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A theory is proposed for kinetic effects in isotropic Heisenberg antiferromagnets at temperatures
above the Ne´el point. The scaling behavior of the generalized coefficient of spin diffusion
and relaxation constant in the paramagnetic phase is studied in terms of the approximation of
interacting modes. It is shown that the kinetic coefficients in an antiferromagnetic system
are singular in the fluctuation region. The corresponding critical indices for diffusion and relaxation
processes are calculated. The scaling dimensionality of the kinetic coefficients agrees with
the predictions of dynamic similarity theory and a renormalization group analysis. The proposed
theory can be used to study the momentum and frequency dependence of the kinetic
parameters, and to determine the form of the scaling functions. The role of nonlocal correlations
and spin-fluid effects in magnetic systems is discussed. ©1997 American Institute of
Physics.@S1063-7761~97!02111-2#
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Recent heightened interest in the critical dynamics
antiferromagnetic materials1–6 has been stimulated by activ
experimental and theoretical research on quasi-t
dimensional magnetic correlations in high-temperature
perconductors, and on the anomalous magnetic propertie
heavy-fermion compounds.6–8 In particular, critical spin
fluctuations have been invoked to explain the non-Fe
fluid behavior of the specific heat and resistance at low te
peratures in the compounds7,8 CeCu62xAux and
Ce12xLaxRu2Si2 near the concentration critical point. In ad
dition, a proposed9,10 spin-fluid approach to the Heisenbe
model, based on introducing resonating valence bonds
Fermi statistics for excitations in the magnetic sublatt
~spinons!, may, in turn, also serve as a scenario for desc
ing the behavior of cerium compounds with hea
fermions.11,12 Here it turns out that critical spin fluctuation
play an important role in the formation mechanism of a s
fluid. The behavior of the kinetic coefficients in this case c
deviate substantially from that predicted by dynamic simil
ity theory.13

In this paper we develop a microscopic approach
studying the scaling behavior of the spin diffusion coefficie
and the relaxation constant of an isotropic Heisenberg a
ferromagnet in the fluctuation region above the Ne´el tem-
perature. The scaling dimensionality of the kinetic coe
cients in magnets was predicted by Halperin a
Hohenberg,14,15 who developed a hypothesis of scale inva
ance based on the idea that the values of the dynamic cri
indices are conserved on both sides of the phase transi
Maleev then made a microscopic study of spin diffusion
the paramagnetic phase of ferromagnets.16,17 He, in particu-
lar, established the approximations required to satisfy
requirements of the hypothesis of scale invariance, and s
ied the momentum and frequency dependence of the
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magnets will be examined in the present paper.
It is known14 that in the neighborhood of a phase tran

tion, two regions can be distinguished in the momentu
temperature plane: a hydrodynamic region determined
long-wavelength fluctuations in the ordering parame
N5N12N2 , the difference in the moments of the subla
tices, with characteristic wave vectorsqj!1, where
q5uk2Qu describes the deviation of the moment from t
antiferromagnetic vectorQ and j is the correlation length,
and a critical region, with wave vectorsqj@1. Here the
concept of a correlation length is related to the characteri
behavior of the ordering parameterN. In an antiferromagnet
however, there is an additional conserved quantity, the v
tor M5M11M2 , the sum of the moments of the sublattice
Nevertheless, we shall also refer to the long-wavelength fl
tuation region for the vectorM , kj!1, as hydrodynamic. In
this paper we examine the behavior of the spin correlat
functions in the paramagnetic phase and establish the
tionship between the kinetic coefficients in the fluctuati
region of the phase diagram.

In the hydrodynamic regime, the dynamics of the flu
tuations in the magnetization have a diffusive character,
the variation in the magnetic moment with time obeys t
macroscopic van Hove diffusion equation:

]M

]t
5D0¹2M , ~1!

whereD0 is the spin diffusion coefficient. This behavior o
the fluctuations is related to the conservation of the magn
moment; the operator corresponding to it commutes with
Hamiltonian.

