

† cu8k8M , ~14!

is an artefact of the simplifying assumption that the mixi
potential has spherical symmetry in the vicinity of the imp
rity. Nevertheless, even in the simplest approximation,
which the band indexu and the dependence on the wa
numberk are neglected~i.e., the band system of the condu
tion electrons is replaced by an effective density of state!,
the approximate Hamiltonian

Hex5 (
MM8

Ī MM8 f M
† f M8cM8

† cM , ~15!

which faithfully takes into account the principal features
the symmetry of the states of the delocalized electrons,
fers significantly from the formals f exchange Hamiltonian
~1!. When the relaxation width is calculated, thes f exchange
Hamiltonian~1! induces only transitions with a change in th
projection of the total angular momentum of the impurity
unity or without any change in its projection. The relativ
values of the matrix elements specifying the transitio
uM 8&→uM & do not depend on the features of the electro
structure and are determined only by the properties of
Pauli matrices and the structure of the wave functionsuM & of
the localized states. Conversely, all the quantities appea
in the Hamiltonian~11! can be calculated for a specific im
purity in a specific crystal, and the parameters of the appro
mate Hamiltonian~15! are obtained by averaging~11!. Thus,
in the general case the Hamiltonian~15! has nonzero matrix
elements for the transition between any local statesuM & and
uM 8&, and the relations between the different matrix e
ments Ī MM8 are determined by the localized states of bo
the crystal field of the impurity and the band structure of t
conduction electrons.

The calculation of the averaged parametersĪ MM8 can be
performed by the methods described in Refs. 22–25 an
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beyond the scope of the present work. In this paper we w
to analyze which features of the temperature dependenc
the relaxation widths of the crystal-field levels can be o
served for various relations between the symmetrized
change constantsĪ MM8 of the Hamiltonian~15!.

3. RELAXATION WIDTHS OF CRYSTAL-FIELD LEVELS AND
THEIR INFLUENCE ON THE WIDTHS OF THE PEAKS
FOR NEUTRON TRANSITIONS

The relaxation widthG i f associated with the transitio
u i &→u f & is determined by the natural widthsg i andg f of the
initial u i & and final u f & states. It should be noted that th
natural widths are determined not only by the mutual rel
ation processes of the initial and final statesu i &↔u f &, but
also by the processesu i &↔uM & (u f &↔uM &), which are asso-
ciated with the interaction of the initial~final! states with all
the other crystal-field states$uM &%. In this case the natura
width of the initial ~final! state is determined by the set
parameters$ Ī iM % ($ Ī f M%) of the Hamiltonian~15!.

Let us consider the process responsible for the inela
neutron transitionu i &→u f & from the initial stateu i & with the
energyEi to the final state with the energyEf5Ei1D f i . We
introduce the Matsubara Green’s functions describing
crystal-field states of the impurity centerj and the Green’s
functions of similar nature for Abrikosov pseudofermions33

G l52^Tt f j ,M~t! f j ,M
† ~0!&, ~16!

which have the following forms in the zeroth approximati
~i.e., in the absence of relaxation!:

G i
~0!5~ iv2Ei1m!21, ~17!

G f
~0!5~ iv2Ei2D f i1m!21 ~18!

~in the notation adoptedm is the chemical potential of the
pseudofermions, and in the final formulas it must be assum
that m→2`!.

The retarded Green’s functions, which specify the sp
tral response of the system, can be obtained using the
lytic continuation of the Matsubara Green’s functions fro
the upper semiaxis onto the entire complex plane ofv. Pas-
sage to the retarded Green’s functions in the zeroth-o
Green’s functions requires the replacementiv→v1 id. The
interactions of the crystal-field states with other subsyste
of elementary excitations of the crystal lead to renormali
tion of the crystal-field energy and to the appearance o
frequency-dependent imaginary part in the denominato
the Green’s function. The renormalizations of the cryst
field splittings can be included in the definition of th
Green’s functions~17! and ~18! and will not be considered
further. Let us next concentrate our attention on the temp
ture dependence of the relaxation width and take into
count that the retarded Green’s functions of the crystal-fi
levels can be written in the pole approximation in the for

G i
R~v!5@v2Ei1m1 ig i~v!#21, ~19!

G f
R~v!5@v2Ei2D f i1m1 ig f~v!#21. ~20!
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The on-site susceptibility, which determines the magne
neutron response of an impurity center, is expressed33 in
terms of the retarded Green’s function

x i f
R~t!52^Tt f i

†~t! f f~t! f f
†~0! f i~0!&,

whose analytic continuation onto real frequencies has
following form:

x i f
~0!R~V!52uQ i f u2E

2`

` de

2p
tanhS e

2TD @ Im G i
R~e!

3G f
R~e1V!1Im G f

R~e!G i
A~e2V!# ~21!

