Spin liquid in an almost  antiferromagnetic Kondo lattice
K. A. Kikoin, M. N. Kiselev, and A. S. Mishchenko

Kurchatov Institute, 123182 Moscow, Russia
(Submitted 2 January 1997)
Zh. Eksp. Teor. Fiz112, 729-759August 1997)

A theory of stabilization of a spin liquid in a Kondo lattice at temperatures close to the
temperature of antiferromagnetic instability has been developed. Kondo exchange scattering of
conduction electrons leads to emergence of a state of the spin liquid of the resonating

valence bond$RVB) type atT > T, . Owing to this stabilization, low-energy processes of
Kondo scattering with energies beldW are frozen so that the “singlet” state of the Kondo lattice
is not realized; instead a strongly correlated spin liquid with developed antiferromagnetic
fluctuations occurs. A new version of the Feynman diagram technique has been developed to
describe interaction between spin fluctuations and resonant valence bonds in a self-
consistent manner. Emergence of a strongly anisotropic RVB spin liquid is discussetR9®
American Institute of Physic§S1063-7761(97)02508-0]

1. INTRODUCTION tion a2 exp(1/2x;)~1, the RKKY interaction can be calcu-

One of the most extraordinary properties of heav)’-ﬁf(;fybgro%iﬁigiufo;etZ;(;%'t sr?;ﬁémagnetm correlations

fermion compounds is the transition of a system of weakly An alternative approach to the problem of competition

interacting spins, which manifests paramagnetic properties at ; . L )
. .. between the one-site screening and magnetic intersite corre-
high temperatures, to a strongly correlated quantum liqui

with thermodynamic and magnetic properties typical of ations was suggested by Coleman and Anfirghe two
y g prop yp options described by Doniach’s simple model were supple-

Fermi systems al < Ty, < T*. This “dissolution” of - . . .
localized spins is usually interpreted in terms of the Kondome.mu?d W'th a third one, namely, formation of a nonmggnetlc
spin liquid of the resonant valence bond®VB) type with

lattice model, and the basic mechanism which determlneﬁqe Fermi statistics of elementary excitation in the spin sys-

thermal transformation of the spin subsystem is assumed {0 : S .
: . . .fem(spinons). They demonstrated that the spin liquid state is

be Kondo screening of spins by conduction electrons. This__, ... . o
. . . stabilized by Kondo scattering, but calculated both spin in-
screening can be modeled in essentially the same way as_a

one-impurity lattice, so that the Kondo lattice can be treate(}erSIte correlations and the single-sité-exchange between

I . . spinons and electrons in the mean-field approximation. Intro-
as a periodic structure of Kondo impurities coherently scat-" . . :
. . - duction of anomalous one-site averages of the Kondo type is,
tering conduction electrorls® The characteristic temperature in reality. equivalent to the assumotion that full dvnamic Spin
T* at which the system switches to another regime is the Y, €q P y P

Kondo temperaturd, and the ground state in the mean- Screening takes place, and the assumption that Kondo sin-
field approximation i'; ,the so-called Kondo singlet glets are formed at each site owing to multiple “switching”
This simple model, however, ignores spin co'rrelations of RVB bonds between localized spins and conduction elec-

whose close relation to heavy fermions is beyond doubt. It i’stron spins is equivalent to a translation of electron charge to

! T spin degrees of freedom. Thus, in this scenario, as well as in
well known that formation of a heavy fermion is in all cases : . :
) . . . “the mean-field theory of the Kondo lattiéespin degrees of
without exception due either to long-range antiferromagneti

. . o ?reedom, which manifest themselves at high temperatures as
order or short-range magnetic correlations. In its interpreta-

tion of this relation, the Kondo lattice theory invokes indirect weak paramagnetic, noncharged correlations, have a charge

exchange between localized spins via conduction electronast T < Ty and transform to charged heavy fermio(s

(RKKY exchange), which occurs in the Kondo lattice model critical discussion of this scenario was given in Ref. 8

. . aturally, interpretation of the existence of magnetic corre-
in the second order of perturbation theory. Thus, nonloca)_,. . . . X
~“lations in the Kondo lattice requires more theoretical effort.

spin correlations compete with local effects of spin . . . .
screening. This naive dichotomy of Doniach’s, which takes Th'.s paper suggests an alte_rnatlve scenario of format_lon
| ' of a spin liquid in the Kondo lattice described by the Hamil-

place in the mean-field approximation, predicts a tendency t? .

) i . 7 fonian
antiferromagnetic ordering at small values of the effective
coupling constant

. D)

1
Het= >, £4CpyCiotJst <$-S|+—
a:‘]sf'/f/.(sF)‘Q@v eff ko Kok sf i 4

whereJg; is thesf-exchange integral/ (eg) is the electron Hereg is the dispersion relation for conduction electrogs,
density of states at the Fermi surfaég, is the elementary ands = (1/2)c;t oc;,, are operators of a spin localized in
cell volume. At largea, Kondo screening suppresses thethe f-shell and of a delocalized conduction electron spin,
magnetic moment, and the ground state is the Kondo singletespectively, and are Pauli matrices. Our approach is based
Then, for« slightly higher thane, determined by the equa- on an understanding that in the critical region, where all
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three characteristic temperaturéthe Kondo temperature state\ at sitej, and the Hamiltonian in the zeroth order of
Tk ~ er exp(— 1/2a), Neel temperaturdy ~ era?, and  perturbation theory is diagonalized in this approximation.
the temperaturd* of the transition to the spin-liquid state Diagram techniques for noncommuting operators are
are of the same order, and the Kondo scattering is favorablearder to handle than the standard Feynman technique. Only
to the transition to the spin-liquid state so thEt > Ty  in some cases do they allow a self-consistent form of closed
> Ty, the very existence of spin-liquid correlations impedesequation systems for skeleton diagrams. Goden’s procedure
the formation of a singlet ground state, since screening ofactorizing the average of operators, unlike Wick’s proce-
localized spins by the Kondo scattering is, in fact, frozen atdure, which plays a similar role in the usual diagram tech-
temperature§ ~ T* > Ty, and at lower temperatures the nigue, is ambiguous, and a successful choice of the hierarchy
system properties are controlled by nonlocal spin-liquid cor-of couplings largely depends on the theorist’s intuitisee,
relations, rather than one-site Kondo scattering. In othefor example, Ref. 2R
words, spin correlations suppress the Kondo effect in both  For this reason, it is natural to attempt to express Hub-
the orderedmagneti¢ and disorderedspin-liquid phases, bard’s operatorgand spin operators, which are a special case
so Doniach’s simple phase diagram should be revised. of these operatoyss products of Fermi and Bose operators,
Since the spin-liquid state emerges in the critical regionand thus restore conditions for using the machinery of the
a ~ «a, at temperatures close 6y, the coexistence of Feynman and Matsubara techniques. Such attempts have
heavy fermions and magnetic correlations has a natural irbeen undertaken many times since the 1986%;%° up
terpretation in the proposed model. Moreover, it is obvioushrough recent time$26-28|t is clear, however, that these
that critical spin fluctuations should play an important role inprocedures are by no means universal or unambiguous.
the mechanism of spin-liquid formation. In this study, we Moreover, each factorization leads to multiplication and
have limited our calculations to the range of high tempera€omplication of vertices and emergence of local constraints,
turesT > Tk, where the perturbation theory in the param-whose introduction is necessary for the preservation of local
etera In(eg/Ty) applies. We use the diagram technique forgauge invariance, which is a trait of the Hamiltonian in ques-
spin operators in the pseudofermion representHtionthe  tion.
approximation of noncrossing graplier noncrossing ap- Additional problems arise due to attempts to describe
proximation, NCA for the description of the Kondo scatter- nonlocal spin-liquid RVB excitation. In this case, problems
ing. The results of high-temperature expansions, which takarise on the level of the mean-field approximation for the
one-site and intersite correlations into account concurrentlyself-energy part of the one-particle propagator. The usual
will be extrapolated to the range of temperatures where paraechniques of self-consistent perturbation theory break the
magnetic fluctuations are important. However, when thdocal gauge invarianc¥, and its restoration is quite a diffi-
pseudofermion technique is applied to nonlocal spin-liquidcult physical and mathematical problért*
correlations, the problem of nonphysical states arises, and In this section we formulate a version of the diagram
hence the breaking of local spin symmetty® With this  technique integrating the two approaches mentioned above,
circumstance in view, we have constructed a Feynman diaand apply it to Hamiltonians with local SB) symmetry.
gram technique for spin Hamiltonians, which allows us, inWith a view toward using this technique in the description of
principle, not only to get rid of nonphysical states, but also tospin liquid in terms of Hamiltoniar(1), we start with the
take into account fluctuations of calibration fields. simpler case of the Heisenberg Hamiltonian for spin 1/2 with
In Sec. 2 this technique is applied to a spin liquid of theantiferromagnetic interaction:
Bomogzneous F;VIB.phgse tgﬁi7 dtescr:iped iq termsll o; ttheth () L
eisenberg model; in Sec. e technique is applied to the _ 2 .
Kondo lattice, and the mechanism of RVB phase stabiliza- H—h}i: S +‘J§i“ 2,: (S'S Z)’ )
tion by Kondo scattering in the mean-field approximation is o ) )
described! The mean-field theory for the RVB phase, taking W€ then pass to a description of the Kondo lattice at high

