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A theory is proposed for kinetic effects in isotropic Heisenberg antiferromagnets at temperatures
above the Nel point. The scaling behavior of the generalized coefficient of spin diffusion

and relaxation constant in the paramagnetic phase is studied in terms of the approximation of
interacting modes. It is shown that the kinetic coefficients in an antiferromagnetic system

are singular in the fluctuation region. The corresponding critical indices for diffusion and relaxation
processes are calculated. The scaling dimensionality of the kinetic coefficients agrees with

the predictions of dynamic similarity theory and a renormalization group analysis. The proposed
theory can be used to study the momentum and frequency dependence of the kinetic
parameters, and to determine the form of the scaling functions. The role of nonlocal correlations
and spin-fluid effects in magnetic systems is discussed1987 American Institute of
Physics[S1063-776097)02111-3

1. INTRODUCTION diffusion coefficient. The analogous problem for antiferro-

gnets will be examined in the present paper.

It is knownt* that in the neighborhood of a phase transi-

tion, two regions can be distinguished in the momentum-
temperature plane: a hydrodynamic region determined by
ng-wavelength fluctuations in the ordering parameter

Recent heightened interest in the critical dynamics ofMa
antiferromagnetic materidis® has been stimulated by active
experimental and theoretical research on quasi-two
dimensional magnetic correlations in high-temperature su

perconductors, and on the anomalous magnetic properties ﬁ_ - , .
heavy-fermion compounds® In particular, critical spin N=N;1—N,, the difference in the moments of the sublat-
fices, with characteristic wave vectorgé<1l, where

fluctuations have been invoked to explain the non-Fermp ™ k— 0l describes the deviati £ th ¢ f h

fluid behavior of the specific heat and resistance at low temg__| Q| escribes the deviation of the moment from the

peratures in the compourlds CeCy ,Au, and antiferromagnetic vecto® and ¢ is the correlation length,
—X X

Ce _,La,Ru,Si, near the concentration critical point. In ad- and a tcrr?cal regllo?_, Wl'th v;/:\_/e v:’-zcttodqigihl. Hhere t?e_ .
dition, a proposet® spin-fluid approach to the Heisenberg concept of a corretation fengtn Is related to the characteristic

model, based on introducing resonating valence bonds Witﬁehawor C;Lthe grdenn%dp_?ramlemr In an zntlferr?:na?r? et,
Fermi statistics for excitations in the magnetic sublattice owever, there Is an additional conserved quantity, the vec-

(spinong, may, in turn, also serve as a scenario for describl®'M=M1+M,, the sum of the moments of the sublattices.

ing the behavior of cerium compounds with heaVyNevertheIess, we shall also refer to the long-wavelength fluc-

fermionst12 Here it turns out that critical spin fluctuations [Yation region for the vectdvl, k§<1, as hydrodynamic. In

play an important role in the formation mechanism of a spinth's paper we examine the behavior of the spin correlation

fluid. The behavior of the kinetic coefficients in this case canfunCtIonS in the paramagnetic phase and establish the rela-

deviate substantially from that predicted by dynamic similar—t'on_Sh'p between the_k|net|c coefficients in the fluctuation
region of the phase diagram.

ity theory!® : . .

In this paper we develop a microscopic approach for .In thg hydrodynarmc regime, the Qynqmlcs of the flu_c-
studying the scaling behavior of the spin diffusion coefficienttuauons. n thg magnetlzatlon have a d|ffu.3|ve. character, i.e.,
and the relaxation constant of an isotropic Heisenberg antit-he varlathn in the magpetp moment' with time obeys the
ferromagnet in the fluctuation region above theeN&m- macroscopic van Hove diffusion equation:
perature. The scaling dimensionality of the kinetic coeffi-
cients in magnets was predicted by Halperin and ﬂ:D V2M 1)
Hohenberd**®who developed a hypothesis of scale invari- at 0 ’
ance based on the idea that the values of the dynamic critical
indices are conserved on both sides of the phase transitiomthereD, is the spin diffusion coefficient. This behavior of
Maleev then made a microscopic study of spin diffusion inthe fluctuations is related to the conservation of the magnetic
the paramagnetic phase of ferromagrtéts.He, in particu- moment; the operator corresponding to it commutes with the
lar, established the approximations required to satisfy thélamiltonian.
requirements of the hypothesis of scale invariance, and stud- A different pattern is observed in the critical region. The
ied the momentum and frequency dependence of the spimonconservation of the ordering parameter determines the
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relaxation character of the time variation in the vedtpi.e.,  tiferromagnetic vector, the static susceptibility varies as