~hereQ i f is a matrix element, which depends on the wa
functions of the initial and final crystal-field states and det
mines the intensity of the neutron scattering peak!. Repre-
senting the resonant part of the susceptibilityx i f

R(V) at V
'D f i in the form

x i f
R~V!5

J0

V2D f i1 iG i f
, ~22!

whereJ0 is the residue at the respective pole!, we can obtain
the dependence ofG i f on the corresponding natural dam
ings of the pseudofermion Green’s functions. In the lim
g i , f!D f i or g f ,i!T the relation between the relaxation co
stantG i f extracted from the results of magnetic inelastic ne
tron scattering experiments and the natural damping of
pseudofermion Green’s functions acquires a simple form

G i f 5g i~v5Ei !1g f~v5Ef !. ~23!

Thus, in the cases which are most interesting for a r
able experimental analysis~where the width of the inelastic
transition is smaller than its energy! the problem of deter-
mining the temperature dependence of the widthG i f of a
transition reduces to a calculation of the natural widths of
initial and final states.

Let us consider the influence of conduction electrons
the natural width of crystal-field states in the Cornu
Coqblin model. For this purpose we use the effective Ham
tonian ~15! obtained in the preceding section as the inter
tion Hamiltonian. The natural widths are calculated
standard Feynman-diagram techniques at finite temperatu
This allows us to partially sum diagram series and to obt
a closed system of self-consistent equations. The depa
from perturbation theory is critical in the case of fairly stron
relaxation, since the natural widthgM(v5EM) of each
crystal-field stateuM & depends on the relaxation widths o
the entire system of crystal-field levels and must, therefo
be found self-consistently. To illustrate this point, we co
sider the interaction between the statesuM & and uM 8& with
the energiesEM and EM85EM1DM8M , respectively. The
simplest diagram which leads to relaxation of the cryst
field states is shown in Fig. 1a. The dashed line corresp
to the Green’s function of the conduction electron

G~r ,t!52^TtCj~r ,t!Cj
†~0,0!&, j5M ,M 8 ~24!

~we neglect the difference between the Green’s functions
the conduction electrons for differentM !. The diagrams cor-
responding to the vertex corrections can be classified in
following manner. The first are parquet diagrams, which
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FIG. 1. Feynman diagrams: a—simple diagra
describing the shift and damping of a crysta
field level ~dashed line—conduction electro
Green’s function, solid line–crystal-field excita
tions!; b—conduction electron polarization op
erator, which describes the electromagnetic
teraction between crystal-field excitations; c—
eigenenergy part of the crystal-field excitation
with consideration of the vertex renormaliza
tion; d—skeletal diagrams for vertex correc
tions.
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similar to the Abrikosov diagrams considered in the analy
of the Kondo effect in Ref. 33. Consideration of the cont
bution from the first nonvanishing term leads to the appe
ance of an interaction in the channelGM5M8
;(I MM8

2 /W)ln(W/DMM8) and to the correctionsdGMM8
(3,p)

;(I MM8
3 /W2)ln2(W/DMM8) ~W is the width of the conduction

electron band!. The second are nonparquet diagrams.34 Con-
sideration of the contribution from the first correction~Fig.
1d! leads to the additional contributiondGMM8

(3,np)

;(I MM8
3 /W2)ln(W/DMM8). We shall henceforth assum

I MM8 /W!1 and (I MM8 /W)ln(W/DMM8)!1 and neglect the
vertex corrections in the perturbative approach. Under th
circumstances

sM~ ivn!5@ Ī MM8#2T2(
e1e2

1

N 2 (
p1,p2

G~p1 ,e1!G~p2 ,e2!

3G M8~ÞM !~e11e22v! ~25!

~N is the total number of conduction electrons!. Performing
the analytic continuation of the expression~25! into the up-
per half-plane of the complex variablev according to the
usual rules,35–37 we obtain the following expressions for th
eigenenergy parts at real frequencies~the analogous equa
tions for thes f exchange Hamiltonian were obtained by M
leev in a treatment of the relaxation of the crystal field
cubic metals19!:

gM~v!52Im sM
R ~v!

5
1

p
@ Ī MM8#2E

2`

`

dx
1

N
(

p
@N~x!1n~x

1v!#Im G M8~ÞM !
R

~x1v!Im PMM8
R

~p,x!.

~26!

HereN(x)5(ex/T21)21, n(x)5(ex/T11)21, P(p,x) is the
polarization operator of the conduction electrons~Fig. 1b!,
whose imaginary part describes the two-particle density
states:

Im
1

N
(

p
PR~p,x!52

p

2
N0

2x, ~27!

whereN0 is the single-particle density of states of the co
duction electrons at the Fermi level, in terms of which t
dimensionless coupling constantsgMM8 are expressed:

gMM8
2

5
1

2
@ I MM8N0#2. ~28!
is

r-

se

f

-

In the integrals~26! we perform the replacementv1m

5ṽ corresponding to the displacement of the energy re
ence point. Allowingm to tend to2`, we neglect the Ferm
function on the right-hand side. This replacement has
simple physical meaning: the singularities of the functionsG

are determined by a far larger energy scale, and, theref
the terms corresponding to consideration of the poles of
pseudofermion functions should be omitted.38

According to~23!, the natural dampingg of the crystal-
field states at the frequencies corresponding to the ener
of the crystal-field levels must be calculated to determine
width of a neutron transition. Thus, in the case of the int
action of uM & and uM 8&, the quantitiesgM(v5EM) and
gM8(v5EM8) must be calculated. Determining the dampi
at the poles of the corresponding Green’s functions, we
tain the system of coupled equations

5
gM~v→EM !5pgMM8

2 E
2`

`

dxxN~x!P

3~x2DM8M ,gM8!,

gM8~v→EM1DM8M !5pgMM8
2 E

2`

`

dxxN~x!