into account critical fluctuations, is generalized in Sec. 4, andémperatures” > Ty, for which the noncrossing approxi-
Sec. 5 shows how this diagram technique can be used ifation (NCA) applies, and the system can be treated as a
describing local critical and hydrodynamic fluctuations periodic lattice of independent Kondo scatterers interacting

around the antiferromagnetic instability point. via the RKKY mechanisn. _
Let us introduce a pseudofermion representafidor

spin operators:

2. PROJECTION DIAGRAM TECHNIQUE FOR THE 1
HEISENBERG LATTICE +_ft - —ft —Z(fts _ ¢t
S G LATTIC ST=f7f,, S =f{f,, S=x({{fi-ff). @

Along with standard perturbation theory techniques de- . ] N
veloped for Fermi and Bose operators, one can find in thd hese operators satisfy the local constraint condition
literature a number of diagram techniques for noncommuting n=frf +f f =1 ()

; ; ; i T
operators in terms of which one can write the Hamiltonians
of the spin or strongly correlated electrons systése®, for  at each site. The first term in E(R) describes Zeeman split-
example, Refs. 19-21 and references theréitost of these ting in an infinitesimal magnetic field = gugH, and the
techniques are based on Hubbard’'s projection operatorsntiferromagnetic sign of the exchange consthns taken
Xj“‘ =| jA){ju|, where|j\) is a ket vector corresponding to into account explicitly.
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The SU2) invariance means that the spin operators n, =n, (1-n,_,)+n,Ni_,, 9)

{S*,S7,5% can be expressed as arbitrary linear combina- . , L
tions of spin-fermiongf, ,f £5F): and introduce Hubbard’s projection operators for pseudo-
] y T ] l .

fermions, as was done by Hubbard for the real electron
S’ =(cos Hfﬁ—ksin 0f;, )(cos 6f;; —sin ﬁfﬁ ), operators”

S, =(cos ;] —sin 6f ;) (cos 6f; +sin 6f;7), (5) XO0=f!(1-ni_,), X7=-of n,

22
X77=ni(Ll=ni_y)=nizni_,, X{“=nyn;,

I—o

1
SZ:E(frTflT_fltfll) 00
In particular, for pseudofermion filling factors, we have com-
plete particle—hole symmetry,

fre —f  fF (6) These operators form a normalized basis for the grou@sU
ot e with the obvious completeness condition

X B = XX = XX

which directly follows from condition(4) or from Egs.(5)
for 6 = 0,m/2. Thus, Hamiltonian(2) can be expressed in 2 XA =1, (12)
the pseudofermion representation as .

The second line of Eq9) can be rewritten in the form

h J
H=HotHin= =5 & ofiofiot 5 % Fio i i, Nig=X7OXP7+ X72XE2. (12

jo
(7
) o o As a result, Hamiltoniarn2), (7) takes the form
The local constraint places significant limits on the fea-

sibility of using standard diagrammatic techniques, or inany ~H=Ho+Hiy,

case, makes more difficult practical description of the spin h U
dynamics in the fermion representation, since the functional  Hy=— = > oX77+ — > (X%+X%), (13)
space in which the spin and fermion operators act has finite 2% 29

dimensionality. One of the most convenient techniques for

including the spin kinetamics in the fermion representation  H,== >, (X7 IX;T7=X77X777)

was suggested by Abrikosd?.2S + 1 spins(projections 270

correspond to a localized spf, whereas in its description J )

in terms of pseudofermion operator$?2'Y) orthogonal =5 > b7 .

states emerge, in accordance with the filling numkér$) joo!

for all 2S + 1 spin projections. In a specific case of spin Here

S = 1/2, there are four fermion states:

10)=10,0; [+)=[1,0; [-)=[0D); [2)=[1,) (8 _— .

and the fictitious Hubbard repulsion parametiefor pseudo-
and only two of them, namely statgs), correspond to fermions is introduced so as to preserve the particle—hole
physical states of the spin operator. Abrikosov suggested agymmetry of the Heisenberg Hamiltonian.
cribing energyx > T to each state occupied by a pseudo-  |nstead of using diagram techniques for theperators
fermion. Then the nonphysical Std.m from set(8) is frozen (see7 for examp|e, Refs. 19, 22, 31, and,m try to remain
out after averaging owing to the additional factor within the standard Feynman approach, but use the proper-
exp(— MT) in the partition functionZ(T). In order to get tjes of the projection operator™* in explicit form. We take
rid of the other nonphysical staj@), one must introduce an for a basis of the diagram expansion the eigenstates of the
additional factor (1/2) exp(T) to Z(T) and take the limit HamiltonianH, under the conditiolJ/T = BU—x. As a

M T— in averaging over spin states. As a result, physicalesyult, we have the reduced Hamiltonian
states|*) become states with the lowest “energy”, and the

fin_al result is independer_n of. Abrikosov's pre.scripti.on ap- ’H“=’|:|0+ Hi, “H‘Oz _ E 2 oftfi, (15)
plies to local spin states in the case of a one-impurity Hamil- 2% 7

tonian ofsf-exchange. In a Kondo lattice it can be used only
in the limit of large spin with degenerady— oo, for which
NCA becomes an asymptotically exact approximaftivhut

7= (oXI T+ X (o X P+ X)7), (14)

with the partition functionZ = Tr[exp( — BH)], which
includes only physical St&LdSr) =| +) from set(8). The
this technique cannot be used in describing spin-liquid cortamiltonianH, reduces tdH, since the operatorx;”™” and
relations. fi,fic have identical matrix elements in the redudedysi-
The starting point of the proposed method is the wellc@) space. Now we can udé in the form (15) as a zero-
known similarity between the Heisenberg and HubbardAPProximation Hamiltonian for the Matsubara diagram
Hamiltonians in the limit of strong interactidd in the case technlquez._ o
of half-filled states. Let us express pseudofermion operators Selection of one of the two forms of Hamiltoniath3)

in the form of sums, deperjds on which of the spin system states we are going to
o N describe. Whereas the most convenient representation for the
fio=fic(1—Ni_ o) +fi,Ni_g, high-temperature paramagnetic phase or a state with long-
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FIG. 1. Bare exchange vertices with due

VLR

range magnetic order 18;,, in terms of spin operator)si‘"" , L_et us proceed to nonlocal spin-liquid correlatior]s. We_
it is natural to describe the RVB spin-liquid state in terms ofconsider as an example an RVB homogeneous spin liquid
operatorsey . described by the correlator