the dynamics of this vector obey the relaxation equation: Gy(q)*&2~ 7. In the following discussion the Fisher index
N I n, which characterizes the so-called anomalous
T\ (2)  dimensionality;® will be set equal to zero. This approxima-
at X tion is valid for three-dimensional systerfslt is necessary

where x is the susceptibility and the kinetic coefficient to introduce two scaling functions’; and.” to describe the

I',>0. We note also that, in contrast to the diffusion equa-fluctuation regions in an antiferromagnet:

tion (1), relaxation(2) can be uniform; the gradient correc- o

tions omitted from Eq(2) are proportional t@? in this case. .%’(k,w)=Go(k).71( k¢, W)

Although the average value of the magnetization vektas ¢

zero on both sides of the phase transition point, fluctuations ®

occur in the magnetization vector near the zero value. Unlike L(/?(Q-w):Go(Q)?z( aé, W) : 9

in a ferromagnet, however, the diffusion mode is not critical. o ¢ o )
In the following we shall be interested in the dynamic Here, however, the kinetic coefficients, and I', can, in

susceptibility of a cubic Heisenberg antiferromagnet locatedurn: themselves be correlation lengths. Furthermore, as a

in zero magnetic field above the Bletemperature: renormalization group analysis sho¥fs, the kinetic coeffi-
cients are singular in the fluctuation region of an antiferro-
_ magnet.
H=- ViS-S. 3 . . . .
<iz,i> S-S @ The theory developed in this paper is a variant of the

interacting mode theory of Kawasaki.We have tried to
0generalize the theory proposed by Malefor spin diffu-

sion in ferromagnets to antiferromagnetic systems. In many
regards, we follow the style and spirit of that paper. As noted
)\(k,w)=(g,uo)2K§5(k,w), 4 before, our problem involves a study of the form of the scal-
ing functionF (see Eqs(8) and(9)) and a determination of
the frequency and momentum dependences of the kinetic

We also neglect dipole forcé$.
The susceptibility is known to be related to the retarde
spin Green function by the equation

whereg is the Landeg factor, i is the Bohr magneton, and

R (= ot e , coefficients in the fluctuation region, as well as establishing
Ksdk,w)=i fo dt €“([S(1),S (0)]), those approximations which must be made in a microscopic
approach in order to satisfy the requirements of scaling in-
1 E R variance.
= — e7| R ,
S= N 3 S
M=(S), N=(Sq,.,) (9 2. GENERALIZED KINETIC COEFFICIENTS
Proceeding from Eqg1) agd@), we can obtain the form of We therefore study the dynamic susceptibility of a cubic
the correlation function&™ in the diffusion Heisenberg antiferromagnet located in zero magnetic field
Dk?2 above the Nel temperature in the fluctuation region. Equa-
KByk—0,w)=7(k,w)=Gy(k) —1DK2 (6)  tions (6) and(7) can be rewritten in the more general form
. . i v(k,w)
and relaxation regions KR(K. )= 1
1 SO oG, Ty k) (10
KB{gq=(k—-Q)— =7 =— = ) ile i iffusi i
sdq=(k—Q)—0,w)=(q,w) STl + 6, q) while in the diffusion region
7) Do=lim limk2y(k,w)G, *(k), (12)

. . S k—0w—0
Here Gy is the static susceptibility.