3P~x1DM8M ,gM !,

~29!

whereP(x,g) is the spectral function normalized to unity:

P~x,g!5
1

p

g

x21g2 . ~30!

The expressions obtained are easily generalized to
case of an arbitrary set of constants in the Hamiltonian~15!

($ Ī MM8%; M ,M 851,...,2Jimp11! and an arbitrary system o
crystal-field states with the energiesEM . Proceeding pre-
cisely as in the derivation of~25!–~29!, we obtain the expres
sions for the frequency-dependent damping rates

gM
R ~v!52Im sM

R ~v!

5
1

p (
M851

2Jimp11

Ī MM8
2 E

2`

`

dx
1

N
(

p
@N~x!1n~x

1v!#Im G M8
R

~x1v!Im PMM8
R

~p,x!,

M51,...,2Jimp11. ~31!

Neglecting the Fermi function on the right-hand side of~31!,
we obtain the system of self-consistent equations
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gM~v!52 (
M851

2Jimp11

gMM8
2 E

2`

`

dxxN~x!Im G M8
R

~x1v!,

M51,...,2Jimp11. ~32!

Here the dimensionless coupling constants are expresse
terms of the parameters of the Hamiltonian~15!:

gMM8
2

5gM8M
2

5
1

2
@ Ī MM8N0

MM8#2, ~33!

whereN0
MM8 is the partial density of states of the conducti

electrons corresponding to theM→M 8 transition.
The system of equations for finding the natural rela

ation constants at the frequencies which determine
widths of the neutron transitions@see ~23!# can be repre-
sented in the explicit form2!

gM~v→EM !5E
2`

`

dxxN~x!

3 (
M851

2Jimp11

gMM8
2 P~x2DM8M ,gM8!,

M51,...,2Jimp11, ~34!

where

DM8M5EM82EM .

4. CLASSIFICATION OF THE TEMPERATURE DEPENDENCE
OF RELAXATION WIDTHS

The temperature dependence of the natural relaxa
widths ~and the widths of the neutron transitions determin
by them! depends on the relationship between the differ
constants in the Hamiltonian~15! and on the energies of th
crystal-field states. In this section we shall classify the ty
of temperature dependence for cases in which solution
the self-consistent system of equations~34! can be obtained
explicitly.

The simplest condition under which the system of eq
tions ~34! is decoupled is that the relaxation widths be sm
(gM→0). In this case, instead of the system of equatio
~32!, we obtain the following expressions for the non-se
consistent widths of the levelsgM

(0) :

gM
~0!5p (

M851

L E
2`

`

gMM8
2 xN~x!d~x2DMM8!. ~35!

The calculation of~35! permits separation of the contr
butions to the temperature dependence of the natural w
gM(T) into three types:

gM~T!5gM
~eq!~T!1gM

↑ ~T!1gM
↓ ~T!. ~36!

The first type is associated with the relaxation caused by
interaction of the crystal-field stateuM & with the levels
$uM 8&%, whose energiesEM8 equalEM :

gM
~eq!~T!5pT (

M8

EM85EM

gMM8
2 . ~37!
in

-
e

n
d
t

s
of

-
ll
s
-

th

e

The contributions to the natural relaxation width of the lev
uM & from higher-lying (EM8.EM) and lower-lying (EM8
,EM) levels are given by the expressions

gM
↑ ~T!5p (

M8

EM8.EM

gMM8
2 DM8MN~DM8M ! ~38!

and

gM
↓ ~T!5p (

M8

EM8,EM

gMM8
2 DMM8@N~DMM8!11#, ~39!

respectively. In the limit of high temperatures,T
@max(EM), in accordance with the results in Refs. 17–2
the temperatures dependences of all three contribution
the relaxation are indistinguishable. All three contributio
obey a Korringa law, and the expression for the natural
laxation width takes the form

gM~T!5pT (
M851

2Jimp11

gMM8
2 . ~40!

At low temperatures the contributions of the higher-lyin
(EM8.EM) and lower-lying (EM8,EM) crystal-field levels
differ significantly. In the limitT→0, N(D) is exponentially
small,N(D)→exp(2D/T), and~38!–~39! take the form

gM
↑ ~T!5p (

M8

EM8.EM

gMM8
2 DM8M expS 2

DM8M

T D , ~41!

gM
↓ ~T!5p (

M8

EM8,EM

gMM8
2 DMM8 . ~42!