Let us first consider the temperature Green'’s function
Z5(n=(T.8 (1S (07, (16 Li=2 (¢740), (20

which describes elementary excitations in the standard _ .
theory of magnetism(ir is the imaginary “time’). To  i.€., we use the second versiontéf, in Eq. (13). Thus, the
zeroth-order in the interaction, the function has the form  nonphysical statel) and|2) are eliminated by the Hubbard
5 procedure, since each fermion creation event at each site
PP = LT 55 (DT £ 00V (0))5 1 involves a projection operation in accordance with Bdf).
i(7=7 (TAF (DT (DT (O (0D, @ This makes exchange vert¢x3) more complicated:; it can

Averaging is performed with the partition functior® be described in the projection techniques by diagrams with

= 2 cosh@h), B=1KT. In accordance with Wick’s theorem, WelVe tails, as is shown by Fig. 1.

this average can be presented in the form of a two-fermion 'N€ role of projectors is to automatically eliminate a
loop and reduces to the simple expression state with an opposite projection in creating a fermion with a

given spin projection, and this guarantees that the creation
o Gi _p (N (1=, (7>0) operator acts on a state from the physical subspageBut,
Hij(1)= 2 ¢ (N (I=ny))a_ (7<0)’ (18 although correlato(20) is diagonal in subspade-), the non-
0 physical state40) and|2) manifest themselves as intermedi-
One can see that by virtue of E(4), fermion states are ate states in any attempt to describe the spin liquid in terms
generated in pairs, and the emergence of filling factors in thef fermion operators.

form of averages of projection operataX’?) [see Eg. In Refs. 11 and 13 it was noted that introduction of a
(10)] shows that spin operators do not drive the system fronhomogeneous RVB state in the mean-field approximéation
the space of “physical” statels+). violates the local gauge invariance due to constrgint(6),

Thus, the limitU—« for effective Hamiltonian(13) is and long-wave fluctuations of gauge fields significantly
equivalent to the limit\ —co in Abrikosov’s procedure de- change the character of RVB excitations in a two-
scribed above, which “freezes out” nonphysical pseudofer-dimensional Heisenberg lattiqgsee also Refs. 14, 35, and
mion states|0) and |2) without breaking the particle—hole 36). In this paper, we do not consider the problem of long-
symmetry. wave fluctuations in gauge fields. We are interested primarily

The perturbation theory series for the functigii- can  in nonlocal high-temperature magnetic fluctuations, which
be constructed in accordance with the usual rules for calcuare also related, however, to the violation of the constraint.
lating two-time Green’s functions. This procedure leads to  As was shown in the fundamental study by Baskaran,
Larkin’s equatioR®* Zou and Andersor the description of a uniform RVB state

o oy requires “anomalous” coupling between pseudofermions at

F=2+2%. (19 different sites. It is clear that such a procedure drives the
HereX is the irreducible polarization operator, which is not system beyond the physical spdce). The gauge theory of
separable with respect to the interaction. In Sec. 5 we wilk spin liquid demonstrates that free propagation of a spinon
use this version of the diagram technique to calculate thés impossible. The complex shape of vertices in the projec-
spin diffusion coefficient near the epoint. tion techniqugFig. 1) indicates the same thing. Nonetheless,
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we start construction of our scheme with a demonstration ofvhere
how far this technique applies in the mean-field approxima-
tion; we then consider the possible effect of fluctuations on

. . Oo a0 a0 2—0
the mean-field solution. X Xj Xim oX

o “
Let us introduce an anomalous one-partigene- Xio= oX;[ 7% gX?O) Xig= X07  oX; o)
fermion) temperature Green’s function. In order to preserve (22)

particle—hole symmetry, let us express it in matrix form:
Tijo(1)= (T Xie(T)X5(0), (21)  This Green’s function has the structure
|
(TO(D)X7(0)  o(T(XP(7) X} 7(0)
> FXPUDXN0)) X)X 73(0)) 23
Tije\T) = — -0 o - -0
! a(TAX HD)XT(0)  (TAX "2(1)XF7(0)
+XETI(X00))  +XET(n) X 73(0))
|
The zero(one-sit¢ matrix Green'’s function () 1
G (@) =3 [+ (—D)ohi2’ (29

§io(7) = — (T Xi(1)X5 (07, (24)
is diagonal, and its elements are
9io (7)== (TAX7(1)X7°(0) + X{°(1)XP?(0)))o,
9i22(7)=—(T X “Z(1)XF~°(0)
+XE (D)X 7%(0)))o-

As in the previous case, the averagifng)o=(...)i, leaves

the one-site Green’s function in the physical sector of the

Fock space. In particular,
gi(;l)(Tl_ T3) = — <in0( Tl)x?g( 7))o
=—(X{")o exd —ioh(7,—7,)/2]
X(71>73),
9o (1= 12) = (X7(7) X7 (12) )0
=(X7 7)o exf —iah(7,— 12)/2](75>1y).
(25)

Unlike spin Green’s function$l?), matrix elements of the
function g;,(7) formally represent the three-fermion loops

containing one particléspin up and two hole(spin down

propagators, or one hole and two particle propagators. This
function, however, can be simplified using the idempotence

property of operatob’b, conditions(4) and(6), and Wick’s

theorem. By substituting the Hubbard operators in the inter
action picture into Eq(25), we obtain expressions for the

elements of the one-site propagator,

g_(ll)zle—h»r —((1-n))o (7>0)
o2 (nipo  (7<0)’

and a similar expression for the spin-down state.

One can easily check that the Green’s functigff® is
periodic, & ,(7<0)= —
ing the Matsubara frequencieg,= (2n+1)#T in the usual
manner, we obtain
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Zio(T+1/T), so that by introduc-

The mean-field approximatidhis based on the intro-
duction of anomalous averag(efsf,fjg>. For the anomalous
matrix Green’s functior(21), we must introduce four com-
ponents:

A —<Xi‘TO(T)XJ-O‘T(T'—>T)>,

ijo™

AZL = (X7 ()X (7' = 1),

ijo

AR =(X7U(n)X] 7217 — 7)),

ijo—

AR L =(XETN()X)7 (7' = 7)), (27)
where A, =Af% . Then one can easily check that the
anomalous Green’s function also satisfies a periodic condi-
tion like that in Eqg.(21) on the inverse temperature. Thus,
we can use the projection diagram technique in calculating
the anomalous averagk== (), which characterizes a
uniform RVB state. This “order parameter” can be derived

from the relation
A=Tr(1+7)%(7——0), (28)

where land 7, are the Pauli matrices.

Let us rewrite Hubbard operatof&0) in the particle—
hole representatiorf;;=a;, filzbﬁ:
XI°=a’b’b;, X*=a'bb", X/l=a'b'...

The mean-field approximatiof28) corresponds to the fol-

lowing splitting of the interaction HamiltoniaH

(nn)
HMF=JA§i) }J) (YV+YP), (29)

where
Y{P'=a;"b;"bib;"bja; +a; bib;"bjb;"a;+a; bjb;" b bja;
+ai+bi+bibjbj+aj,

YV =baa aa b +ba aa ab +baa’a ab;
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By substituting Green’s function82) into Eqg. (28), we ob-
M >®< tain a self-consistent equation far
JAp(k)—
: ; , j A=ZNY p(ktann P22 4] (35

2 ’

whereZ is the coordination number. The chemical potential

u is treated as a Lagrange multiplier when constrédintis

substituted into the Hamiltonian. This operation corresponds
i j i j to substitution ofi w,+ u for iw,. As usual, the local con-

straint can be replaced with a global one in the mean-field
FIG. 2. Components af matrix for the one-particle Green’s functiosy; . approximation:

N7ITY S Tr(1+ 7)) Zi(iw,) =0. (36)
+bia; aaa b;" . < en
By substituting Green'’s functio(B2) into Eq. (36), we ob-

In ter_ms of perturl_)ation theory, this approximation CaNtain another self-consistency condition, which fixest the
be described by the diagrams for the self-energy Compone%id-position of the spinon “band,” in accordance with

3 of Green’s function(23) shown in Fig. 2. The four dia- particle—hole symmetry.