In the fluctuation regionr=|T—T¢|/T.<Gi (Gi is the and in the relaxation region the generalized kinetic coeffi-
Ginzburg number, which characterizes the limits of applicaCient y(k,») =T'(k,w). The limit of Egs.(6) and (7) for
bility of the Landau theory when the fluctuations become k—0 and o—0 depends strongly on the relationship be-
large, the fluctuation dynamics obey the Halperin—tweenk and, similarly to the way it does in the theory of
Hohenberg similarity law, according to which the dynamic Fermi fluids®® In the following we shall be interested in the
susceptibilityy and, therefore, the functiolS can be ex- quasistatic limit, i.ek—0 and|w|/k*—0.
pressed in terms of the scaling functibn As Maleev shows?¢ it is possible to go beyond the linear

response theory and express the kinetic coefficients in terms
¢, Lﬂ) @  of the Kubo functio? of the operatorsS and S (the dot
T denotes differentiation with respect to tijne

i.e., the dynamic index which characterizes the energy Dk, w)
scale of the critical fluctuationsyek? can be related to a v(K,w)= R ITAY N ,
static indexv~2/3 which determines the variation in the o (K Pss(k, @)
correlation lengthgé« 7~ ". For small deviations from the an- where

KB4k, 0)=Gy(k)F| k

c

(12
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Ptk ) = — [KE —Ka
re(K, @) iw[KAB(k!w) Kas(k,0)], K$$= +

R i * i
Kag(k,@) =i jo dt € t<[Ak(t)aB—k(0)]>' FIG. 1. Diagram series for the current correlator.

Equation (12) is exact and accounts for the nonlinear L . . ) )
nature of the relaxation forces. In the case of a purely exSOrt, €.g., “diffusons” and “relaxons”, allows us to obtain
change interaction in the long wavelength lirfit~k, i.e closed expressions for the kinetic coefficients and to deter-
v=Dsd{k,w), the denominator equals unity and Efjl) is mine their Sca"f‘g dlmens_lo.n_aht.y. " .
the same as the result from the linear response theory. Gerh- For thg static gusceptlblllty in the critical region we use
erally speaking, however, the functions in the denominatof"® Ornstein—Zernike law:

cannot be neglected in a study of the frequency and momen- R A 1
tum dependence of the kinetic coefficients. Go(q)=Ks4q,0)= T.72 QB2+ 1’ (16)

It is easy to show that the retarded Green functions . o
Kgs(k,w), Kgs(k,w), anng-S(k,w) are related in the para- whgreAr:s a cqnstantA~ i))_llandhr<l. In Fhe (Ij|ff_u_5|on .
magnetic phase by simple formulas which follow from the '€9'0N the static susceptibility has no singularities an

dispersion relations? The following sections are devoted to analyzing the dia-
KBk, 0)=—iwKE4k o), gram series for the spin current correlator in the fluctuation
R R . R regions, finding the dynamic critical indices for the kinetic
Ksdk,0)=—Ksdk,w)=iwKsdk,), coefficients, and determining the momentum and frequency
dependence of the spin diffusion coefficient and relaxation
0K gk, ) =[Kg(k,0) ~KE(K,0)]. 13 corl?stant. P

It is clear from these relations, in particular, tm@is(k,w) is
analogous t(Kg-S(k,w) in its properties and symmetf§.
Combining Egs(11) and(13) with the equation of mo- To analyze the diagram series we introduce the concept
tion for the spin operators, of an irreducible self-energy part as a diagram which is con-
tinuous along one interaction line. Using the definitionyof
and the properties of the functiols we rewrite the expres-
sion for the generalized kinetic coefficient in terms of irre-

. . , ducible self-energy parts:
(hereV(p) is the Fourier transform of the exchange intepral

and transforming to “imaginary” time, we can obtain the
relation between the Kubo functions and the correlators of ~ ¥(K,@)=+—
the spin currents at the Matsubara frequencies:

3. RELATIONSHIPS AMONG THE KINETIC COEFFICIENTS

. 1
S=- N % [V(p+K)=V(P)l€ap,Shi STy (14)

35k, ) —35(k,0

(@T.a)? (1 ek @) y(K,0). 704 K, o)
Kk =gy | T dre S (7Vipk T et 6 k)