Thus, asT→0, the contributions to the natural relaxatio
width from the higher-lying levels tend exponentially
zero, and the contributions from the lower-lying levels
not depend on the temperature.

Since the shape of the line for the neutron transitionu i &
→u f & is measured directly in an experiment, it would b
interesting to analyze the temperature dependence of
width of the transitionG i→ f(T)5g i(T)1g f(T) ~see Fig. 2!
for different relationships between the constants of
Hamiltonian~1!. The diagonal interactionsI i i (I f f) lead to a
contribution ;pgii

2T (;pgf f
2 T), which is proportional to

the temperature. In the case of the relaxation of only
initial ~final! state as a result of interactions with the upp
~↑! levels, we have@G i→ f

↑ (T)# i ( f );N(D↑ i ( f )), which leads
to exponentially small damping,;exp(2D↑i(f ) /T), at low
temperatures. When only the initial~final! state relaxes as a
result of interactions with lower~↓! levels, we have
@G i→ f
↓ (T)# i ( f );D i ( f )↓@N(D i ( f )↓)11#, which can be de-

scribed by a constant;D i ( f )↓ at low temperatures. The
fourth special case is the one in which relaxation is media
by the interaction between the initial and final statesI i f . In
this caseG i→ f

i f (T);D f i@2N(D f i)11#5D f i cosh(Dfi/2T).
If the special cases just described are realized in

system being studied, they are easily distinguished from
another even by qualitative visual inspection. The situat
in which relaxation of the initial and final levels occurs on
because of the influence of the higher-lying levels is ea
distinguished ~the dotted line in Fig. 3!. In this case
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FIG. 2. General case of the classification of sources for the re
ation of the levels of the initial (i ) and final (f ) states of a tran-
sition ~thick vertical arrow! due to interactions with lower-lying
levels~I ↓ i andI ↓ f! and higher-lying levels~I ↑ i andI ↑ f! and due to
mutual coupling of the initial and final states~I i f , wavy lines!.
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G i→ f
↑ (T→0)→0. The mutual relaxation processes~the solid

line in Fig. 3! are also visually distinguishable from the va
ants in which the broadening is a consequence of the in
actions of the initial or final state with lower-lying levels~the
dashed line in Fig. 3!. The sharpness of the temperature d
pendence can serve as a criterion in these cases. In
former variant ~see Fig. 3! we have G i→ f

i f (T
52DMM8)/G i→ f

i f (T50)'4, and in the latter variant we hav
G i→ f
↓ (T52DMM8)/G i→ f

↓ (T50)'2.5.

5. CONSEQUENCES OF THE SELF-CONSISTENT
PROCEDURE

Beside the obvious quantitative influence of the se
consistent procedure manifested as renormalization of
numerical values of the natural relaxation constants, ther
a qualitative difference, which is expressed by the nonz
value of the relaxation width of the ground stateuG& at zero
temperature.

In the non-self-consistent procedure@see~41!# the width
gG

(0)(T→0)5pgGE
2 DEG exp(2DEG/T)→0 ~E is the higher-

lying level with the smallest value ofDEG!. The solution of
the system of self-consistent equations~29! ~for M5G,
M 85E! gives a nonzero width:gG

(sc)(T50)Þ0. Under the
conditionsT!gEG and T!DEG an explicit expression can
be obtained for the widthgG

(sc)(T50) of the level. Since at
low temperatures the non-self-consistent natural width of
crystal-field excited level isgE

(0)(T→0)5pgGE
2 DEG , the

weak corrections caused by the influence of the lower le
can be neglected. Then the self-consistent width of the lo
level is proportional to the square of the coupling consta

gG
~sc!'pgGE

2 gE
~0! lnS W

DGE
D ~43!

~in the calculation we cut off the integral~29! at the width of
the conduction electron bandW!. Substituting the expressio
for gE

(0) into ~43!, we obtain3!
r-

-
the

-
e
is

ro

e

el
er
:

gG
~sc!'p2gGE

4 DEG lnS W

DGE
D . ~44!

Since the corrections associated with the influence of
width of the lower level on the upper level contain an ad
tional small factor;gGE

2 , ~43! is the explicit solution of the
system of self-consistent equations to within terms;gGE

4

inclusively.
This result, which is unexpected from the standpoint

perturbation theory, can have a physical interpretation in
self-consistent theory. It should, first of all, be taken in
account thatuG& is the ground state of the system only wh
the interactions are disregarded. When the interaction w
the delocalized conduction electrons is included, the nom
clature of the localized states is no longer the true quant
mechanical basis, anduG& is not the true ground state.

A specific mechanism, which causes damping of
crystal-field stateuG& at zero temperature, can be pointe
out. The physical cause of the damping ofuG& is the nonzero
broadening of the excited stateuE& ~which also occurs in
perturbation theory!. Figure 4 presents the spectral functio
of uE& @P(x21,gE

(0)50.4)# and uG& @P(x,gG
(0)50)5d(x)#

in the perturbative approximation. The width ofuG& in the

FIG. 3. Reduced temperature dependences of the total inelastic scatt
width G i f due to relaxation processes with a higher-lying level~dotted line!
and a lower-lying level~dashed line! and mutual processes~I i f , solid line!.
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self-consistent approach is nonzero (gG
(sc)Þ0) because of the

allowed transitionsI GE induced by the width of the uppe
level uE& to the low-energy tail~the darkened area in Fig. 4!
of the Lorentzian contour of the upper level.

