
Spin liquid in an almost antiferromagnetic Kondo lattice

-

K. A. Kikoin, M. N. Kiselev, and A. S. Mishchenko

Kurchatov Institute, 123182 Moscow, Russia
~Submitted 2 January 1997!
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A theory of stabilization of a spin liquid in a Kondo lattice at temperatures close to the
temperature of antiferromagnetic instability has been developed. Kondo exchange scattering of
conduction electrons leads to emergence of a state of the spin liquid of the resonating
valence bonds~RVB! type atT . TK . Owing to this stabilization, low-energy processes of
Kondo scattering with energies belowTK are frozen so that the ‘‘singlet’’ state of the Kondo lattice
is not realized; instead a strongly correlated spin liquid with developed antiferromagnetic
fluctuations occurs. A new version of the Feynman diagram technique has been developed to
describe interaction between spin fluctuations and resonant valence bonds in a self-
consistent manner. Emergence of a strongly anisotropic RVB spin liquid is discussed. ©1997
American Institute of Physics.@S1063-7761~97!02508-0#
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One of the most extraordinary properties of heav
fermion compounds is the transition of a system of wea
interacting spins, which manifests paramagnetic propertie
high temperatures, to a strongly correlated quantum liq
with thermodynamic and magnetic properties typical
Fermi systems atT , Tcoh ! T* . This ‘‘dissolution’’ of
localized spins is usually interpreted in terms of the Kon
lattice model, and the basic mechanism which determi
thermal transformation of the spin subsystem is assume
be Kondo screening of spins by conduction electrons. T
screening can be modeled in essentially the same way
one-impurity lattice, so that the Kondo lattice can be trea
as a periodic structure of Kondo impurities coherently sc
tering conduction electrons.1,2 The characteristic temperatur
T* at which the system switches to another regime is
Kondo temperatureTK , and the ground state in the mea
field approximation is the so-called Kondo singlet.

This simple model, however, ignores spin correlatio
whose close relation to heavy fermions is beyond doubt.
well known that formation of a heavy fermion is in all cas
without exception due either to long-range antiferromagn
order or short-range magnetic correlations. In its interpre
tion of this relation, the Kondo lattice theory invokes indire
exchange between localized spins via conduction elect
~RKKY exchange!, which occurs in the Kondo lattice mod
in the second order of perturbation theory. Thus, nonlo
spin correlations compete with local effects of sp
screening.3 This naive dichotomy of Doniach’s, which take
place in the mean-field approximation, predicts a tendenc
antiferromagnetic ordering at small values of the effect
coupling constant

a5Js f N ~«F!V0 ,

whereJs f is thes f -exchange integral,N («F) is the electron
density of states at the Fermi surface,V0 is the elementary
cell volume. At largea, Kondo screening suppresses t
magnetic moment, and the ground state is the Kondo sin
Then, fora slightly higher thanac determined by the equa
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lated by perturbation theory, and magnetic correlatio
modify properties of the singlet phase.4,5

An alternative approach to the problem of competiti
between the one-site screening and magnetic intersite co
lations was suggested by Coleman and Andrei.6 The two
options described by Doniach’s simple model were supp
mented with a third one, namely, formation of a nonmagne
spin liquid of the resonant valence bonds~RVB! type with
the Fermi statistics of elementary excitation in the spin s
tem ~spinons!. They demonstrated that the spin liquid stat
stabilized by Kondo scattering, but calculated both spin
tersite correlations and the single-sites f -exchange betwee
spinons and electrons in the mean-field approximation. In
duction of anomalous one-site averages of the Kondo typ
in reality, equivalent to the assumption that full dynamic sp
screening takes place, and the assumption that Kondo
glets are formed at each site owing to multiple ‘‘switching
of RVB bonds between localized spins and conduction e
tron spins is equivalent to a translation of electron charge
spin degrees of freedom. Thus, in this scenario, as well a
the mean-field theory of the Kondo lattice,7 spin degrees of
freedom, which manifest themselves at high temperature
weak paramagnetic, noncharged correlations, have a ch
at T , TK and transform to charged heavy fermions~a
critical discussion of this scenario was given in Ref.!.
Naturally, interpretation of the existence of magnetic cor
lations in the Kondo lattice requires more theoretical effo9

This paper suggests an alternative scenario of forma
of a spin liquid in the Kondo lattice described by the Ham
tonian

Heff5(
ks

«kcks
1 cks1Js f(

i
S si–Si1

1

4D . ~1!