A different pattern is observed in the critical region. Th
nonconservation of the ordering parameter determines
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relaxation character of the time variation in the vectorN, i.e.,
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the dynamics of this vector obey the relaxation equation

]N

]t
52

G0

x
N, ~2!

where x is the susceptibility and the kinetic coefficie
G0.0. We note also that, in contrast to the diffusion equ
tion ~1!, relaxation~2! can be uniform; the gradient correc
tions omitted from Eq.~2! are proportional toq2 in this case.
Although the average value of the magnetization vectorM is
zero on both sides of the phase transition point, fluctuati
occur in the magnetization vector near the zero value. Un
in a ferromagnet, however, the diffusion mode is not critic

In the following we shall be interested in the dynam
susceptibility of a cubic Heisenberg antiferromagnet loca
in zero magnetic field above the Ne´el temperature:

H52(
^ i , j &

Vi j Si•Sj . ~3!

We also neglect dipole forces.17

The susceptibility is known to be related to the retard
spin Green function by the equation

l~k,v!5~gm0!2KSS
R ~k,v!, ~4!

whereg is the Lande´ g factor,m0 is the Bohr magneton, an

KSS
R ~k,v!5 i E

0

`

dt eivt^@Sk
z~ t !,S2k

z ~0!#&,

Sk5
1

AN
(

i
e2 ik–RiSi ,

M5^S0&, N5^SQAFM
‹. ~5!

Proceeding from Eqs.~1! and~2!, we can obtain the form o
the correlation functionsKR in the diffusion

KSS
R ~k→0,v!5K ~k,v!5G0~k!

iDk2

v1 iDk2 ~6!

and relaxation regions

KSS
R ~q5~k2Q!→0,v!5L~q,v!5

1

2 iv/G1G0
21~q!

.

~7!

HereG0 is the static susceptibility.
In the fluctuation regiont5uT2Tcu/Tc!Gi ~Gi is the

Ginzburg number, which characterizes the limits of appli
bility of the Landau theory!, when the fluctuations becom
large, the fluctuation dynamics obey the Halperi
Hohenberg similarity law, according to which the dynam
susceptibilityx and, therefore, the functionKSS

R can be ex-
pressed in terms of the scaling functionF:

KSS
R ~k,v!5G0~k!FS kj,

v

Tct
nzD , ~8!

i.e., the dynamic indexz which characterizes the energ
scale of the critical fluctuations,v}kz, can be related to a
static indexn'2/3 which determines the variation in th
correlation length,j}t2n. For small deviations from the an

995 JETP 85 (5), November 1997
-

s
e

l.

d

d

-

G0(q)}j . In the following discussion the Fisher inde
h, which characterizes the so-called anomalo
dimensionality,18 will be set equal to zero. This approxima
tion is valid for three-dimensional systems.18 It is necessary
to introduce two scaling functionsF 1 andF 2 to describe the
fluctuation regions in an antiferromagnet:

K ~k,v!5G0~k!F 1S kj,
v

Tct
nzD ,

L~q,v!5G0~q!F 2S qj,
v

Tct
nzD . ~9!

Here, however, the kinetic coefficientsD0 and G0 can, in
turn, themselves be correlation lengths. Furthermore, a
renormalization group analysis shows,14,19 the kinetic coeffi-
cients are singular in the fluctuation region of an antifer
magnet.

The theory developed in this paper is a variant of t
interacting mode theory of Kawasaki.20 We have tried to
generalize the theory proposed by Maleev16 for spin diffu-
sion in ferromagnets to antiferromagnetic systems. In m
regards, we follow the style and spirit of that paper. As no
before, our problem involves a study of the form of the sc
ing functionF ~see Eqs.~8! and~9!! and a determination o
the frequency and momentum dependences of the kin
coefficients in the fluctuation region, as well as establish
those approximations which must be made in a microsco
approach in order to satisfy the requirements of scaling
variance.

2. GENERALIZED KINETIC COEFFICIENTS

We therefore study the dynamic susceptibility of a cub
Heisenberg antiferromagnet located in zero magnetic fi
above the Ne´el temperature in the fluctuation region. Equ
tions ~6! and ~7! can be rewritten in the more general form

KSS
R ~k,v!5

ig~k,v!

v1 iG0
21~k!g~k,v!

, ~10!

while in the diffusion region

D05 lim
k→0

lim
v→0

k22g~k,v!G0
21~k!, ~11!

and in the relaxation region the generalized kinetic coe
cient g(k,v)5G(k,v). The limit of Eqs. ~6! and ~7! for
k→0 and v→0 depends strongly on the relationship b
tweenk andv, similarly to the way it does in the theory o
Fermi fluids.21 In the following we shall be interested in th
quasistatic limit, i.e.k→0 anduvu/k2→0.