The result obtained, which attests to the nonzero con
bution to the natural relaxation width of the ground-sta
level, calls for caution in approaching methods for estimat
the characteristic temperatureT* in Kondo systems from the
full width at half maximum~FWHM! of the quasielastic neu
tron scattering peak at zero temperature. According to
generally accepted approach,39,40 the characteristic tempera
ture is determined from the relationT* 5Gqe

exp(T50)/2,
whereGqe

exp(T50) is the experimentally observed quasielas
scattering width at zero temperature. In this procedure i
assumed that the width of the peakGqe

exp(T50) is determined
only by the anomalous widthGK(T50), which is associated
with Kondo scattering processes on the lowest crystal-fi
state. However, the presence of the nonzero contribu
gG

(sc)(T50) from the normal relaxation processes calls
additional refinement in the case of strong relaxation bro
ening in systems with soft crystal fields. In this situatio
since the experimental widthGqe

exp(T50) is determined not
only by the anomalous widthGK(T50), but also by the
relaxation contributiongG

(sc)(T50), we have

Gqe
exp~T50!5GK~T50!12gG

~sc!~T50!, ~45!

and the standard relation should be rewritten in the form

T* 5
Gqe

exp~T50!22gG
~sc!~T50!

2
. ~46!

Thus, when there is strong relaxation in systems w
soft crystal fields, the determination of the characteristic te
perature is complicated by the nonzero relaxation contri
tion atT50. Nevertheless, the use of~46! and~44! provides
an estimate in this case too. To analyze the contribution fr
the normal relaxation processes of a specific compound
must determine the parameters~the crystal-field splitting
DMM8 and the dimensionless relaxation constantsgMM8!
which describe the relaxation in the particular material. T
set of techniques discussed in the next section can be u
in solving this problem.

FIG. 4. Illustration of the origin of the finite width of the crystal-fiel
ground stateuG& ~vertical arrow atx/DEG50! due to relaxation processe
~wavy lines with arrows! which couple theuG& level to the low-energy tail
~darkened region! of the spectral functionP(x21,gE

(0)Þ0) of the upperuE&
state.
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6. PARAMAGNETIC LABELING

Studying the electronic structure by measuring the rel
ation of a paramagnetic label requires the observance of
eral conditions, which must be satisfied by the compou
being studied Al$B% and the paramagnetic ion P. In this se
tion we describe the most desirable general conditions, un
which performing and interpreting paramagnetic labeling
periments are simplest, and we present some example
compounds which satisfy these necessary conditions.

One necessary condition which must be satisfied by
compound Al$B% being studied is the existence of a refe
ence compound Pl$B% containing the paramagnetic label P
The reference compound must be a structural analog of
compound being studied. In the first stage the propertie
the reference compound Pl$B% must be investigated. The
purpose of studying the reference compound is to obtain
formation on the crystal-field energies and wave functions
the paramagnetic label. This information can be obtained
analyzing experimental data from measurements of magn
neutron scattering~or Raman scattering! and the thermody-
namic properties~the magnetic susceptibility and specifi
heat!. For neutron scattering experiments, which require
fairly large quantity of the material, it should be noted tha
single-crystal sample is not required. This greatly facilita
implementation of the method, since magnetic susceptib
data suitable for reconstructing the crystal-field wave fu
tions can be obtained from measurements on tiny sin
crystal samples.

In the second stage, for which a polycrystalline sam
suffices, inelastic neutron scattering experiments are
formed on the compound (A12xPx) l$B%. The theoretical
analysis requires information on the crystal-field states of
paramagnetic label P in (A12xPx) l$B%. The experimental
neutron scattering data provide information on the energ
of the crystal-field levels of the paramagnetic label in t
compound being studied. Since it is impossible to study
crystal-field states of an ion of P in (A12xPx) l$B% by ther-
modynamic methods, additional information on the cryst
field wave functions is needed. This information can be o
tained by studying the trends in the variation of the cryst
field parameters of a family of compounds Rl$B% ~where
R5A,P,...!. There are presently several families of com
pounds for which such investigations have already been
formed: RAl3,

9–11 RNi5,
12–14, and RNi14–16~R is a rare-earth

ion!. In these families the main contribution to the formatio
of the crystal field is made by the ions in the local enviro
ment and the conduction electrons. Therefore, the struct
of the crystal-field wave functions of the paramagnetic la
P in the reference compound and in the compound be
studied are practically identical. Thus, the systems which
suitable for the proposed procedure are compounds in w
the nearest neighbors of each ion of A that is replaced by
paramagnetic label are ions from an unsubstituted form
unit of $B%. The best systems for application of the meth
are materials in which the crystal-field parameters are de
mined predominantly by the nearest neighbors.