Zaq(k, @) y(K,0) -t

io(—iw+Gy (k) y(k,w))

X(VV(p2)k)
X(To(Sp kS p ) (S, 1S )0y (19)

1
In retaining only the first gradients of the potentials, ] ) ] (_7)
VV(p)~pT.a2a, we limit ourselves to the lowest order Equation(17) can also be obtained by analyzing the diagram

terms in an expansion ika, wherea is the lattice constant; Series for the spin cu.rre?t%correlaﬁ?ras well as directly

the constanty~ 1. It will be clear from the following analy- Tom the Larkin equation?* In the following we use the

sis that the corrections to the kinetic coefficients will be ex-following notation:

pressed in the form of series in powers kg and, since kR (k’w):%gR(k’w)Kgs(k,w);

£>a, it is valid to neglect the higher derivatives of the ex- sS

change integral. Therefore, the problem of finding the kineticand = ;g for the irreducible self-energy parts. The graphical

coefficients has been reduced to calculating four-spin correxpression for the irreducible pai@-s corresponds to replac-

elators with a current vertex. This problem can be solved byng a complete vertex in Fig. 1 by an irreducible vertex.

analytic continuation of the temperature diagrams with arEstimating.7 in self-consistent field theot§** yields

upper semiaxis into the complex plane. A graphical ex- ,

pression for the current correlator is shown in Fig. 1. 7~ (k&) (ka)<(ke)™. (18
The “seed” poles for the spin Green functiot® and  In addition, its analytic properties imply thatR~w. We

(7) lie on the imaginary axis, i.e., if we set up some fictitiousassume that the expression fat in the critical region also

guasiparticles to correspond to these poles, their energiepntains a term of ordex/ £ in smallness, and for small we

will be purely imaginary. Introducing quasiparticles of this neglect this contribution. Thus, the generalized kinetic coef-

X

1+ Gyt
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k-p k-Q ///
k K ke K + -
+ @& ,
\\ . /
p Q
,_9:2‘ 2 FIG. 3. The equations for a two-particle vertex part.
Q', ‘\Q
> b Here, in the second term the region of integration with re-

spect to the momenta is concentrated near the ppit®.

FIG. 2. Diagrams for the kinetic coefficients when two-particle intermediate 1 N€ contribution of Cr_'t'cal fluctuatlpn§ to spin d|ﬁUS|0r_1 can

states are included. A wavy line corresponds to the diffusion mode, a dashdde calculated by making the substitutipsr g+ Q and using

line, to the relaxation mode. A dot denotes the vertex part of the statighe propertyaGgllap=aGgl/&q.

similarity theory. We now consider the diagram of Fig. 2b. Without loss of
generality we can set the external momentum equal to the
antiferromagnetic vector. In this case, we must consider two

ficient y is defined only by the irreducible self-energy parts;interacting modes of different kinds: a diffusion mode with

short wave vectors and a relaxation mode with small devia-

tions from the antiferromagnetism vector. Thus, the diagram

of Fig. 2b describes “diffuson”—"relaxon” pair production.

Thus, we cannot use the Ward identities for this vertex.

~ We now consider diagrams of a general form for theHowever, the seed vertdRig. 3) has the scaling dimension-
ireducible self-energy parEss at imaginary frequencies. gjity

These diagrams, in turn, can be classified in terms of the

number of intermediate states. To begin with, we limit our- AP (p,Q,0)~aV/ap~p.

selves to diagrams with two-frequency intermediate states |t s also known that in the antiferromagnetic phase there
(Fig. 2a and ln is a doubling of the lattice, and the Brillouin zone of the
ordered phase equals half the Brillouin zone of the disor-

1 R R
¥k w)=— (S5(k,0) -2 5(k,0)). (19

2 \2
E('st)(k,iw)= M dered phase. This means that the points 0 @btecome
VN equivalent in the antiferromagnetic phase. Given this fact, as
well as the lack of a dependence on the direction of the
XTD D (KA@(pk,iw,iei(w—¢))) momentum for the interacting modes, we may assume that
e P rescattering by the static field does not change the scaling

ot o : dimensionality of the static vertex at the antiferromagnetic
X (KA (pkiiei(w=e)iv) vector, which can also be written in the for¢a1)."
XKgdp,ie)Ksdk—p,io—ie). (20 Continuing the diagrams shown in Fig. 2 analyticafly,
we obtain expressions for the kinetic coefficients:

In replacing the sum over the vectgosby an integral, we 4
usep~ ¢~ 1 as an upper bound. Here the functions are inte- 2)_% f‘” i r(i) -1 2
grated near the singularitigsmall p and p~g+Q in the D" =ATe —o 2T cot 2T % (VGo(P))
neighborhood of the antiferromagnetic vecy.

The vertex partsA are analytic functions of all three <
frequencies, each of which has cuts along the real @Axis.

J
Im Z(p,e) e Im Z(p—Kk,e)

Vertex parts of this type have no other singularities in the P

complex planes.z.5 Because of this property, the vertices +Im “(p,e) — Im “£(p—Kk,¢e)|, (22

can be resolved into a static part, which transforms into the o8

vector vertex of static similarity theory, and a dynamic cor-and

rection, which vanishes in the limi— 0. We now study the . de .

static part in more detail. _ _ _ = Bf i cotI-( _) > (VGy(p)Q)?
The static vertices in the diagraniSig. 29 describe the —w 27 2T) %5

long-wavelength processes of creating “diffuson”— g

“diffuson” and “relaxon”—"relaxon” pairs, i.e., identical X|Im . Z(p,e) — Im “(p—q,e)

modes interact. As we know, however, the static Green func- de

tions are independent of the direction of the momentum, i.e., 9

diffuson and relaxon scattering processes contain the same +Im Z(p,e) e Im Z(p—q,e)|. (23

vertex parts as do pair creation processes. This means that

for these vertices, the Ward identif?* holds (Fig. 3): Here the index(2) indicates that only processes with two-

particle intermediate states have been taken into account. For

AP(p,k,0)~dGg Y ap. (21 a ferromagnet it is necessary to restrict ourselves to just the
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first term in Eq.(22), since a single-mode regime is involved. fluctuation region, and second, spin diffusion is entirely de-
Equations(22) and(23) can be rewritten in a somewhat dif- termined by intermediate relaxation processes. The correc-
ferent form. Settingk=0 andq=0 in the integrands and tion to the coefficienD, owing to self-diffusion is of small-

integrating by parts, we obtain ness 6D /Do (&/a) 4= r83<1. That is, diffusion is not
~ intrinsically a critical mode in an antiferromagnet. The dy-
DBZ):é jm d_s sinh2 i)z (VGgl(p))z namic critical index(see Eq.(8)) is z=3/2.
4 )-w2m 2T)%5 The simple physical considerations which will allow us
. o to describe diffusion and relaxation in the fluctuation region
X[(m Z(p,e)*+(Im Z(p.2))’] (24 are based on the idea that regions of gimath near ordering
and will develop asT—T,. In these regions the excitations are
~ antiferromagnetic magnons with an acoustic dispersion char-
ng)zi - d_s sinh‘z(i)z (VGgl(p)Q)Z acter. Estimating the spin diffusion coefficient as
2Te J - 2m 2T)% Do~ &/tg, Wheretgq~ &/c is the characteristic diffusion

» ) time and c~¢ Y2 is the “sound” speed? we obtain
XIm.Z(p,e)im Z(p,e). (29 Do~ &2 Given the dynamic similarityphypothesis, accord-
These expressions can be regarded as a generalizationiof to which the dynamic critical indez, which determines
the equations obtained by Malééyrom the unitarity condi- the scale of the characteristic fluctuation energies, is invari-
tion for the self-energy parts to the case of two interactingant, we obtairlj~ £%/2.
modes. Despite the singularity of the kinetic coefficients, the
The region for integrating by parts is concentrated nearelaxation time for the ordering parameter approaches infin-
the singular points of the scaling functio(®. Here because ity, which ensures the existence of macroscopic states corre-
of the “critical retardation” in the neighborhood of the sponding to incomplete equilibriuff. The same applies to
phase transition points, the characteristic energies of the fluthe characteristic spin diffusion times.
tuations satisfy the conditiom* <T_, which makes it pos- It should be noted that in introducing E@6) we do not
sible to retain only the first term of the expansion of theformally assume knowledge of the character of the excita-
hyperbolic tangentEgs. (22) and (23)) or hyperbolic sine tions in the ordered phase. However, the conservation of the
(Egs.(24) and(25)). Evaluating the integrals with respect to total moment and nonconservation of the ordering parameter
the frequencies and momenta in E(&2) and(24) and sepa- actually determine the magnetic ordering properties in full.
rating out the scaling dimensionality, we obtain a relation-
ship between the spin diffusion coefficient and the relaxation