As Maleev shows,16 it is possible to go beyond the linea
response theory and express the kinetic coefficients in te
of the Kubo function22 of the operatorsS and Ṡ ~the dot
denotes differentiation with respect to time!:

g~k,v!5
F ṠṠ~k,v!

11G0
21~k!F ṠS~k,v!

, ~12!

where
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AB iv AB AB

KAB
R ~k,v!5 i E

0

`

dt eivt^@Ak~ t !,B2k~0!#&.

Equation ~12! is exact and accounts for the nonline
nature of the relaxation forces. In the case of a purely
change interaction in the long wavelength limitṠk;k, i.e.,
g5FSS(k,v), the denominator equals unity and Eq.~11! is
the same as the result from the linear response theory. G
erally speaking, however, the functions in the denomina
cannot be neglected in a study of the frequency and mom
tum dependence of the kinetic coefficients.

It is easy to show that the retarded Green functio
KSS

R (k,v), KṠS
R (k,v), andKṠṠ

R (k,v) are related in the para
magnetic phase by simple formulas which follow from t
dispersion relations:23

KSS
R ~k,v!52 ivKSS

R ~k,v!,

KSṠ
R

~k,v!52KSS
R ~k,v!5 ivKSS

R ~k,v!,

v2KSS
R ~k,v!5@KṠṠ

R
~k,v!2KṠṠ

R
~k,0!#. ~13!

It is clear from these relations, in particular, thatKṠS
R (k,v) is

analogous toKṠṠ
R (k,v) in its properties and symmetry.16

Combining Eqs.~11! and ~13! with the equation of mo-
tion for the spin operators,

Ṡk
a52

1

AN
(

p
@V~p1k!2V~p!#eabgSp1k

b S2p
g ~14!

~hereV(p) is the Fourier transform of the exchange integr!
and transforming to ‘‘imaginary’’ time, we can obtain th
relation between the Kubo functions and the correlators
the spin currents at the Matsubara frequencies:

KṠṠ~k,vn!5
~a2Tca!2

6N E
0

1/T

dteivnt (
p1,p2

~¹V~p1!k!

3~¹V~p2!k!

3^Tt~Sp11k
m S2p1

r !t~S2p22k
m Sp2

r !0&. ~15!

In retaining only the first gradients of the potentia
¹V(p)'pTca

2a, we limit ourselves to the lowest orde
terms in an expansion inka, wherea is the lattice constant
the constanta'1. It will be clear from the following analy-
sis that the corrections to the kinetic coefficients will be e
pressed in the form of series in powers ofkj and, since
j@a, it is valid to neglect the higher derivatives of the e
change integral. Therefore, the problem of finding the kine
coefficients has been reduced to calculating four-spin c
elators with a current vertex. This problem can be solved
analytic continuation of the temperature diagrams with
upper semiaxis into the complexv plane. A graphical ex-
pression for the current correlator is shown in Fig. 1.

The ‘‘seed’’ poles for the spin Green functions~6! and
~7! lie on the imaginary axis, i.e., if we set up some fictitio
quasiparticles to correspond to these poles, their ener
will be purely imaginary. Introducing quasiparticles of th
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sort, e.g., ‘‘diffusons’’ and ‘‘relaxons’’, allows us to obtain
closed expressions for the kinetic coefficients and to de
mine their scaling dimensionality.

For the static susceptibility in the critical region we u
the Ornstein–Zernike law:

G0~q!5KSS
R ~q,0!5

A

Tct
2n

1

~qj!211
, ~16!

where A is a constant (A;1) and t!1. In the diffusion
region the static susceptibility has no singularities a
G0'A/2Tc .

The following sections are devoted to analyzing the d
gram series for the spin current correlator in the fluctuat
regions, finding the dynamic critical indices for the kinet
coefficients, and determining the momentum and freque
dependence of the spin diffusion coefficient and relaxat
constant.

3. RELATIONSHIPS AMONG THE KINETIC COEFFICIENTS

To analyze the diagram series we introduce the conc
of an irreducible self-energy part as a diagram which is c
tinuous along one interaction line. Using the definition ofg
and the properties of the functionsK, we rewrite the expres-
sion for the generalized kinetic coefficient in terms of irr
ducible self-energy parts:

g~k,v!5
1

iv FS ṠS
R

~k,v!2S ṠṠ
R

~k,0!