The next necessary condition is a small concentration
the ions of the paramagnetic label,x!1, in (A12xPx) l$B%.
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This condition permits consideration of the crystal fields a
their relaxation as purely single-ion phenomena. A sm
value ofx is also necessary to be sure that doping with
paramagnetic label did not lead to significant alteration of
electronic structure of the compound being studied.

An important desirable restriction imposed on the pa
magnetic label is nondegeneracy of the crystal-field gro
state of the ion. Fulfillment of this condition significant
simplifies the interpretation of the experimental data, sin
the natural width of the crystal-field ground state is specifi
by a simple exchange Hamiltonian of the form~15!. A de-
generate ground stateuG& can lead to a Kondo effect, whic
results in the appearance of a specific temperature de
dence of the quasielastic neutron scattering width:Gqe(T)
52gG(T)5a1bAT.40 The presence of a specific temper
ture dependence of the natural width of the crystal-fi
ground state greatly complicates the interpretation, since
width GGM(T)5gG(T)1gM(T) of any inelastic transition
from the ground state contains this poorly studied com
nent. This circumstance greatly complicates the analy
since the theoretical treatment is simplest, if the tempera
dependence of the natural widthsgM(T) of the levels is de-
termined during the experiment. This dependence can be
tracted from the solution of the system of equations

GMM8~T!'gM~T!1gM8~T!, ~47!

whose features must be analyzed separately for each sp
case.

It is also noteworthy that one of the significant adva
tages of the method can be the possibility of regulating
selection rules by choosing different paramagnetic labels
can easily be seen that different symmetries for the crys
field states of the paramagnetic label will lead to differe
types of temperature dependence of the relaxation proc
Therefore, significant information can be obtained by anal
ing situations with different ions serving as the paramagn
label in relaxation spectroscopy.

7. RELAXATION OF THE PARAMAGNETIC LABEL Pr 31 IN
Pr0.03Ce0.97Al3 AND Pr0.03La0.97Al3

An example of a favorable combination of properties
the paramagnetic label and the compound being studie
the Pr31 ion in the hexagonal compounds RAl3 ~R is a lan-
thanide!. The crystal-field ground state~level 1 in Fig. 5! in
pure PrAl3 is the singletuG1&5u0&, and the only allowed
transition atT→0 is the uG1&→uG6& transition to theuG6&
5u61& state ~level 2 in Fig. 5!. The crystal fields of the
praseodymium ion in PrAl3 were studied in detail in Ref. 9
~see Fig. 5, in which the crystal-field levels are numbe
from 1 to 6 in order of increasing energy!. The singlet char-
acter of the ground state rules out both the Korringa rel
ation channel;uI 11u2 and the relaxation channel associat
with Kondo processes.

The relaxation of the paramagnetic label Pr31 was stud-
ied in Pr0.03Ce0.97Al3 and Pr0.03La0.97Al3. The crystal-field
splitting energy of the praseodymium ionD21 in both
Pr0.03Ce0.97Al3 and Pr0.03La0.97Al3 differs only slightly from
the crystal-field energyD21

R '4.5 meV in the reference com
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pound PrAl3. More specifically, in Pr0.03Ce0.97Al3 D21

'4.2 meV, and in Pr0.03La0.97Al3 D21'3.5 meV. Therefore,
in the simplest approximation the wave functions of t
crystal-field states of the paramagnetic label in the co
pounds studied can be assumed to be only slightly alte
from those in the reference. To describe the relaxation of
paramagnetic label in CeAl3, we selected a system of leve
which coincides with the crystal-field system in pure PrA3,
and to analyze the relaxation in LaAl3, we chose a system in
which all the splitting energies are reduced by a factor
3.2/4.5'0.711 ~see Fig. 5!. The thoroughly studied laws
governing the variation of the crystal field of the parama
netic label in Pr~La!Al3 ~Refs. 9 and 10! can be used for a
more exact calculation.

In the experiments in Ref. 11 measurements of the te
perature dependence of only the transition widthG12(T)
were performed~the FWHM of the Lorentzian, which corre
sponds to 2G in our notation, was measured in Ref. 11!,
while the natural relaxation widthsg1(T) and g2(T) were
not distinguished. Nevertheless, even in this case defi
conclusions regarding the difference between the relaxa
behavior of the paramagnetic label in CeAl3 and LaAl3 can
be drawn.

Since level 1 of the paramagnetic label in CeAl3 corre-
sponds to the ground state, the relaxation of level 1 in in
actions with lower-lying levels is impossible. Moreover,
visual comparison of the experimental data~Fig. 6! with the
calculated dependences shown in Figs. 2 and 3 allows u
state that the mutual relaxation processesI 12 are also absent
This conclusion can be drawn on the basis of a compari
of the widths at low and high temperatures: there is
temperature-dependent contribution atT,20 K. Therefore,
the only possible sources of natural relaxation broadening
levels 1 and 2 are the interactions of levels 1 and 2 w
higher-lying levels 3, 4, 5, and 6.