constant: 4. FREQUENCY AND MOMENTUM DEPENDENCE OF THE

-3 KINETIC COEFFICIENTS

3

1 2
—+b,T.a a

Do o We shall now consider the generalized kinetic coeffi-
Note that in order to obtain E@26), it suffices to substitute cients as functions of frequency and momentum. To do this
the retarded Green spin functions in the form of Esand we use the relationship between the retarded spin Green
(7) into Egs.(22) and(24). After integrating with respect to functions and the Kubo functionsee Eqs(12) and(17)).
the frequency, the remaining integrals over the moment&ased on these equations, it is clear that the corrections as-
contain only the static correlat@,. The first term is deter- sociated with the frequency and momentum dependence of
mined by a two-diffuson intermediate state, and the seconthe kinetic coefficients are determined, first of all, by the
by a two-relaxon intermediate state. frequency and momentum dependence of the irreducible
The integrals in Eqs(23) and(25) can be calculated in  self-energy parts, and second, by the nonlinear character of
similar fashion. The relaxation constdng and the spin dif-  the relaxation forces. According to the estimate of Ed),
fusion coefficient are related by the equation the momentum and frequency dependence of the kinetic co-
efficients can be studied in terms of the linear response

(26)

Do=b,T?a* i

2
= ¢ i+ £] Do/Tea” 2 theory, i.e., the nonlinearity of the relaxation forces can be
0=C1 r.tC 7 - 27
a I' a/ I7j neglected.
The coefficientsb, ,, ¢;,~1 in Egs.(26) and (27) de- Let us first investigate the static renormalization of the

pend on the form of the dynamic and static scaling functionskinetic coefficients. Equation22) and(23) transform to the

and in general cannot be calculated using this approact{Sua se;Les expansion of the fUIletiOI’lS in the poweg’
Solving the closed system of algebraic equati¢28) and and @¢)™" from the static theory:

(27? yields_ t_he fo)llowing scaling dimensionality for the ki- D@ (K,00=Dy(0,0[ 1+ &' (k&)2+...],
netic coefficients’
Do/Tca2xT o= (&la) M2, (29) ['?(q,0=To(0,0[1+8'(qé)*+...].

This sort of behavior is entirely consistent with that predictedThis expansion is related to the existence of singularities in
by the dynamic scaling invariance hypothé$iS and a the correlators of the static theory at the poikts —n?¢ 2
renormalization group analyst3!® Therefore, first, the ki- (Ref. 26, wheren is an integer. The coefficients’ and 3’
netic coefficients for an antiferromagnet are singular in thedepend only on the form of the static correlation function.
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We now proceed to analyze the energy dependence of We now consider the effect of the diagrams with many-
the kinetic coefficients. Using EL9), we obtain the follow- particle (mn>2) intermediate states. As noted above, we are

ing expressions for the real and imaginary partsy(,w): only interested in the regular contribution:
Im 35k, w) Im 25"
Re y(k,0)= —>— —= ka2 .. AM™K,py,...Pm)
w w P1 Pm
Re3 5 (k,w)— Re S (k,0) 1
Im y(k,o)=— —> - s 29  XA™KP1,...pm) A(Prt . Pm—K) T