1
RṠS

R
~k,v!g~k,v!RSṠ

R
~k,v!

2 iv1G0
21~k!g~k,v!

G
3F11G0

21
RṠS

R
~k,v!g~k,v!

iv~2 iv1G0
21~k!g~k,v!!

G21

.

~17!

Equation~17! can also be obtained by analyzing the diagra
series for the spin current correlator,16 as well as directly
from the Larkin equation.12,23 In the following we use the
following notation:

KṠS
R

~k,v!5RR~k,v!KSS
R ~k,v!;

andSAB
R for the irreducible self-energy parts. The graphic

expression for the irreducible partS ṠṠ
R corresponds to replac

ing a complete vertex in Fig. 1 by an irreducible verte
EstimatingR in self-consistent field theory16,24 yields

R;~kj!~ka!!~kj!2. ~18!

In addition, its analytic properties imply thatRR;v. We
assume that the expression forR in the critical region also
contains a term of ordera/j in smallness, and for smallv we
neglect this contribution. Thus, the generalized kinetic co

FIG. 1. Diagram series for the current correlator.
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g~k,v!5
1

iv
~S ṠṠ

R
~k,v!2S ṠṠ

R
~k,0!!. ~19!

We now consider diagrams of a general form for t
irreducible self-energy partSSS at imaginary frequencies
These diagrams, in turn, can be classified in terms of
number of intermediate states. To begin with, we limit o
selves to diagrams with two-frequency intermediate sta
~Fig. 2a and b!:

S ṠṠ
~2!

~k,iv!5
~Tca

2a!2

AN

3T(
e

(
p

~kL~2!~p,k,iv,i e,i ~v2e!!!

3~kL~2!†
~p,k,i e,i ~v2e!,iv!!

3KSS~p,i e!KSS~k2p,iv2 i e!. ~20!

In replacing the sum over the vectorsp by an integral, we
usep;j21 as an upper bound. Here the functions are in
grated near the singularities~small p and p;q1Q in the
neighborhood of the antiferromagnetic vectorQ!.

The vertex partsL are analytic functions of all three
frequencies, each of which has cuts along the real ax25

Vertex parts of this type have no other singularities in
complex v planes.25 Because of this property, the vertice
can be resolved into a static part, which transforms into
vector vertex of static similarity theory, and a dynamic co
rection, which vanishes in the limitv→0. We now study the
static part in more detail.

The static vertices in the diagrams~Fig. 2a! describe the
long-wavelength processes of creating ‘‘diffuson’
‘‘diffuson’’ and ‘‘relaxon’’–‘‘relaxon’’ pairs, i.e., identical
modes interact. As we know, however, the static Green fu
tions are independent of the direction of the momentum,
diffuson and relaxon scattering processes contain the s
vertex parts as do pair creation processes. This means
for these vertices, the Ward identity18,21 holds ~Fig. 3!:

L~2!~p,k,0!;]G0
21/]p. ~21!

FIG. 2. Diagrams for the kinetic coefficients when two-particle intermed
states are included. A wavy line corresponds to the diffusion mode, a da
line, to the relaxation mode. A dot denotes the vertex part of the s
similarity theory.
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Here, in the second term the region of integration with
spect to the momenta is concentrated near the pointsp'Q.
The contribution of critical fluctuations to spin diffusion ca
be calculated by making the substitutionp5q1Q and using
the property]G0

21/]p5]G0
21/]q.

We now consider the diagram of Fig. 2b. Without loss
generality we can set the external momentum equal to
antiferromagnetic vector. In this case, we must consider
interacting modes of different kinds: a diffusion mode wi
short wave vectors and a relaxation mode with small dev
tions from the antiferromagnetism vector. Thus, the diagr
of Fig. 2b describes ‘‘diffuson’’–‘‘relaxon’’ pair production
Thus, we cannot use the Ward identities for this vert
However, the seed vertex~Fig. 3! has the scaling dimension
ality

L0
~2!~p,Q,0!;]V/]p;p.