grams correspond to the four elementsofThe Dyson ma- The “phase transition” temperatuf&* at which a non-
trix equation in this approximation is expressed by the diayrjyial solution for A emerges is given by

grams in Fig. 3, in which double lines denote the one-site 3

matricesg;,, the dashed line denotes the Heisenberg ex- 1+ _ = 51 2(k 3
change constant, and thick lines with two arrows denote the 2( ) 2k: e (k). 37

anomalous Green’s functioj;, . The Dyson equation which is usually derived in the mean-field approximation

using the functional integration techniq(see, for example,

Gijo(®n)=0ip(wp) 5ij+2| 20 %jjo(wn) (30 Refs. 6, 37, and 38
_ _ Thus, we have found that kinematic constraints on the
is Fourier transformed téash— 0) pseudofermion representation of spin operators taken into

account through Hubbard projection operators do not affect
2iwn, P (1 w,) = Supt JAe(k) Y, ZP(iw,). (31  the mean-field solution for the RVB state as long as particle—
4 hole symmetry is preserved at each step of the calculation. In

A solution of this equation system is this respect, the situation is different from that in which the
1 im—ef2 same problem is solved by the Hubbard operator technique
S w)== “—k for thet—J model with a finite density of hole¥,where this
2 ion(lon—€r) symmetry is violated from the outset, since only doubly
1 gel? filled states|2) are excluded. In Ref. 22 another symmetry-
S 2wy = 5 X (32 based approach to elimination of nonphysical states is sug-

(i@~ €0) gested, in which the “fermion” selD), |2) is replaced with a
Here € is the spinon dispersion relation in the mean-fieldunified “boson” vacuum|V).
approximation in the form Although the projection technique does not contribute
e=JAw(K) (33  any new features to the mean-field solution for the uniform
RVB liquid, it offers, in principle, new opportunities for tak-
in the case of antiferromagnetic exchange only between neajing gauge fluctuations into account, which inevitably occur

est neighborsgp(k) is the corresponding form factor: in spinon propagation. Moreover, as will be shown in the
(nn) next section, in a three-dimensional Kondo lattice, spin lig-
(k)= E glkl (34) uid is formed in the neighborhood of the antiferromagnetic

[

instability, because magnetic fluctuations are a decisive fac-
tor for both the transition temperature to the RVB state and
the mechanism of this transition.

3. STABILIZATION OF SPIN LIQUID IN THE KONDO
a LATTICE AT HIGH TEMPERATURES. MEAN-FIELD
APPROXIMATION

@ = o It is well knowrf'® that in the three-dimensional Heisen-

i berg lattice the ground state energy of the RVB phé&sg,

is higher than the antiferromagnetic state enelgyy, . It

FIG. 3. (a) Dyson equation anb) self-energy part of the Green's function Nas also been shown, however, that in the Kondo lattice de-
%; in the mean-field approximation. scribed by the Hamiltoniaftl), spin-flip scattering processes
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can lead to stabilization of the RVB phase with respect to the
magnetically ordered pha&e® Since antiferromagnetic and
spin-liquid correlations in thef-exchange model are gov- i
erned by the same coupling constdpkky , the temperature ’%’;‘
at which the spin liquid is formed is close to the point of
magnetic instabilityT* — Ty<Ty, so that antiferromagnetic i i
correlations can significantly alter the character of a transi- ‘', )
tion to the RVB phase, as compared to the results obtained in % r
the mean-field approximation. i

In order to describe formation of spin liquid in the
Kondo lattice, we take Hamiltoniafl) in the original form

a b c

1 FIG. 4. (a) Effective vertex of renormalized RKKY interaction; self-energy
. + + + part of the one-particle Green'’s function in the mean-field approximabipn
Her= % €kCrgCko T ZJsti CixCig' fig ficr - (38) for the Neel and(c) RVB phase.

As mentioned in the Introduction, we operate in the

range of paramet.eraw ; of Doniach’s diagrant,in which In the spirit of the logarithmic perturbation thedthe
all characteristic temperatures T~ egexp(—1/2«), ; . .
Tuo~era?, andT*, which is to be calculatedare of the argument of v_erte?l“ should _conte_un only the highest m_put
sgfne grdér of ma,gnitude so that in constructing the reglrequency, which is determined in our case by energies of
. T lectronic Green’s functions included in the polarization loop

phase diagram one must take into account the mutual effec . . - .
of all three types of correlation—in particular, the change in_, (R,em) in the integrald;(T, &) (Eq. (39). The polariza-
the Neel temperature with respect T, as given by simple tion operator in the coordinate representation has the form
perturbation theory in the parameter

As noted above, in this study we limit discussion to the H(R'Sm):T; D(—R,0ntem)D(R,@p). (40)
range of high temperaturés>Ty , Ty, in which the mag-
netic subsystem is a lattice of paramagnetic spins immerse@ince all heavy-fermion systems are characterized by large
in the Fermi sea of conductance electrons, and NCA applieittice constants, we use for electronic Green’s functions
to the one-site paramagnesd-scattering, i.e., each spin lo- D(R,wp) an expression asymptotic p:R:
calized at a lattice site scatters conduction electrons indepen- P PY
dently of other spins. As the temperature is reduced, both D(R,w,)=— 5 Rexp{ 5 pPeR
Kondo scattering and correlations among lattice sites due to TUF eF
the indirect RKKY interaction are intensified. _ _

The problem of competition between the indirect ex- +ipeR sign w;,
change among lattice sites and one-sitescattering has
been discussed in literature many times, largely in terms o$0 that the polarization operator takes the form

: (42)

the Kondo problem with two impurities. In particular, D 2 n=w P ot e |

Varmd'! analyzed the mutual influence of Kondo scattering[I(R,e,,) = F T exd -—R-—TR
! : ; ; M\ 2@veR

and RKKY interaction at high temperatures by perturbation TUF n=-o UF UF

theory and concluded that the mutual influence of these two
processes is small, at least in the leading logarithmic ap- +ip,:R[sigrkon+sigr(wn+sm)]). (42
proximation in« In(eg/T). In this section, we will show that
in the Kondo lattice, the effect of spin-flip scattering on mag-In the static limit,
netic correlations is a decisive factor for stabilization of the
RVB phase in the critical region of Doniach’s diagram, ER(T,O)=T2 D3(R,w,)[3(w,,T). (43
a~ag. n

In describing the intersite magnetic interaction under e temperature dependence in E) is largely deter-
conditions of Kondo scattering in the noncrossing approXipined by one-site vertices, and in the polarization loop one
mation (NCA), the effective vertex of the RKKY exchange -45n use the condition 2T R/v;<1 and change summation
Jj(T,€) is determined by the diagram in Fig. 4a. In this gyer discrete frequencies to integratiésee Appendix )L
diagram, dashed lines denote electron Green’s functions, anghen the exchange integral takes the form
the ingoing and outgoing lines correspond to pseudofermion
operators. The one-sitf-exchange verticeE include loops
corresponding to the leading logarithmic approximation in
a In(e/T) for the Kondo problerfi (Fig. 5). As a result, the u <

effective interaction is given b P A a4 L g
g y % A L Y, e .
Ji(T,em) =II(R,emT?, (39 i i i T
wheree ,=2m=T, R=|R,— RJ-|. FIG. 5. Parquet diagrams for effective vertEx
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] FIG. 6. Single-site diagrams describing Kondo screening of
< a localized spin.
= + + + + ..

- pe |2 (see Appendix ), so that at the same value piR, the
Jr(T,00=2 2m0eR Cog2peR) integral Jr(T,0) is larger in the case of a cylindrical Fermi
surface than in the case of a spherical surface.
= de € Thus, the spin system can be described afT¢ by the
- _ 2 ’ K
x LHO 2Wexp{ g pFR)F (eT). (49 effective RKKY Hamiltonian with the vertex shown in Fig.