Although the only quantum numbers in whose nome

FIG. 5. Level scheme of the paramagnetic label Pr31 in CeAl3 ~on the left!
and LaAl3 ~on the right!. Wave functions of the levels:9 uG1&5u0&; uG6&
5u61&; uG4&5221/2u23&2221/2u23&; uG52&5au64&2A12a2u72&;
uG3&5221/2u3&1221/2u23&; uG51&5A12a2u64&1au72&. The neutron
transition studied in Ref. 9 is denoted by a vertical arrow. The postula
relaxation channels affecting the initial and final states are denoted by w
lines with arrows.
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clature correct arguments can be advanced are the indic
the irreducible representationsM5G1 ,G3 ,G4 ,G6 ,G51, and
G52, we shall demonstrate that the nomenclature of the p
jections m of the spherical representation@see ~5!# is also
useful for a qualitative analysis of relaxation.

Using the known wave functions of the crystal-fie
states~see the caption to Fig. 5!, we can rule out the transi
tions with dm561 because of the lack of theuG1&↔uG6&
mutual relaxation channel. The transitions withdm562
should lead to interactions ofuG1& with uG51& and uG52& and
of uG6& with uG4& and uG3&. However, if the occurrence o
transitions withdm562 is assumed, the relaxation ofuG6&
according to a Korringa law (}T) should be observed. The
~if it is assumed within a qualitative analysis that the int
action constants are identical for all the transitions withdm
562! the occurrence of relaxation according to a Korrin
law does not correspond to the weak dependence ofG12 on
the temperature in the range 0,T,20 K ~see the experi-
mental points in Fig. 6!. Therefore, the occurrence of trans
tions with dm562 should also be ruled out.

The next possible change in the spherical projecti
dm563, leads to interactions ofuG1& with uG4& and uG3&
and of uG6& with uG52& and uG51&. These interactions do no
lead to a contribution that is proportional toT to the widths
of the levels of the initial state (g1) and the final state (g2)
and do not contradict the weak temperature dependenc
G12 at T,20 K. The energy splittingsD42 and D62 corre-
sponding to the interactions of theuG6& level are smaller than
the corresponding splittingsD41 andD51 for the uG1& level.
Therefore, the contribution}exp(2D/T) to the transition
width G12 at T,100 K ~under the assumption of approx
mately equal values ofg for all dm563! from the natural
width g2(T) of the uG6& level can be considered the ma
contribution.

In the quantitative calculations presented below we to
into account only the interaction constantsI 24 and I 26. In
such an approximation the natural width of the crystal-fi
ground state isg1(T)50, and, therefore,G125g2(T). For
simplicity, the values ofI 24 and I 26 were set equal to one
another~see Fig. 5!. The conduction electron band was a

FIG. 6. Temperature dependence of the FWHM (2G in) of the inelastic
uG1&→uG6& transition in CeAl3 for the paramagnetic label Pr using the lev
scheme in Fig. 5. Dotted line—best fitting in the non-self-consistent
proximation for g5g(0)50.115. Solid line—best fitting in the self
consistent approximation forg5g(sc)50.111. Dashed line—non-self
consistent width forg5g(sc)50.111.
of

o-

-

,

of

k

proximated by a constant density of states with a width o
eV. The best fit for the experimental data in the non-se
consistent approximation is achieved with the value of
dimensionless coupling constantsg(0)5guG6&uG52&

(0) [guG6&uG51&
(0)

50.115. The self-consistent procedure gives the best res
when g(sc)5guG6&uG52&

(sc) [guG6&uG51&
(sc) 50.111. It is noteworthy

that the self-consistent value of the natural widthgG6
(T

50) obtained in the numerical calculation coincides
within a few percent with the results of the analytical fo
mula ~44!. Figure 6 presents a comparison of the theoreti
temperature dependences of the width of the 1→2 inelastic
neutron transition with experimental data. The theoreti
data are presented in different approximations, viz., the s
consistent and non-self-consistent approximations. To ill
trate the influence of the self-consistent approximation,
figure shows the temperature dependences of the
consistent and non-self-consistent widths~the solid and
dashed lines, respectively! calculated for the same dimen
sionless constantg(sc)50.111. It is seen from Fig. 6 that th
self-consistent width is greater than the non-self-consis
width for the same value of the interaction constant. T
effect of the self-consistent approximation,G12

(sc)/G12
(0)@1, is

most easily observed when the non-self-consistent widt
small. Unfortunately, the instrumental errors of the neutr
scattering method make it difficult to reliably isolate the e
fects of the self-consistent approximation. Therefore, the p
formance of Raman scattering experiments, whose exp
mental errors are considerably smaller, can prov
important additional information.

A qualitative analysis of the experimental temperatu
dependence of the relaxation in LaAl3 like the analysis per-
formed above for CeAl3 shows that the main relaxation cha
nel corresponds to a change in the spherical projectiondm
561. We note that this channel does not lead to Korrin
relaxation for the initial state 1 or the final state 2. In th
approximation relaxation of the initial state is possible on
in the mutualI 12 processes, and relaxation of the final state
possible both in the mutualI 12 processes and in theI 24 and
I 26 interactions with higher-lying levels~see the right-hand
part of Fig. 5!.