It is also known that in the antiferromagnetic phase th
is a doubling of the lattice, and the Brillouin zone of th
ordered phase equals half the Brillouin zone of the dis
dered phase. This means that the points 0 andQ become
equivalent in the antiferromagnetic phase. Given this fact
well as the lack of a dependence on the direction of
momentum for the interacting modes, we may assume
rescattering by the static field does not change the sca
dimensionality of the static vertex at the antiferromagne
vector, which can also be written in the form~21!.1!

Continuing the diagrams shown in Fig. 2 analytically21

we obtain expressions for the kinetic coefficients:

D0
~2!5ÃTcE

2`

` d«

2p
cothS «

2TD(
p

~¹G0
21~p!!2

3F Im H~p,«!
]

]«
Im H~p2k,«!

1Im L~p,«!
]

]«
Im L~p2k,«!G , ~22!

and

G0
~2!5B̃E

2`

` d«

2p
cothS «

2TD(
p

~¹G0
21~p!Q!2

3F Im K ~p,«!
]

]«
Im L~p2q,«!

1Im L~p,«!
]

]«
Im H~p2q,«!G . ~23!

Here the index~2! indicates that only processes with two
particle intermediate states have been taken into account
a ferromagnet it is necessary to restrict ourselves to just

e
ed
ic

FIG. 3. The equations for a two-particle vertex part.
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first term in Eq.~22!, since a single-mode regime is involved.
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Equations~22! and~23! can be rewritten in a somewhat di
ferent form. Settingk50 and q50 in the integrands and
integrating by parts, we obtain

D0
~2!5

Ã

4 E
2`

` d«

2p
sinh22S «

2TD(
p

~¹G0
21~p!!2

3@~ Im K ~p,«!!21~ Im L~p,«!!2# ~24!

and

G0
~2!5

B̃

2Tc
E

2`

` d«

2p
sinh22S «

2TD(
p

~¹G0
21~p!Q!2

3Im K ~p,«!Im L~p,«!. ~25!

These expressions can be regarded as a generalizati
the equations obtained by Maleev16 from the unitarity condi-
tion for the self-energy parts to the case of two interact
modes.

The region for integrating by parts is concentrated n
the singular points of the scaling functions~9!. Here because
of the ‘‘critical retardation’’ in the neighborhood of th
phase transition points, the characteristic energies of the
tuations satisfy the conditionv* !Tc , which makes it pos-
sible to retain only the first term of the expansion of t
hyperbolic tangent~Eqs. ~22! and ~23!! or hyperbolic sine
~Eqs.~24! and~25!!. Evaluating the integrals with respect
the frequencies and momenta in Eqs.~22! and~24! and sepa-
rating out the scaling dimensionality, we obtain a relatio
ship between the spin diffusion coefficient and the relaxat
constant:

D05b1Tc
2a4S j

aD 23 1

D0
1b2Tca

2S j

aD 1

G0
. ~26!

Note that in order to obtain Eq.~26!, it suffices to substitute
the retarded Green spin functions in the form of Eqs.~6! and
~7! into Eqs.~22! and ~24!. After integrating with respect to
the frequency, the remaining integrals over the mome
contain only the static correlatorG0 . The first term is deter-
mined by a two-diffuson intermediate state, and the sec
by a two-relaxon intermediate state.

The integrals in Eqs.~23! and ~25! can be calculated in
similar fashion. The relaxation constantG0 and the spin dif-
fusion coefficient are related by the equation

G05c1S j

aD 1

G0
1c2S j

aD D0 /Tca
2

G0
2 . ~27!

The coefficientsb1,2, c1,2;1 in Eqs.~26! and ~27! de-
pend on the form of the dynamic and static scaling functio
and in general cannot be calculated using this appro
Solving the closed system of algebraic equations~26! and
~27! yields the following scaling dimensionality for the k
netic coefficients:2!

D0 /Tca
2}G0}~j/a!21/2. ~28!

This sort of behavior is entirely consistent with that predic
by the dynamic scaling invariance hypothesis14,15 and a
renormalization group analysis.15,19 Therefore, first, the ki-
netic coefficients for an antiferromagnet are singular in
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termined by intermediate relaxation processes. The cor
tion to the coefficientD0 owing to self-diffusion is of small-
nessdD0 /D0}(j/a)24}t8/3!1. That is, diffusion is not
intrinsically a critical mode in an antiferromagnet. The d
namic critical index~see Eq.~8!! is z53/2.