Since Imy is an odd function ofw and Rey is an even °° = dep...dey Im K8 py,eq)...ImKEdpm,em)

function of w, the regular expansion of the kinetic coeffi- Xf_m“'f_m

cients in powers of the frequency begins wif.
We introduce an effective generalized kinetic coefficientX d(g;+...+ eq— ), (33

v* according to the definition

€1...€m

where the function& describe both the “diffusons” and the
“relaxons,” and the integrals with respect to frequency are

o Im Eg's(k,wﬂw:o taken near the singular points of the scaling function. For
v = . (30 m=2, Eq.(33) transforms into Eqs(24) and (25).
1+Gal(k) i Reig-s(k o) w0 As k—0, there are generalizations of Ward's iderifity
dw Tle=

for the vertex parts\ (™ analogous to Eq21), as a result of
This expression for the effective generalized kinetic coeffi-Which the vertex can be expressed in terms of a sum of
cient is analogous to the definition of effective mass in thederivatives of the ordinaryn-particle vertices of the static
theory of quantum liquids. The role of ti#factor is played similarity theory. Using the “dimensionality” estimate for

- i a6 i i 3-mi2 ; imi
by the renormalization constant on the mass shell: static vertices? according to whic e<p®~™? in the limit
k—0 we see that replacing the diagrams with two-particle
7— 1 intermediate states in the creation channel for “diffusons”

and “relaxons” by diagrams withm-particle intermediate
states does not change the scaling dimensionality of the irre-
) ] ] N ) ducible self-energy parts. As for the behavior of the vertex
Calculations ofZ in the hydrodynamic and critical regions nats 4t the antiferromagnetic vector, here the arguments ad-
yield the following expressions for the renormalization con-yanced for diagrams with two-particle intermediate states are
stant: also valid. Thus, considering intermediate states with more
than two particles does not change the scaling dimensionality
Z(k—0)= T e (ko2 of the kinetic coefficients, but only affects the values of the
constants, which in any event cannot be calculated using the
approach described here. The same can be said of the cor-
m' 31 rections associated with the energy dependence of the vertex
parts'®
In conclusion, we note that the corrections associated

d
1+ 6o (k) -~ ReXE(k,0)| -0

Z2(q—0)=

where the constants, 6’ <1 can also be expressed in terms

of integrals of the static correlat@, . with the frequency and momentum dependence of the kinetic
Extending the definitiori30) to small but nonzere, we  coefficients can be investigated experimentally using neutron

obtain an expansion for the real generallzgd spin diffusionscattering, for which the scattering cross section is deter-
- A : .

coefficientD* and the relaxation constaft": mined by the quantity INK3dk,w)/w, where the imaginary

D@* (k.)=Do(0,0[1+a’ (ké)2+ a0l w*)2+.. ], part of the retarded spin Green function satisfies Ejsand
(k,@)=Do(0,0[1+a’(k§)™+ ajeel @/ ™) ] (7) with the coefficient432).

I'@*(q,0)=To(0,0[ B+ B'(A€)*+ Byl wlw*)?+...].

(32)
. . . 5. CONCLUSION
Here it must be noted that we do not claim to describe the
behavior of the kinetic coefficients in the regies— w*, In this paper we have studied the scaling behavior of the

k,q~& 1. This range of frequencies and energies cargeneralized kinetic coefficients in a three-dimensional
scarcely be subject to detailed analysis at the present timéleisenberg antiferromagnet. By means of an analysis based
We therefore neglect the irregular corrections to the kinetion a modified version of the interacting mode theory, we
coefficients resulting from the generation in the higher orderdiave found approximations in a microscopic approach for
of perturbation theory of an infinite sequence of poles in thesatisfying the requirements of the scaling invariance hypoth-
retarded spin Green function, which contract to the real axigsis. Specifically, it has been shown that in order to deter-
and cover the pole that produced them. We shall also nahine the scaling dimensionality of the kinetic coefficients, is
discuss the phenomena associated with the loss of a pofaifficient to limit ourselves to processes with two-particle
through a cut, ett®!’ All these corrections are small in the intermediate states, with the vertex parts being given by
region ofk and w of interest to us and can be discarded. static similarity theory.
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