Here«k is the dispersion relation for conduction electrons,Si
and si 5 (1/2)cis

1 ŝcis , are operators of a spin localized i
the f -shell and of a delocalized conduction electron sp
respectively, andŝ are Pauli matrices. Our approach is bas
on an understanding that in the critical region, where
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TK ; «F exp( 2 1/2a), Neel temperatureTN ; «Fa , and
the temperatureT* of the transition to the spin-liquid state!
are of the same order, and the Kondo scattering is favor
to the transition to the spin-liquid state so thatT* . TN

. TK , the very existence of spin-liquid correlations imped
the formation of a singlet ground state, since screening
localized spins by the Kondo scattering is, in fact, frozen
temperaturesT ; T* . TK , and at lower temperatures th
system properties are controlled by nonlocal spin-liquid c
relations, rather than one-site Kondo scattering. In ot
words, spin correlations suppress the Kondo effect in b
the ordered~magnetic! and disordered~spin-liquid! phases,
so Doniach’s simple phase diagram should be revised.

Since the spin-liquid state emerges in the critical reg
a ; ac at temperatures close toTN , the coexistence o
heavy fermions and magnetic correlations has a natura
terpretation in the proposed model. Moreover, it is obvio
that critical spin fluctuations should play an important role
the mechanism of spin-liquid formation. In this study, w
have limited our calculations to the range of high tempe
turesT . TK , where the perturbation theory in the param
etera ln(«F /TK) applies. We use the diagram technique
spin operators in the pseudofermion representation10 in the
approximation of noncrossing graphs~or noncrossing ap-
proximation, NCA! for the description of the Kondo scatte
ing. The results of high-temperature expansions, which t
one-site and intersite correlations into account concurren
will be extrapolated to the range of temperatures where p
magnetic fluctuations are important. However, when
pseudofermion technique is applied to nonlocal spin-liq
correlations, the problem of nonphysical states arises,
hence the breaking of local spin symmetry.11–15 With this
circumstance in view, we have constructed a Feynman
gram technique for spin Hamiltonians, which allows us,
principle, not only to get rid of nonphysical states, but also
take into account fluctuations of calibration fields.

In Sec. 2 this technique is applied to a spin liquid of t
homogeneous RVB phase type16,17 described in terms of the
Heisenberg model; in Sec. 3 the technique is applied to
Kondo lattice, and the mechanism of RVB phase stabili
tion by Kondo scattering in the mean-field approximation
described.1! The mean-field theory for the RVB phase, takin
into account critical fluctuations, is generalized in Sec. 4, a
Sec. 5 shows how this diagram technique can be use
describing local critical and hydrodynamic fluctuatio
around the antiferromagnetic instability point.

2. PROJECTION DIAGRAM TECHNIQUE FOR THE
HEISENBERG LATTICE

Along with standard perturbation theory techniques
veloped for Fermi and Bose operators, one can find in
literature a number of diagram techniques for noncommu
operators in terms of which one can write the Hamiltonia
of the spin or strongly correlated electrons systems~see, for
example, Refs. 19–21 and references therein!. Most of these
techniques are based on Hubbard’s projection opera
Xj

lm 5u jl&^ jmu, whereu jl& is a ket vector corresponding t
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perturbation theory is diagonalized in this approximation.
Diagram techniques for noncommuting operators

harder to handle than the standard Feynman technique. O
in some cases do they allow a self-consistent form of clo
equation systems for skeleton diagrams. Goden’s proce
factorizing the average ofn operators, unlike Wick’s proce
dure, which plays a similar role in the usual diagram tec
nique, is ambiguous, and a successful choice of the hiera
of couplings largely depends on the theorist’s intuition~see,
for example, Ref. 22!.

For this reason, it is natural to attempt to express H
bard’s operators~and spin operators, which are a special ca
of these operators! as products of Fermi and Bose operato
and thus restore conditions for using the machinery of
Feynman and Matsubara techniques. Such attempts
been undertaken many times since the 1960s,10,23–25 up
through recent times.22,26–28 It is clear, however, that thes
procedures are by no means universal or unambigu
Moreover, each factorization leads to multiplication a
complication of vertices and emergence of local constrai
whose introduction is necessary for the preservation of lo
gauge invariance, which is a trait of the Hamiltonian in que
tion.