The simple physical considerations which will allow u
to describe diffusion and relaxation in the fluctuation regi
are based on the idea that regions of sizej with near ordering
will develop asT→Tc . In these regions the excitations a
antiferromagnetic magnons with an acoustic dispersion c
acter. Estimating the spin diffusion coefficient a
D0;j2/tdiff , where tdiff;j/c is the characteristic diffusion
time and c;j21/2 is the ‘‘sound’’ speed,14 we obtain
D0;j1/2. Given the dynamic similarity hypothesis, accor
ing to which the dynamic critical indexz, which determines
the scale of the characteristic fluctuation energies, is inv
ant, we obtainG0;j1/2.

Despite the singularity of the kinetic coefficients, th
relaxation time for the ordering parameter approaches in
ity, which ensures the existence of macroscopic states co
sponding to incomplete equilibrium.27 The same applies to
the characteristic spin diffusion times.

It should be noted that in introducing Eq.~26! we do not
formally assume knowledge of the character of the exc
tions in the ordered phase. However, the conservation of
total moment and nonconservation of the ordering param
actually determine the magnetic ordering properties in fu

4. FREQUENCY AND MOMENTUM DEPENDENCE OF THE
KINETIC COEFFICIENTS

We shall now consider the generalized kinetic coe
cients as functions of frequency and momentum. To do
we use the relationship between the retarded spin Gr
functions and the Kubo functions~see Eqs.~12! and ~17!!.
Based on these equations, it is clear that the corrections
sociated with the frequency and momentum dependenc
the kinetic coefficients are determined, first of all, by t
frequency and momentum dependence of the irreduc
self-energy parts, and second, by the nonlinear characte
the relaxation forces. According to the estimate of Eq.~18!,
the momentum and frequency dependence of the kinetic
efficients can be studied in terms of the linear respo
theory, i.e., the nonlinearity of the relaxation forces can
neglected.

Let us first investigate the static renormalization of t
kinetic coefficients. Equations~22! and~23! transform to the
usual series expansion of the functions in the powers (kj)2n

and (qj)2n from the static theory:

D ~2!~k,0!5D0~0,0!@11a8~kj!21...#,

G~2!~q,0!5G0~0,0!@11b8~qj!21...#.

This expansion is related to the existence of singularities
the correlators of the static theory at the pointski52n2j22

~Ref. 26!, wheren is an integer. The coefficientsa8 andb8
depend only on the form of the static correlation function
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the kinetic coefficients. Using Eq.~19!, we obtain the follow-
ing expressions for the real and imaginary parts ofg(k,v):

Re g~k,v!5
Im S ṠṠ

R
~k,v!

v
,

Im g~k,v!52
Re S ṠṠ

R
~k,v!2Re S ṠṠ

R
~k,0!

v
. ~29!

Since Img is an odd function ofv and Reg is an even
function of v, the regular expansion of the kinetic coef
cients in powers of the frequency begins withv2.

We introduce an effective generalized kinetic coefficie
g* according to the definition

g* 5

]

]v
Im S ṠṠ

R
~k,v!uv50

11G0
21~k!

]

]v
Re S ṠṠ

R
~k,v!uv50

. ~30!

This expression for the effective generalized kinetic coe
cient is analogous to the definition of effective mass in
theory of quantum liquids. The role of theZ factor is played
by the renormalization constant on the mass shell:

Z5
1

11G0
21~k!

]

]v
Re S ṠṠ

R
~k,v!uv50

.

Calculations ofZ in the hydrodynamic and critical region
yield the following expressions for the renormalization co
stant:

Z~k→0!5
1

11e8~kj!2 ,

Z~q→0!5
1

11d81d9~qj!2 , ~31!

where the constantse8, d8!1 can also be expressed in term
of integrals of the static correlatorG0 .

Extending the definition~30! to small but nonzerov, we
obtain an expansion for the real generalized spin diffus
coefficientD* and the relaxation constantG* :3!

D ~2!* ~k,v!5D0~0,0!@11a8~kj!21akj9 ~v/v* !21...#,

G~2!* ~q,v!5G0~0,0!@b1b8~qj!21bkj9 ~v/v* !21...#.
~32!