4a in the nearest-neighbor approximation and under the as-
This equation transforms to the standard RKKY exchangeumption that the RKKY nearest-neighbor coupling has the
integral when modified vertices are replaced with the “bare” antiferromagnetic sign. In the mean-field approximation, we
integrals,I'— Js¢()g, Where(), is the elementary cell vol- treat the problem of stabilization of the spin liquid as a com-

ume: parison between temperatures of transitions to the RVB state
4 [T*(a)] and to the antiferromagnetic stdt@&y(«)] under
0 2 2 MPe conditions of sufficiently strong Kondo scattering
Jr= (Jsi20) TR0 = (Isf20)" ’

a—ay—0, and the stabilization criterion is the inequality
T*(a)>Tn(a). The functionTy(«) deviates from the qua-
dratic function prescribed by the bare RKKY vertex. Along

cog2peR) O( 1

(2peR)° (2peR)* with the intensification of one-site vertices described by Eq.
72 (Prag)® (46) and discussed above, there is a dynamic Kondo screen-
= ( el —For@(ZpFR). (45  ing of localized spins, which is the reason for the suppression
er/ 2w of antiferromagnetic order ag— ay.
Let us substitute intaR(T,O) the vertexI'(s,T) calcu- In the mean-field approximation, the transition tempera-

turesTy(a) and T*(«) can be derived from the exchange
vertex in Fig. 4a by closing spin-fermion lines, as shown in

lated in the leading logarithmic approximation, in accor-
dance with diagrams given in Fig. 5 with the input frequenc ; ' )
¢ satisfying the condition Inf/&)>1. For the characteristic F19S- 4b and 4c, respectively. The first of these diagrams
energys> 1, which determines integréi4) (see Appendix determines the molecular field for commensurate magnetic

II), we find that the exchange parameter can be approximatédering characterized by the antiferromagnetic vedgor
by the function such thatQ-R;;=m. The suppression of magnetic correla-

tion by Kondo scattering is described by the verlgX’) in

~ (Prag)® [ Jsf\2 the diagram of Fig. 4823 Summation of the set of logarith-
JR(T,0~€r 2% \ep ®(2peR) mic diagrams, the first of which are shown in Fig. 6, yields
T -n EE T
x[1+2an—| . (46) F(M=1-2ah = / In=. (49)
EE T TK

The exponenh in this function depends oa and the argu- Although the functionF(T) deviates from this formula as
ment of the oscillating functiom (peR) (see the insert in  T—Tg,** and complete screening occurs onlyTat 0, the
Fig. 11). Thus, one can see that Kondo scattering has littlesuppression of magnetic correlations compensates for the ex-
influence on the form and spatial periodicity of the indirectchange intensification and thus redudggsas a— ay.
exchange integral foff>T,.* But this integral can be The self-energy part of the one-site Green’s functign
larger, and the larger the separatiBhbetween magnetic (Eq.(21)), corresponding to the diagram of Fig. 4b, is
f-ions, the greater the increase. -

In calculating the polarization operator and RKKY inte- 2n(M=M(RTNS)r (49)
gral (46), we assumed that the electron Fermi surface wagye tactor ) is determined by the lattice configuratjon
sphe.n_cal. Note, however, thgt the exp_onann EqQ. (46) is . Hence we derive for the mean spin
sensitive to the asymptotic behavior of the function
®(2peR), so that the role of Kondo processes in intensifi- 1
cation of the exchange turns out to be important in the case <Sz>T=§(<ai+ai>+<bi+bi>— 1)
of a highly anisotropic Fermi surface. In the limiting case of

a cylindrical Fermi surface, a self-consistent equation
_|sin(2pgR) 1 1 Sn(T)
d(2peR)= —[ (2p-R)? (2p-R)3 (47) (SZ>T—§F(T)tanh oT (50
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T/€ respect to the antiferromagnetic phase, and this stabilization
0.015 takes place in the logarithmic neighborhood of the Kondo
temperature. A calculation dfy for o> a, makes no sense,
because magnetic ordering in this region should follow an-
other scenario.

0010 Thus, we conclude that stabilization of a homogeneous
RVB spin liquid in a three-dimensional Kondo lattice can
occur only near the magnetic instability point under condi-

0.005} tions of sufficiently strong Kondo screening of localized

spins by conduction electrons. This result, obtained in the
* “ 0 mean-field approximation, indicates that stabilization of the
0.000lee . — J J spin-liquid phase is incompatible with formation of Kondo
001 002 003 004 005 006 o singlet states characterized by anomalous averages
(c;"1;),5 since anomalous Kondo scattering is frozen at
FIG. 7. Generalized Doniach diagram taking the RVB phase into accountT ~ T* >Tk . This resolves Nozies’ well-known parado‘ﬁ?
about the impossibility of screening all spins in the Kondo
lattice by electrons from a thin layer of widfhik near the
which is, naturally, the standard Brillouin equation for Fermi surface. In the scheme proposed above, the screening
Weiss’ molecular field taking Kondo screening into accountvanishes at sufficiently high temperatures abdye, the
The mean-field equation fak (Eq. (28)) is determined Kondo temperature itself is not a singular point of the theory,
by the self-energy part of the anomalous Green’s functiomenormalization of thesf-exchange integral is frozen at
Gjj(7) (Eq. (23) shown in Fig. 4c. This diagram can be aboutJ(T*), and atT<T,, T* electrons interact not with
substituted into the Dyson equatidRig. 3), which in this  localized spins, but with spin-liquid excitations of the spinon
case takes the form type (see also Ref. 47
_ In addition to the disadvantages related to violation of
1—2TE E J(p—q,0,— wy) local gauge invariance, however, the mean-field approxima-
mo 4 tion in the case of RVB coupling has another flaw, namely, it
does not take into account the proximity of the spin system
: (51  to the antifferomagnetic instability. In the following sections,
we discuss possible consequences of this proximity for the
Herego(wy) is the zero one-site Green’s function with com- RVB state, first in the self-consistent field approximation,
ponents(26), andJ(p—q,w,) is a Fourier transform of the then beyond this model.
indirect exchange integral39), which in the nearest-
neighbor approximation takes the form

_____
o

G(P,@n)=Jo(@p)

X é(qiwm)é(piwn)

4. EFFECT OF SPIN FLUCTUATIONS AND MAGNETIC
ANISOTROPY ON RVB PHASE STABILIZATION

Idem= 2 Jn(eme Y =Jg(em) + Ir(em) @ ().
'=0{Dan In the previous section, we determined that antiferro-
(52 . X S .
- magnetic fluctuations inevitably turn out to be strong in an
The one-site integraly(T,0) is estimated a&?T In(er/T).  RVB spin liquid in the three-dimensional Kondo lattice at
Since this integral contains an additional small factoat  high temperature$~ T*, and can lead, in principle, to mag-
T~T*, as compared to the intersite integtdb), it can be  netic ordering aff <T*. Leaving this issue for subsequent
omitted. studies, let us consider now the effect of spin fluctuations on
By neglecting, as usual, the frequency dependence of thigatures of the transition to the spin-liquid state in the mean-
RKKY interaction, we obtain the mean-field equati®86)  field approximation, but using its modification obtained
for A with the coupling constani=Jg(T,0). As follows through the projection technique, in which the order param-
from the configuration of the anomalous self-energy pareter is defined by Eq(28). The diagram technique using
(Fig. 49, the screening effect responsible for suppression oHubbard operators and developed in Sec. 2 allows us to take
local magnetic moments does not affect the mean-field painto consideration long-wave fluctuations of gauge fields due
rameterA, which can be naturally attributed to the singletto the U1) noninvariance of the RVB order parameter.
nature of the RVB-coupling. The Kondo “screening” radius Terms that take the phase of functidninto account can be
can be estimated by high-temperature perturbation theory tmtroduced into the effective Hamiltonian in standard
be v /2T, which is much larger than the correlation ra- fashion*>*1t is known that long-wave fluctuations in cali-
dius of the singlet RVB pair, since electron scattering bybration fields do not lead to divergences destabilizing RVB
these pairs is inefficient. averages in three-dimensional systems. Therefore, the intro-
Calculations of the temperaturds® and Ty by Egs. duction of such fluctuations reduces to the usual Fermi-liquid
(35), (46), (49), and(50) are given in Fig. 7(see also Ref. renormalizations with due account of the particle—hole sym-
18). This graph shows that ags— a.y, these temperatures metry condition. In two-dimensional Heisenberg lattices,
become closer, a new critical poiat. emerges in Doniach’s however, fluctuations are important and must be taken into
diagram, on the right of which the RVB phase is stable withconsideratiort>'* In what follows, we do not discuss the
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a FIG. 8. Self-energy part for the anoma-

lous propagatorsj, including the con-
]
b

tribution of critical fluctuations in the
mean-field approximation.