Additional problems arise due to attempts to descr
nonlocal spin-liquid RVB excitation. In this case, problem
arise on the level of the mean-field approximation for t
self-energy part of the one-particle propagator. The us
techniques of self-consistent perturbation theory break
local gauge invariance,11 and its restoration is quite a diffi
cult physical and mathematical problem.13,14

In this section we formulate a version of the diagra
technique integrating the two approaches mentioned ab
and apply it to Hamiltonians with local SU~2! symmetry.
With a view toward using this technique in the description
spin liquid in terms of Hamiltonian~1!, we start with the
simpler case of the Heisenberg Hamiltonian for spin 1/2 w
antiferromagnetic interaction:

H5h(
i

Si
z1J(

i
(

j

^nn& S Si–Sj2
1

4D ; ~2!

we then pass to a description of the Kondo lattice at h
temperaturesT . TK , for which the noncrossing approxi
mation ~NCA! applies, and the system can be treated a
periodic lattice of independent Kondo scatterers interact
via the RKKY mechanism.3

Let us introduce a pseudofermion representation10 for
spin operators:

S15 f ↑
1 f ↓ , S25 f ↓

1 f ↑ , Sz5
1

2
~ f ↑

1 f ↑2 f ↓
1 f ↓!. ~3!

These operators satisfy the local constraint condition

n5 f ↑
1 f ↑1 f ↓

1 f ↓51 ~4!

at each site. The first term in Eq.~2! describes Zeeman split
ting in an infinitesimal magnetic fieldh 5 gmBH, and the
antiferromagnetic sign of the exchange constantJ is taken
into account explicitly.
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The SU~2! invariance means that the spin operators
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$S ,S ,S % can be expressed as arbitrary linear combi
tions of spin-fermions$ f ↑ , f ↓ , f ↑

1 , f ↓
1%:

Si
15~cosu f i↑

11sin u f i↓ !~cosu f i↓2sin u f i↑
1 !,

Si
25~cosu f i↓

12sin u f i↑!~cosu f i↑1sin u f i↓
1!, ~5!

Sz5
1

2
~ f i↑

1 f i↑2 f i↓
1 f i↓!.

In particular, for pseudofermion filling factors, we have co
plete particle–hole symmetry,

f is
1 f is5 f i2s f i2s

1 , ~6!

which directly follows from condition~4! or from Eqs.~5!
for u 5 0,p/2. Thus, Hamiltonian~2! can be expressed i
the pseudofermion representation as

H5H01H int52
h

2 (
ij s

s f is
1 f is1

J

2 (
ij s

f is1

1 f js1
f js2

1 f is2
.

~7!

The local constraint places significant limits on the fe
sibility of using standard diagrammatic techniques, or in a
case, makes more difficult practical description of the s
dynamics in the fermion representation, since the functio
space in which the spin and fermion operators act has fi
dimensionality. One of the most convenient techniques
including the spin kinetamics in the fermion representat
was suggested by Abrikosov.10 2S 1 1 spins~projections!
correspond to a localized spinSi , whereas in its description
in terms of pseudofermion operators 2(2S11) orthogonal
states emerge, in accordance with the filling numbers~0,1!
for all 2S 1 1 spin projections. In a specific case of sp
S 5 1/2, there are four fermion states:

u0&5u0,0&; u1&5u1,0&; u2&5u0,1&; u2&5u1,1& ~8!

and only two of them, namely statesu6&, correspond to
physical states of the spin operator. Abrikosov suggested
cribing energyl @ T to each state occupied by a pseud
fermion. Then the nonphysical stateu2& from set~8! is frozen
out after averaging owing to the additional fact
exp( 2 l/T) in the partition functionZ(T). In order to get
rid of the other nonphysical stateu0&, one must introduce an
additional factor (1/2) exp(l/T) to Z(T) and take the limit
l/T→` in averaging over spin states. As a result, physi
statesu6& become states with the lowest ‘‘energy’’, and th
final result is independent ofl. Abrikosov’s prescription ap-
plies to local spin states in the case of a one-impurity Ham
tonian ofs f-exchange. In a Kondo lattice it can be used on
in the limit of large spin with degeneracyN→`, for which
NCA becomes an asymptotically exact approximation,29 but
this technique cannot be used in describing spin-liquid c
relations.