Here it must be noted that we do not claim to describe
behavior of the kinetic coefficients in the regionv;v* ,
k,q;j21. This range of frequencies and energies c
scarcely be subject to detailed analysis at the present t
We therefore neglect the irregular corrections to the kine
coefficients resulting from the generation in the higher ord
of perturbation theory of an infinite sequence of poles in
retarded spin Green function, which contract to the real a
and cover the pole that produced them. We shall also
discuss the phenomena associated with the loss of a
through a cut, etc.16,17 All these corrections are small in th
region ofk andv of interest to us and can be discarded.
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particle (m.2) intermediate states. As noted above, we
only interested in the regular contribution:

Im S ṠṠ
R~m!

v
;~ka!2(

p1

...(
pm

L~m!~k,p1 ,...,pm!

3L~m!†~k,p1 ,...,pm!d~p11...pm2k!
1

pm21

3E
2`

`

...E
2`

` d«1 ...d«m Im KSS
R ~p1 ,«1!...Im KSS

R ~pm ,«m!

«1 ...«m

3d~«11...1«m2v!, ~33!

where the functionsK describe both the ‘‘diffusons’’ and the
‘‘relaxons,’’ and the integrals with respect to frequency a
taken near the singular points of the scaling function. F
m52, Eq. ~33! transforms into Eqs.~24! and ~25!.

As k→0, there are generalizations of Ward’s identity16

for the vertex partsL (m) analogous to Eq.~21!, as a result of
which the vertex can be expressed in terms of a sum
derivatives of the ordinarym-particle vertices of the static
similarity theory. Using the ‘‘dimensionality’’ estimate fo
static vertices,26 according to whichGm}p32m/2, in the limit
k→0 we see that replacing the diagrams with two-parti
intermediate states in the creation channel for ‘‘diffuson
and ‘‘relaxons’’ by diagrams withm-particle intermediate
states does not change the scaling dimensionality of the
ducible self-energy parts. As for the behavior of the ver
parts at the antiferromagnetic vector, here the arguments
vanced for diagrams with two-particle intermediate states
also valid. Thus, considering intermediate states with m
than two particles does not change the scaling dimension
of the kinetic coefficients, but only affects the values of t
constants, which in any event cannot be calculated using
approach described here. The same can be said of the
rections associated with the energy dependence of the ve
parts.16

In conclusion, we note that the corrections associa
with the frequency and momentum dependence of the kin
coefficients can be investigated experimentally using neu
scattering, for which the scattering cross section is de
mined by the quantity ImKSS

R (k,v)/v, where the imaginary
part of the retarded spin Green function satisfies Eqs.~6! and
~7! with the coefficients~32!.

5. CONCLUSION

In this paper we have studied the scaling behavior of
generalized kinetic coefficients in a three-dimensio
Heisenberg antiferromagnet. By means of an analysis ba
on a modified version of the interacting mode theory,
have found approximations in a microscopic approach
satisfying the requirements of the scaling invariance hypo
esis. Specifically, it has been shown that in order to de
mine the scaling dimensionality of the kinetic coefficients,
sufficient to limit ourselves to processes with two-partic
intermediate states, with the vertex parts being given
static similarity theory.
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,

the spin diffusion coefficient and relaxation constant ha
been determined in a pole approximation. We have in
duced the concept of effective kinetic coefficients, analog
to the definition of effective mass in the theory of quantu
liquids. Including the renormalizations associated with m
tiple scattering of ‘‘diffusons’’ and ‘‘relaxons’’ has made
possible to write explicit series expressions for the sca
function in the frequency and momentum rangev!v* and
k,q!j21.

The static and dynamic similarity laws, as well as t
assumed existence of just two modes~two singularities at
low frequencies owing to the existence of the hydrodynam
and critical regimes!, underlie the results obtained in th
paper. The existence of diffusion and relaxation in an a
ferromagnetic system is, in turn, related to the existence
conserved quantity in the Heisenberg model and to the n
conservation of the ordering parameter in this model. Th
all the formulas depend only to a small extent on the spec
features of Heisenberg antiferromagnets and will be valid
any system with a nonconserved ordering parameter whe
additional integral of the motion exists.