issue .C)fllongjwave fluctuationg in gauge fie!ds,_ and. our %}J—i(T—>O)=(Tfaj+(7-+O)bj+(7-+0)bi(0)ai(0))
analysis is limited to the mean-field approximation in a fixed . -
calibration. =(T.§ (7+0)S (0)),

Having expressed the mean-field Hamiltonian in the z +
form of Eq. (29), we considered in the subsequent calcula- i j(7—0)=(T.b" (r+0)bj(7+0)b (0)b;(0))
tions additional operators ™" as purely static projection

operators, eliminating nonphysmal states in thermodynamic = Z—<TT§Z(T+ 0)S/(0)). (55
averages. We now consider the fluctuation component of this
“kinematic” interaction by transforming the effective mean- Unlike the fully anomalous Green’s functio23), the

field spinon Hamiltonian for the Kondo lattice as follows: ~anomalous function&4) are one-particle propagators, while
intersite spin correlator&5) are formed from projection op-

H(JeFKKY):jAUZ & =AY (a'Kja—aK ' erators. Now the sum of diagonal elements
o (d (11 4 $(22)
TP =T

in Eq. (28) is determined by the diagrams in Fig. 8a, while
the contribution of off-diagonal elements

+biK; b —bK;by). (53

HereJ is the renormalized constant of the RKKY interaction

i 12) (21
given by Eq.(46), Em 25” +Em)

et e corresponds to the diagrams in Fig. 8b. In deriving these
Ki=S § —S S+ 4’ expressions, we have used definiti@) and condition(6).
Similar diagrams can be obtained ff, . Summation of all
and K =Kj. In the vicinity of the magnetic instability these contributions in the mean- fleld approximation yields
point, it is natural to consider operatéf; as an operator the effective Hamiltoniar{53).
describing critical excitations due to spinon propagation at |n the critical regionTy<T<T*, the main contribution
temperatures close by . to spin correlatorg53) is due to long-wave excitations with
In order to obtain an expression for the spinon Green'sc—0 and short-wave excitations with—Q (see, for ex-
function corresponding to this approximation, we reconsideample, Ref. 48 and Sec).5The behavior of the response
the definition of its self-energy part. In the standard meanfunction K (k) in the long-wave(hydrodynamig limit k— 0
field theory (Fig. 3), projection operators were included in js determined by fluctuations of the total magnetization of
the static approximation. The diagrams in Fig. 8 show howsyblatticeswhich is zero in antiferromagnetic systenad
the diagonal and off-diagonal components of the self-energys diffusive in nature:
part of the Green’s functiory’;, including transverse and
longitudinal spin correlators, can be constructed from the iDk?

R —
vertices shown in Fig. 1. The lines with two arrows in Fig. 8 KE(K, @)= Ko(k) w+iDk2’ (56)
denote anomalous propagators
where
— + ’
g;= —(T-a(na (7)), .,

gl = — (T by( Dby (7)), (54 Kolk) =7k 0=00= o r =5 373(Q)]

and wavy lines denote transverse and longitudinal correlation

1
functions ~7Xo(Tn),
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S(S+1) T-Tyn

. 1 T EU(T/TN,’y)
J(k)=J ikg T)= , _ p
o % © xolT) 3T Tn Ao z, % qsu(p,TN,y

2T

tanh (63

] . with the dispersion relation
(in Eq. (56) we have passed to the retarded Green'’s function

for real frequencyw). €o(TITN, V) =30Aubu(p, T/ Ty, 7). (64)
Near the antiferromagnetic vect@, the response func-

. e R The structure factorp,(p,T/Ty,y) renormalized by spin
tion behavior is relaxation-like:

fluctuations can be expressed in terms of a structure factor
¢ou(p) like that in Eq.(33), where summation over nearest

KR(0,0)=— oo Ko Xq)’ q=k-Q, (58 neighbord is performed only in the basal plang<1) or in
Xo™ Mo the perpendicular directiory= y~1<1):
where T 1
Yo ¢u( P Y= §¢u(p)+2T2 eu(P—a)Ko(a). (65
Ko(a)=72(9,0=0) = Tr(qly)? (59 N d

Index y on the left-hand side of E¢65) is due to the aniso-
is the Ornstein—Zernike static correlation function, &gnds  tropic nature of correlatoKy(qg). Thus, the character of the
the elementary excitation mean free path, which is compatransition to the spin-liquid state is determined by the degree
rable to the lattice constant. of anisotropy: in the case of<1 spin-liquid correlations

In the mean-field approximation, we ignore the retarda-emerge first in the basal plane, and/if 1 in thez-direction.
tion of the RKKY interaction, and the diagrams in Fig. 8 At lower temperatures, the spin liquid naturally takes on

yield for the self-energy three-dimensional properties, given that* (0,%).
The transition temperature to the spin-liquid state, when
zkzz(k)zz'jTZz 2 @(k—Q)gk(iwn)-%g(ism) spin fluctuations are taken into account, is determined by
nmq s solving the equation
~ . [e(k) 1 T
~JA T’LZT% e(k—aq)Ko(q) |. (60 Ti=3 max{J,JL}au<T—:,y), (66)

Here s is the polarization index, while the anomalous where
Green’s functiorgy is expressed ag(i w,) = (iw,—€) L. T* T
At high temperatures, we retain only the term with=0 in gu(_“'y> =(ZuN)_1E (bﬁ( P, —,y
the sum over even Matsubara frequencies; then the spin Tn P T
Green's function77%(q,0) in Fig. 8 has the same form in , s yhe coordination number in the basal plane, ane 2.
both the hydrodynamic and critical regioffsso that the In estimating the role of spin fluctuations for establishing

main contribution to the spinon spectrum renormalization isthe spin-liquid regime, it is convenient to introduce the tem-
due to the static susceptibilitgy(q) (Eq. (59)).

, (67)

. perature
The order parametek defined by Eq.(28) and corre-
sponding to the approximation of E¢p3) and diagrams of *(0)_} (0)
Fig. 8 is given by To =5 max{J;,J, 16, (68)
1 1 ?p of the transition to the RVB state in the anisotropic lattice
A=— % ¢(P=0)| 5 dq0t 2TKo(Q) | tanhs—. (61D without taking spin fluctuations into account. In this case,

. Self-consi;tent equation(§5) and (61) have been Qe-. QEO)Z(ZUN)—li @ﬁ(p)- (69)
rived for the simplest case of isotropic exchange, which is, p

generally speaklngj never realized in _Kondo Iat'_uces. ThereThen the condition that the transition occurs by virtue of the
fore, before_ analyzing the_ effect of spin quctuanns'l_Ej’h spin-fluctuation mechanism is

we generalize the mean-field theory to the case of anisotropic

exchange. Let us introduce an exchange integral Yu(y, T\ =60,(TE Ty, y)/60>1. (70)
Jij=1J,,J.}, whereJ, andJ, are the coupling constants for
nearest neighbors in the basal plane and in the perpendicul
direction, respectively. The degree of exchange anisotropy i
measured by the parameter=J, /J;. Now, instead of
Hamiltonian (29) or (53), we must write the anisotropic
mean-field Hamiltonian

The parametel ,(y) (Y (7)) for a simple cubic lattice is
&hiculated in Appendix lll. Critical values of the anisotropy
SarameterSylvz at which the spin-liquid state stabilizes in
almost one-dimensional and almost two-dimensional mag-
netic lattices are given for the ca§®/Ty=1 in Fig. 9 for
different values ofr. It is clear that only in a strongly aniso-
tropic situation, almost one- or two-dimensionake Egs.