The starting point of the proposed method is the w
known similarity between the Heisenberg and Hubb
Hamiltonians in the limit of strong interactionU in the case
of half-filled states. Let us express pseudofermion opera
in the form of sums,

f is
15 f is

1~12ni2s!1 f is
1ni2s ,
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and introduce Hubbard’s projection operators for pseu
fermions, as was done by Hubbard for the real elect
operators30:

Xi
s05 f is

1~12ni2s!, Xi
2s52s f i2s

1 nis ,

Xi
ss5nis~12ni2s!5nisni2s , Xi

225ni↑ni↓ ,

Xi
005~12ni↑!~12ni↓!, ~10!

Xi
s2s5 f is

1 f i2s5Xi
s2Xi

22s5Xi
s0Xi

02s .

These operators form a normalized basis for the group SU~4!
with the obvious completeness condition

(
m

Xi
mm51. ~11!

The second line of Eq.~9! can be rewritten in the form

nis5Xi
s0Xi

0s1Xi
s2Xi

2s . ~12!

As a result, Hamiltonian~2!, ~7! takes the form

H5H01H int ,

H052
h

2 (
is

sXi
ss1

U

2 (
i

~Xi
001Xi

22!, ~13!

H int5
J

2 (
ij s

~Xi
s2sXj

2ss2Xi
ssXj

2s2s!

5
J

2 (
ij ss8

f ij
sf ji

s8 .

Here

f ij
s5~sXi

22s1Xi
s0!~sXj

2s21Xj
0s!, ~14!

and the fictitious Hubbard repulsion parameterU for pseudo-
fermions is introduced so as to preserve the particle–h
symmetry of the Heisenberg Hamiltonian.

Instead of using diagram techniques for theX-operators
~see, for example, Refs. 19, 22, 31, and 32!, we try to remain
within the standard Feynman approach, but use the pro
ties of the projection operatorsXi

lm in explicit form. We take
for a basis of the diagram expansion the eigenstates of
HamiltonianH0 under the conditionU/T [ bU→`. As a
result, we have the reduced Hamiltonian

H̃5H̃01H int , H̃052
h

2 (
is

s f is
1 f is ~15!

with the partition functionẐ 5 Tr@exp( 2 bH̃)#, which
includes only physical statesus& 5u 6& from set ~8!. The
HamiltonianH0 reduces toH̃0 since the operatorsXi

ss and
f is

1 f is have identical matrix elements in the reduced~physi-
cal! space. Now we can useH̃ in the form ~15! as a zero-
approximation Hamiltonian for the Matsubara diagra
technique.2!

Selection of one of the two forms of Hamiltonian~13!
depends on which of the spin system states we are goin
describe. Whereas the most convenient representation fo
high-temperature paramagnetic phase or a state with lo

401Kikoin et al.



e
FIG. 1. Bare exchange vertices with du
account of projection operators.
range magnetic order isH int in terms of spin operatorsXi
ss8 ,

o

a

,
io

th

om

-
er
e

lc
t

ot
wi
th

Let us proceed to nonlocal spin-liquid correlations. We
uid

d
site

ith

a
a

tion

i-
rms

a
n

tly
o-
d
g-
rily
ich
nt.
an,
e

at
the

non
ec-
s,
it is natural to describe the RVB spin-liquid state in terms
operatorsf ij

s .
Let us first consider the temperature Green’s function

K ij
'~t!5^TtSi

1~t!Sj
2~0!&H̃ , ~16!

which describes elementary excitations in the stand
theory of magnetism~i t is the imaginary ‘‘time’’!. To
zeroth-order in the interaction, the function has the form

K ij
0~t!5

d ij

4
^Tt f i↑

1~t! f i↓~t! f i↓
1~0! f i↑~0!&H̃0

. ~17!

Averaging is performed with the partition functionZ
5 2 cosh(bh), b51/kT. In accordance with Wick’s theorem
this average can be presented in the form of a two-ferm
loop and reduces to the simple expression

K ij
0~t!5

d ij

4
e2htH ^ni↑~12ni↓!&H̃0

~t.0!