Since the non-self-consistent width is greater at all te
peratures, it is difficult to observe the effects of the se
consistent approximation. Therefore, we calculated the tr
sition width only in the non-self-consistent approximatio
~Fig. 7!. It is noteworthy that the results of the fitting wit
consideration of onlyI 12 are in better agreement with th
experimental data than are the results of the calculations
consideration of equal values for all the interaction consta
I 125I 24/A12a25I 26/a. These results are reminiscent of th
qualitative character of the estimates based on the nomen
ture of the spherical projections of the angular moment
m. A more rigorous approach would take into account,
example, that the contributions of them50↔m561 and
m561↔m562 transitions, which are both associate
with a change in the spherical projectiondm
561, can be significantly different in a lattice of fairly low
symmetry.

-
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8. CONCLUSIONS

The proposed self-consistent microscopic theory of
spectroscopy of the crystal-field levels of an impurity ion
a normal metal has several consequences, which can ha
significant influence on our understanding of the relaxat
processes in highly correlated systems.

Most importantly, the proposed approach, which
based on the Coqblin–Schrieffer–Cooper approach, ra
than the formals f exchange model, permits a first-principle
microscopic calculation of the temperature dependence
the relaxation width of crystal-field states. A comparison
such calculations with experimental data, as well as the
of the conventional methods of infrared, Raman, and pho
emission spectroscopy, makes it possible to test the faith
ness of the band calculations. Like the traditional metho
the proposed method permits the performance of a qu
qualitative visual analysis of the experimental results
tained. An additional significant feature of the propos
spectroscopic method is the possibility of regulating the
lection rules by choosing an appropriate paramagnetic la
which is impossible within the traditional methods.

The new soft spectroscopic method considered in
paper permits the investigation of the role of strong elect
correlations in shaping the relaxation processes of crys
field states. Since strong correlations can significantly a
the simple form of the effective Hamiltonian~15!, relaxation
features, whose characteristic temperatures are not relat
the crystal-field splitting energies, can be observed in
highly correlated system. The observation of such featu
provides weighty evidence in support of the important role
strong correlations in the compound being studied. Mo
over, the calculations performed in the self-consistent
proach indicate that in the case of strong relaxation broad
ing the upper crystal-field levels have a significant influen
on the experimentally measured characteristics, which
was previously assumed, are determined only by the pro
ties of the ground state of a highly correlated system.
example of the properties of the ground magnetic state
ions in highly correlated systems, which can be subject t
significant influence from crystal-field excited states, is
residual width of the magnetic quasielastic neutron scatte

FIG. 7. Temperature dependence of the FWHM (2G in) of the inelastic
uG1&→uG6& transition in LaAl3 for the paramagnetic label Pr in the non-se
consistent approximation using the level scheme in Fig. 5. Dashed lin
model with g125g24 /A12a25g26 /a50.094; solid line—model withg24

5g2650, g1250.108. The dotted line1 ~2! corresponds to the natural re
laxation widthgG1

(T) (gG6
(T)) of the levels.
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peak at zero temperatureGG(T50). In the case of soft
crystal-field splittings, employment of the widely accept
phenomenological formulaT* 5GG(T50)/2 to determine
the characteristic temperatureT* of the Kondo system is in
need of additional analysis.

In conclusion, we wish to note that the proposed a
proach should be useful in the case of the analysis of syst
in which the crystal-field states transform into more comp
cated objects as a result of strong electron correlations. S
systems include concentrated Kondo systems, in which
rare-earth ions form a coherent lattice. In this case the lo
ized crystal-field ground-state levels transform into a coh
ent continuum,41 which has been termed a spin fluid. Whe
there are sufficiently soft crystal-field splittings, a spin flu
undergoes strong interactions with localized excited state42

which should produce features in the relaxation of the m
netic states. Since crystal-field states are nothing more
well defined levels, this relaxation cannot be studied in
neutron scattering experiment within the proposed meth
However, the relaxation in the magnetic subsystem sho
have a significant influence on the spectroscopic charact
tics of the system that can be detected using resonance m
ods, such as muon spin rotation~mSR! and nuclear magnetic
resonance. These processes can be studied experime
and calculated theoretically after the proposed formalism
appropriately generalized.
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1!Below we shall consider a case which corresponds to the conditions o

proposed experimental method. In this situation the concentration of
paramagnetic label is chosen small enough that the interactions bet
the impurities can be neglected in each specific case.29 For this reason, the
influence of the impurity on the state of the conduction electrons can
neglected.30

2!All the expressions presented above were obtained without consider
of the vertex corrections~Fig. 1d!,37 which, however, are insignificant in
the case of sufficiently small dimensionless interaction constantsgMM8

2

!1.
3!Consideration of the vertex corrections in the perturbative approach, un

~44!, leads to correction of the coefficient in front of the exponentia
small natural width~41!.
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