HMF:ZP JLALYLHPDLE JHAHYLHPH- (62) (A.I.7) and (A.111.8)) spin correlations help formation of

i " the spin liquid, and in the anisotropic case, inclusion of an-

Here the anomalous averages; ;. , ), whereu=_1,], are  tiferromagnetic fluctuations in the mean-field approximation
derived from the equation system leads to suppression of the spin-liquid phase.
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FIG. 10. Self-energy part of the Green’s functi@ry including the contri-
5t bution of critical fluctuations in the Born approximation.
T4 =001
3 ] p \ID There is an exact solution for the Fourier transform of corr-
2h 0 . elator Kgg continued to the upper half-plane expressed in
. “I= " terms of irreducible(noncuttable along the interaction line
ol % I 2D NN self-energy parts of the spin and current correlation func-
1 R U OIS s . )
5107 5107 51072 tions:
R 7~R
14 R R 2 25/ Zss
Ki(o) =24t w 1SR~ (72
FIG. 9. ParameteY describing the effect of critical spin fluctuations on the 1- 587

transition temperature to the RVB phase for the quasi-one-dimensiong| > Ry —1 _1 . .
(1D) and quasi-two-dimensional [ Kondo lattices. Parametercharac- aHere] - (2 ) "= (Ko) is the vertex part determined by

terizes the proximity to the antiferromagnetic instability. The RVB state the static response in the critical regibir.
emerges aty<y; and <7, in the cases of axial and plane magnetic Using the Kramers—Kronig dispersion relations for re-

anisotropy, respectively. tarded and advanced correlation functions, and the analytic
properties of irreducible self-energy parts, one can derive
gom Eqgs.(19) and(72) the expression

1—‘k,w
—iw-l—['k’w'

The analysis in this section once again indicates that th
mean-field approximation is insufficient for the description
of the spin liquid. In particular, even the diagrams of Fig. 8
indicate that the static approximation, generally speaking, .
does not apply to the critical region, since antiferromagneti¢Vich holds as botlkk—0 andk—Q. _
fluctuations define their own time and energy scales, which 1 N€ Spin correlation functions can be expressed in terms

determine the real character of transition from the paramag?! the pseudofermion Green’s functions. For example, the
netic state to the spin-liquid state. expression for the one-site susceptibility has the form

K& w)=Kp (73)

L = G &
5. CRITICAL ANTIFERROMAGNETIC FLUCTUATIONS AND i (&m) T§m: Zilontem) Ziwn), (74)

SPIN DIFFUSION B _ _
(see Eq.(16)). Here %;j(w,) is a Fourier component of the

As mentioned in Sec. 4, in antiferromagnets critical fluc-pseudofermion Green’s functior;;(7) =(T,fi(n)f](0)).
tuations have differing properties in the long-wave<0)  since nonphysical states do not appear when calculating
and short-waveK— Q) regions, and the spin response func- single-site averages f@&=1/2, there is no need to introduce
tion in these regions takes the form of E¢S6) and (58),  projection operators. A§— T, scattering by the relaxation
respectively. The critical dynamics of antiferromagnets ismode contributes a component described by the diagram in
usually analyzed using renormalization-group techniques aprig. 10 to the self-energy part of the Green’s function
plied to phenomenological modef$*™ Chubuko?® calcu- 3 (wy). Unlike the diagram of Fig. 8, here solid lines corre-
lated the dynamic susceptibility of a two-dimensional a”ti'spond to one-site propagatof&;, and points to exchange
ferromagnet in the diffusion and relaxation regions using JerticesJ(q). The wavy line in this diagram corresponds to
diagram technique in the Schwinger boson representationne gpin Green’s functiorf16) determined by the Larkin
We investigate the dynamic susceptibility as a function Ofeqation(19). In the absence of spin-liquid correlations, let
frequency and momentum in the thee-dimensional configuys gypstitute into the self-energy partw,) of the pseudo-
ration using the pseudofermion technique. fermion Green’s function the “bare” functiog;,, from Eq.

In order to calculate the spin diffusion factbrand the (26) and a spin function’ (& ,,q) in the form of a relaxator:
relaxation constanf’, we need to know, in addition to the

spin correlators defined by the Larkin equatid®), the low- S (0) =TS NS o(q)? 1 I xo(T)
frequency behavior of the current correlator: n o q ¢l i(em—wp) |lem+0(q)’

75
af _ (
Kss(ki7)= 5aﬁ’k2k V(k,p)V(—k,—p2) whereb(q)=T[ 7+ (qly)2], andT should be calculated in-
12 . . .
dependently using the Dyson and Larkin equations. By cal-
X(T A Sp,+ k2 p +ki2) T(S&psz/28827k/2)0>’ culating the sum over frequencies in E@5) and continuing
it analytically to the complex plane, we obtain the follow-
(72) ing equation for poles of the pseudofermion Green'’s func-
where tion:

V(k,p)=J(k+p/2)—I(—k+pl2). z—-3.(2)=0,
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FoXa). 7 z

iz b, The projection diagram technique suggested in the paper
3(2)=2 - 27021 Y\ " 227 T 2T and based on the similarity between the Hubbard Hamil-
q q . . . .
tonian for electrons and Heisenberg Hamiltonian for pseudo-
7T iaT fermions allows one, in principle, to go beyond the standard
Ty Tz ) (76 mean-field model of the homogeneous RVB phateAt-

) ) . ] tempts to include antiferromagnetic fluctuations in the mean-
where . Z=Txo(T), and ¢(y) is the digamma function. fie|q approximation(Sec. 4 do not produce any trustworthy
Hence, it is clear that the pseudofermion Green’s function inggits Preliminary analysis, however, indicatethat the

. . . - R . _ . . L] 1]
this approximation is7j(w) ~[w+iT(T)]"*. By substitut-  giagram technique suggested in the paper may allow one to

ing this into Eq.(74), we find the one-site susceptibility manage without the mean-field approximation in describing
Yo effects which occur in the region of critical antiferromagnetic
R 0 . . L .
Ki REEPNTRE (77 fluctuations and devise a more realistic scenario of emer-

gence of the spin liquid in the Kondo lattice.

which is, in turn, can be substituted into the Larkin equation  The investigation of spin diffusion near the' &epoint
(which also includes, generally speaking, verteXreported in Section 5 indicates that the diagram techniques
correction®), and thus the equation system frandlo is  used in describing critical antiferromagnetic correlations at
closed. high temperatures may yield new physical results in the hy-

The spin-liquid effects on the behavior of the spin cor-drodynamic region.
relation functions in the critical region can be accounted for  The authors are indebted to Yu. Kagan, N. V. Prokof'ev,
by introducing anomalous intersite contributions iX6w)  G. G. Khaliullin, D. E. Khmel'nitski, and D. I. Khomski for
(Fig. 10. Nonlocal fermion correlations lead to emergencehelpful discussions and critical remarks. This work was sup-
of a new characteristic length characterizing short-range ofported by the Russian Fund for Fundamental Research
der, and change the temperature dependence of the static spPYoject 95-02-04250a INTAS (Project 93-283% and
susceptibility and dynamic response functions. As a resultNetherlands Organization for Support of Scientific Research
we have changes in the scaling behavior and in the frequenqwo, Project 07-30-002
and momentum dependence of the spin susceptibility.

The spin diffusion factor is also determined by the self-
energy part of the current correlattr:

1 Imsi(kw) . o
D= lim 5————Kyk). (79 In calculating the polarization operatbi(R) (Eg. (40)),
k0w—0 K ® we use the asymptotic form of the Green's functi@ii).