^ni↓~12ni↑!&H̃0
~t,0!

. ~18!

One can see that by virtue of Eq.~4!, fermion states are
generated in pairs, and the emergence of filling factors in
form of averages of projection operators^Xss&H̃0

@see Eq.
~10!# shows that spin operators do not drive the system fr
the space of ‘‘physical’’ statesu6&.

Thus, the limitU→` for effective Hamiltonian~13! is
equivalent to the limitl→` in Abrikosov’s procedure de
scribed above, which ‘‘freezes out’’ nonphysical pseudof
mion statesu0& and u2& without breaking the particle–hol
symmetry.

The perturbation theory series for the functionK' can
be constructed in accordance with the usual rules for ca
lating two-time Green’s functions. This procedure leads
Larkin’s equation34

K 5S1JSK . ~19!

HereS is the irreducible polarization operator, which is n
separable with respect to the interaction. In Sec. 5 we
use this version of the diagram technique to calculate
spin diffusion coefficient near the Ne´el point.
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consider as an example an RVB homogeneous spin liq
described by the correlator

L ij 5(
s

^f ij
sf ji

s&, ~20!

i.e., we use the second version ofH int in Eq. ~13!. Thus, the
nonphysical statesu0& and u2& are eliminated by the Hubbar
procedure, since each fermion creation event at each
involves a projection operation in accordance with Eq.~14!.
This makes exchange vertex~13! more complicated; it can
be described in the projection techniques by diagrams w
twelve tails, as is shown by Fig. 1.

The role of projectors is to automatically eliminate
state with an opposite projection in creating a fermion with
given spin projection, and this guarantees that the crea
operator acts on a state from the physical subspaceu6&. But,
although correlator~20! is diagonal in subspaceu6&, the non-
physical statesu0& and u2& manifest themselves as intermed
ate states in any attempt to describe the spin liquid in te
of fermion operators.

In Refs. 11 and 13 it was noted that introduction of
homogeneous RVB state in the mean-field approximatio16

violates the local gauge invariance due to constraint~4!, ~6!,
and long-wave fluctuations of gauge fields significan
change the character of RVB excitations in a tw
dimensional Heisenberg lattice~see also Refs. 14, 35, an
36!. In this paper, we do not consider the problem of lon
wave fluctuations in gauge fields. We are interested prima
in nonlocal high-temperature magnetic fluctuations, wh
are also related, however, to the violation of the constrai

As was shown in the fundamental study by Baskar
Zou and Anderson,16 the description of a uniform RVB stat
requires ‘‘anomalous’’ coupling between pseudofermions
different sites. It is clear that such a procedure drives
system beyond the physical spaceu6&. The gauge theory of
a spin liquid demonstrates that free propagation of a spi
is impossible. The complex shape of vertices in the proj
tion technique~Fig. 1! indicates the same thing. Nonetheles

402Kikoin et al.



we start construction of our scheme with a demonstration of
a
o

rv

where

how far this technique applies in the mean-field approxim
tion; we then consider the possible effect of fluctuations
the mean-field solution.

Let us introduce an anomalous one-particle~one-
fermion! temperature Green’s function. In order to prese
particle–hole symmetry, let us express it in matrix form:

Ĝ ij s~t!52^TtX̂is~t!X̂js
1 ~0!&H̃, ~21!
th

s

h
nc

te
e

-
n

e

X̂is5S Xi
0s Xi

s0

sXi
2s2 sXi

22sD , X̂is
15S Xi

s0 sXi
22s

Xi
0s sXi

2s2D .

~22!

This Green’s function has the structure
Ĝ ij s~t!52S ^Tt(Xi
0s(t)Xj

s0(0)

1Xi
s0(t)Xj

0s(0))&

s^Tt(Xi
0s(t)Xj

22s(0)

1Xi
s0(t)Xj

2s2(0)&

s^Tt(Xi
2s2(t)Xj

s0(0)

1Xi
22s(t)Xj

20s(0)&
^Tt(Xi

2s2(t)Xj
22s(0)

1Xi
22s(t)Xj

2s2(0)&

D . ~23!