In more complicated physical systems, such as he
Fermion compounds with integral filling of thef -shell ~com-
pounds based on Ce are an example of such materials! in the
Kondo lattice model, for which the Heisenberg spin intera
tion is mediated by indirect exchange via conduction el
trons, there may be a substantial deviation from the sca
behavior of Heisenberg magnets owing to the existence
additional modes that interact with paramagnons. Mode
this sort can develop, for example, as a result of spin-liq
correlations, which inhibit growth of the magnetic correl
tion length. In other words, a test for the existence of sp
liquid correlations may be to measure the generalized kin
coefficients by neutron scattering. Other objects to which
methods described in this paper may be applied include
tems with nearly zero or even negative temperatures of a
ferromagnetic ordering,6,28,29anisotropic ferri-, and antiferri-
magnets, and systems with dipole interactions.

The study of the kinetic coefficients near the Ne´el tem-
perature carried out in this paper shows that diagram te
niques for describing kinetic effects in antiferromagnets h
many advantages over existing methods14,15,20 and can be
used to analyze unrenormalizable Hamiltonians, as wel
for problems with nonlocal interacting modes.
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A. V. Lazuta, V. L. Pokrovski�, and P. Pfeuty for valuable
comments, constructive criticism, and interest in this wo
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sions which stimulated the writing of this article. This wo
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002!, and the Russian Fund for Fundamental Resea
~Project 95-02-04250a!.

1!Recall that the anomalous dimensionality index~Fisher index! is assumed
equal to zero.

2!In a ferromagnet, the spin diffusion coefficient is not a singular functi
D0 /Tca

2}(j/a)21/2.
3!v* ;Tct

nz is the characteristic energy of the fluctuations, withz53/2.

1S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B39, 2344
~1989!.

2D. P. Arovas and A. Auerbach, Phys. Rev. B38, 316 ~1988!.
3A. Chubukov, Phys. Rev. B44, 392 ~1991!.
4H. Monien, D. Pines, and C. P. Slichter, Phys. Rev. B44, 120 ~1990!.
5D. M. Ginsberg~ed.!, Physical Properties of High-Temperature Superco
ductors II,World Scientific, Singapore~1990!.

6A. Millis, Phys. Rev. B48, 7183~1993!.
7S. Kambeet al., J. Phys. Soc. Jpn.65, 3294~1996!.
8A. Rosch, A. Schro¨der, O. Stockert, and H. V. Lo¨hneysen, submitted to
Phys. Rev. B.

9P. W. Anderson, Mater. Res. Bull.8, 153 ~1973!.
10G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun.63, 973

~1987!.
11Yu. Kagan, K. A. Kikoin, and N. V. Prokof’ev, Physica B182, 201

~1992!.
12K. A. Kikoin, M. N. Kiselev, and A. S. Mishchenko, JETP Lett.60, 600

~1994!.
13K. A. Kikoin, M. N. Kiselev, and A. S. Mishchenko, Zh. E´ ksp. Teor. Fiz.

112, 729 ~1997! @JETP85, 399 ~1997!#.
14B. I. Halperin and P. C. Hohenberg, Phys. Rev.177, 952 ~1969!; Phys.

Rev.188, 898 ~1969!; Rev. Mod. Phys.49, 435 ~1977!.
15B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. B13, 1299

~1976!.
16S. V. Maleev, Zh. E´ ksp. Teor. Fiz.65, 1237~1973! @Sov. Phys. JETP38,

613 ~1973!#.
17S. V. Maleev, Zh. E´ ksp. Teor. Fiz.66, 889 ~1974! @sic#; Preprints LIYaF/

1038-1040~1985!; Sov. Sci. Rev. A8, 323 ~1987!.
18A. Z. Patashinski� and V. L. Pokorovski�, Fluctuation Theory of Phase

Transitions@in Russian#, Nauka, Moscow~1982!.
19R. Freedman and G. F. Mazenko, Phys. Rev. Lett.34, 1571~1975!.
20K. Kawasaki, inPhase Transitions and Critical Phenomena, C. Domb and

M. S. Green~eds.!, Vol. 5a, Academic, New York~1976!.
21A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski�, Methods of

Quantum Field Theory in Statistical Physics,Dover, New York~1975!.
22L. Kadanoff and P. Martin, Ann. Phys.24, 419 ~1963!.
23Yu. A. Izyumov and Yu. N. Skryabin,Statistical Mechanics of Magneti-

cally Ordered Systems@in Russian#, Nauka, Moscow~1987!.
24V. G. Vaks, A. I. Larkin, and S. A. Pikin, Zh. E´ ksp. Teor. Fiz.51, 767
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