_Substituting it into Eq(42), we obtain the expression for a
r§pherica| Fermi surface:

APPENDIX |

Since the behavior of the current correlator is fully deter
mined by relaxation processes, effects of nonlocal spin co

relations should also change scaling characteristics of the m \?2 2|en)|
spin susceptibility in the hydrodynamic region. H(R,Sm)zT(m) e F( - R)

The calculations described in this section are not consid-
ered a complete description of critical phenomena in antifer- cog2pgR+ie R/V) m |2
romagnets. These are instead illustrations given with the fol- sinh(27TR/v) (ZWR)
lowing aims: first, to demonstrate applicability of the _
suggested diagram technique to traditional problems of the Xexp{ _ M leml . sinh(|eq|R/v)
theory of magnetic phase transition and, second, to outline v 27T sinh27TR/v)

feasible methods for taking into account the effect of spin-

liquid correlations on antiferromagnetic fluctuations in the Xexr{ - MR+ 2ipeR Signgm) _ (Al.1)
critical region. v
In the static limit, it reduces to
6. CONCLUSIONS )
i in-liquid  T(RO)=T COS2peR)
In this paper, we have demonstrated that the spin-liquid (RO=T| 5= sinh 27 TRIv)
state in the Kondo lattice can be more stable than the Kondo
singlet state, owing to the same processes as those respon- mp,‘i cog2peR) m (T 2
sible for Kondo screening in the case of sufficiently strong 87 (peR)® ~ % |g PR+ ’
antiferromagnetics f-exchange. This rather paradoxical re- (AL2)

sult can be explained by the fact that strong competition
between Kondo scattering and spin-liquid correlations occurfence we have Eq45) at T=0.
at temperatures near the &epoint. Since all correlation ef- In the case of a quasi-two-dimensional cylindrical Fermi
fects at such temperatures have the same order of magnitudg;rface

the simple mean-field approximation cannot be used in de-
scribing the spin subsystem in a three-dimensional Kondo
lattice.

dp
(2m)° iw,— &(p)

g(R,z,wn)=f explip-R+ip,2)
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Po dp, pdpde 1 . f
:f —elpzz > e|p~R, -
27 (2m) —&(p)

~Pz0

g(R,Z,wn)ZWG(R,wn). (AL.3)

For p,o>pr the effective RKKY interaction is independent
of Pzo,

J 2 J\V2 [ do
Jrkky (R)= II(R,0)= = J’ 5.9 (R,w) 0 _ N
0 7T
1.0 1.5 2.0 2.5 T/Tk
2
= (n_) f ZGZ(R,Q’)- FIG. 11. Numerical values of integri(pFR) (solid line) and of the ap-
0 (Al 4) proximating functionf (pgR) (see text
HereMo=4mpZp,o/(27)3= p,opE/2m*=p,oNg/m, No=pE/ 2 2
27 is the two-dimensional density of electronic states, and _ mpﬁ S'”(ZpFR)[ W_(lp Rl + }
G(R,w,) is the two-dimensional Green’s function "~ 4m? (peR)? 6 lap " '
odpde 1 (AI.10)
G(len): (27T)2 |wn_§(p) equpR COS(P)' and atT=0 to Eq(47)
(AL5)
APPENDIX Il

Let us use the integral representation of the Bessel function Intensification of the RKKY interaction due to Kondo

27 _ renormalization of the single-sitef-exchange vertex, which
Jo(2)=5— . de exp(iz cos¢) (ALL6) s taken into account in the logarithmic approximation,
1
in the asymptotic limit for largez|: =
ymp g¢Z| T(e,a) T 2a mele)" (All.1)
Jo(2)~ i cos( 7— Z (AL7) is described by the expression
\/ ik .
zm ¢ R T foo expl— peRx)dx All2
Then we have Pr ,a,; = - 1+ 2a ()2 (All.2)
o |wn| The temperature dependence of this integral is determined by
G(R,w,)=—1 sign wn\/T T 26 P both Doniach’s parameter and the separation between
PeR neighboring Kondo center@arametepgR).
. T\ . If we neglect logarithmic renormalizatiofAll.1), the
+i| PeR— 7 |sign @y |- (Al.8) integral in(A.I1.2) equals 1pcR for T<ep/kg, and the in-
o . o _ tegral in (44) reduces to the usual RKKY formul&5).
Substituting this expression into EGAL4), we obtain When Kondo processes are taken into account, the funttion
2 defined by Eq(A.Il.2) can be approximated in the tempera-
m 2|eml . .
I(R,&,) = —T2 Rex% m ) ture range of interesf,Ty,3Tx], by the expression
7P
o , T 1 1
S|r1(2p,:R+|st/v)_T m pFR a, 8|: pFR (1 2u |n(T/8 ))n(pFR ,a) !
sinh(27TR/v) 2mpeR (All.3)
l&ml l&ml where the exponembi=n(peR,@) is independent of tem-
X R T perature. As a result, the high-temperature behavior of the
RKKY interaction is determined by the function
B smh(lemIR/v)eX Isml lenl o, o f(peR, @, T/eg) = f(peR,a, T/e£) peR, which can be ap-
sinh(27TR/v) proximated as
m\ ~ T 1
x| PR Z)S'gnsm J (AL9) flPeRa |~ T 20 n(Tle e (All4)

Figure 11 shows the temperature dependence of the ex-
act function f(peR=5.0=0.09) calculated numerically
T m? sin(2peR) (solid  line and the  approximate  function
2mpeR sinh(27TR/v) f(peR=0.52=0.09) (dotted ling in the temperature range

In the low-temperature limit this expression becomes

II(R,0)=—
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T<T<3Tk. The exponenh=n(peR,«) of approximate
function (All.4) is shown in the insert as a function pgR
in the range 2 prR<8 for several values a# in the inter-

val 0.04< a<0.165. The exponent was determined using the

least-square fit in the temperature rangerk2 T<<3Tk.

APPENDIX I

In this Appendix, we calculate the parame¥defined

by Eg. (70), which characterizes the effect of spin correla- ) ) - )
and as a result, strong spin fluctuations stabilize the spin

tions on the transition temperature to the RVB phase for
simple cubic lattice with anisotropic RKKY interaction due,

Using asymptotic expressions for the integrals:
A(y, 7')‘? oET In maxy,7),

A7), gxlmaxy,m)] 71

we obtain for the neighborhood dfy in the case of strong

anisotropy
Y, (y, TEOIT) < —In maxy,7), (AlIL7)

Y, (3, TE Oy < [max7, 7] 12 (AIl.8)

liquid.

for example, to a nonspherical Fermi surface. Let us intro-

duceJ;=J,=J, andJ, =J,. Then we must substitute into
Eq. (57) for the spin correlatoKy(q, y) the parameter

iq=3q/13al=—ji(e1 T ve.), (Alll.1)
where ¢(q) =2(cosg,+cosqy), ¢, (q)=2 cosq,,
ji=3;/dq (a=1). To calculate sums in E@65) like
S(S+1)T
6Tnjo “g

and

(Pu(p_q)
TITnjo—lqlio’
(Alll.2)
we use the integral representation for the spin correlator

S(S+1)jqf°° p{ ( T jq)]

K yY)S T (ae dtexp — | =————]|t}.

(A7) 6Tnjo  Jo Tnio o
(AllL.3)

When the interaction in the basal plane is dominant (),
the spectrum of spin-liquid excitations has the form

T; eu(P—DKo(a,y) =

T
1-(2+ 7)T—NA(%T/TN)}¢>(Q),
(Alll.4)

where the functiorA(y,T/Ty) can be expressed in terms of
integrals of Bessel functions:

- 1
€ ‘,‘)(T/TN"}/): >34

Aly,m)= jo dt exp{—(2+y)(1+ 7)tH (D)1 o(D)lo(11).

(AllL.5)
Given thatd(¥= ¢{?)=1 for the simple cubic lattice, we ob-
tain

Y, (7, T =[1-(2+ y)(1+ 1A(y,7)]%4.  (Alll.6)

DPreliminary results of this study were given in the short note.

2A procedure similar to that suggested below was described in Ref. 33 in
the cases of the Anderson impurity and Anderson lattice. But since the
Anderson Hamiltonian, unlike spin Hamiltoniaris) and (2), does not
have local SW2) symmetry, and the requirement of exact particle-hole
symmetry is not imposed, there are many differences between formulations
of rules of the diagram techniques.

9Since in the cas&=1/2 for one-site processes the constraint condition is
satisfied automaticallif it is unnecessary to introduce projection opera-
tors.
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