The zero~one-site! matrix Green’s function
g~aa!~v !5

1 1
. ~26!
n

-

e
ndi-
s,
ting

d

ĝis~t!52^TtX̂is~t!X̂is
1~0!&H̃0

~24!

is diagonal, and its elements are

gis
~11!~t !52^Tt~Xi

0s~t!Xi
s0~0!1Xi

s0~t!Xi
0s~0!!&0 ,

gis
~22!~t !52^Tt~Xi

2s2~t!Xi
22s~0!

1Xi
22s~t!Xi

2s2~0!!&0 .

As in the previous case, the averaging^...&0[^...&H̃0
leaves

the one-site Green’s function in the physical sector of
Fock space. In particular,

gis
~11!~t12t2!52^Xi

s0~t1!Xi
0s~t2!&0

52^Xi
ss&0 exp@2 ish~t12t2!/2#

3~t1.t2!,

gis
~11!~t12t2!5^Xi

s0~t2!Xi
0s~t1!&0

5^Xi
ss&0 exp@2 ish~t12t2!/2#~t2.t1!.

~25!

Unlike spin Green’s functions~17!, matrix elements of the
function ĝis(t) formally represent the three-fermion loop
containing one particle~spin up! and two hole~spin down!
propagators, or one hole and two particle propagators. T
function, however, can be simplified using the idempote
property of operatorb†b, conditions~4! and~6!, and Wick’s
theorem. By substituting the Hubbard operators in the in
action picture into Eq.~25!, we obtain expressions for th
elements of the one-site propagator,

gi↑
~11!5

1

2
e2htH 2^~12ni↓!&0 ~t.0!

^ni↓&0 ~t,0!
,

and a similar expression for the spin-down state.
One can easily check that the Green’s functionG is

(aa) is
periodic,G iis(t,0)52G iis(t11/T), so that by introduc-
ing the Matsubara frequenciesvn5(2n11)pT in the usual
manner, we obtain
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The mean-field approximation16 is based on the intro-
duction of anomalous averages^ f is

1 f js&. For the anomalous
matrix Green’s function~21!, we must introduce four com
ponents:

D i j s
11 5^Xi

s0~t!Xj
0s~t8→t!&,

D i j s
22 5^Xi

2s2~t!Xj
22s~t8→t!&,

D i j s
12 5^Xi

s0~t!Xj
2s2~t8→t!&,

D i j s
21 5^Xi

22s~t!Xj
0s~t8→t!&, ~27!

where D i j s
11 5D i j s

22 . Then one can easily check that th
anomalous Green’s function also satisfies a periodic co
tion like that in Eq.~21! on the inverse temperature. Thu
we can use the projection diagram technique in calcula
the anomalous averageD5(s^f ij

s&, which characterizes a
uniform RVB state. This ‘‘order parameter’’ can be derive
from the relation

D5Tr~ 1̂1 t̂1!Ĝ ij ~t→20!, ~28!

where lˆ and t̂1 are the Pauli matrices.
Let us rewrite Hubbard operators~10! in the particle–

hole representation,f i↑[ai , f i↓[bi
1 :

Xi
↑05ai

1bi
1bi , Xi

2↓5ai
1bibi

1 , Xi
↑↓5ai

1bi
1 ...

The mean-field approximation~28! corresponds to the fol-
lowing splitting of the interaction HamiltonianH int :

HMF5JD(
i

(
j

^nn&

~Yij
~h!1Yij

~p!!, ~29!

where

Yij
~p!5ai

1bi
1bibj

1bjaj1ai
1bibi

1bjbj
1aj1ai

1bibi
1bj

1bjaj

1ai
1bi

1bibjbj
1aj ,

Yij
~h!5biaiai

1ajaj
1bj

11biai
1aiaj

1ajbj
11biaiai

1aj
1ajbj

1

403Kikoin et al.



an
ne

ia
it
ex
th

ld

e

By substituting Green’s functions~32! into Eq. ~28!, we ob-

ial

nds

eld

h

on

the
into
fect
le–
. In

he
que

ly
y-
ug-

te
rm
-
ur
he
iq-
tic
fac-
nd

-

de-
s

n

1biai
1aiajaj

1bj
1 .

In terms of perturbation theory, this approximation c
be described by the diagrams for the self-energy compo
Ŝij of Green’s function~23! shown in Fig. 2. The four dia-
grams correspond to the four elements ofŜ. The Dyson ma-
trix equation in this approximation is expressed by the d
grams in Fig. 3, in which double lines denote the one-s
matricesgis , the dashed line denotes the Heisenberg
change constant, and thick lines with two arrows denote
anomalous Green’s functionĜ ij s . The Dyson equation

Ĝ ij s~vn!5ĝis~vn!S d ij 1(
l

ŜilĜ lj s~vn! D ~30!

is Fourier transformed to~ash→0!

2ivnG ks
~ab!~ ivn!5dab1JDw~k!(

g
G ks

~gb!~ ivn!. ~31!

A solution of this equation system is

G ks
~11!~ ivn!5

1

2

ivn2ek/2

ivn~ ivn2ek!
,

G ks
~12!~ ivn!5

1

2

sek/2

ivn~ ivn2ek!
. ~32!

Here ek is the spinon dispersion relation in the mean-fie
approximation in the form

ek5JDw~k! ~33!

in the case of antiferromagnetic exchange only between n
est neighbors;w~k! is the corresponding form factor:

w~k!5(
l

~nn!

eik–l. ~34!

FIG. 2. Components ofŜ matrix for the one-particle Green’s functionG ij .

FIG. 3. ~a! Dyson equation and~b! self-energy part of the Green’s functio
G ij in the mean-field approximation.
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tain a self-consistent equation forD:

D5~ZN!21(
k

w~k!tanh
b@JDw~k!2m#

2
, ~35!

whereZ is the coordination number. The chemical potent
m is treated as a Lagrange multiplier when constraint~4! is
substituted into the Hamiltonian. This operation correspo
to substitution ofivn1m for ivn . As usual, the local con-
straint can be replaced with a global one in the mean-fi
approximation:

N21T(
k

(
vn

Tr~ 1̂1 t̂1!Ĝ k~ ivn!50. ~36!

By substituting Green’s function~32! into Eq. ~36!, we ob-
tain another self-consistency condition, which fixesm at the
mid-position of the spinon ‘‘band,’’ in accordance wit
particle–hole symmetry.

The ‘‘phase transition’’ temperatureT* at which a non-
trivial solution for D emerges is given by

T* 5
J

2
~ZN!21(

k
w2~k!, ~37!

which is usually derived in the mean-field approximati
using the functional integration technique~see, for example,
Refs. 6, 37, and 38!.

Thus, we have found that kinematic constraints on
pseudofermion representation of spin operators taken
account through Hubbard projection operators do not af
the mean-field solution for the RVB state as long as partic
hole symmetry is preserved at each step of the calculation
this respect, the situation is different from that in which t
same problem is solved by the Hubbard operator techni
for the t2J model with a finite density of holes,39 where this
symmetry is violated from the outset, since only doub
filled statesu2& are excluded. In Ref. 22 another symmetr
based approach to elimination of nonphysical states is s
gested, in which the ‘‘fermion’’ setu0&, u2& is replaced with a
unified ‘‘boson’’ vacuumuV&.

Although the projection technique does not contribu
any new features to the mean-field solution for the unifo
RVB liquid, it offers, in principle, new opportunities for tak
ing gauge fluctuations into account, which inevitably occ
in spinon propagation. Moreover, as will be shown in t
next section, in a three-dimensional Kondo lattice, spin l
uid is formed in the neighborhood of the antiferromagne
instability, because magnetic fluctuations are a decisive
tor for both the transition temperature to the RVB state a
the mechanism of this transition.

3. STABILIZATION OF SPIN LIQUID IN THE KONDO
LATTICE AT HIGH TEMPERATURES. MEAN-FIELD
APPROXIMATION

It is well known40 that in the three-dimensional Heisen
berg lattice the ground state energy of the RVB phase,ESL ,
is higher than the antiferromagnetic state energyEAFM . It
has also been shown, however, that in the Kondo lattice
scribed by the Hamiltonian~1!, spin-flip scattering processe

404Kikoin et al.



can lead to stabilization of the RVB phase with respect to the
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magnetically ordered phase. Since antiferromagnetic an
spin-liquid correlations in thes f-exchange model are gov
erned by the same coupling constantJRKKY , the temperature
at which the spin liquid is formed is close to the point
magnetic instability,T* 2TN,TN , so that antiferromagnetic
correlations can significantly alter the character of a tran
tion to the RVB phase, as compared to the results obtaine
the mean-field approximation.

In order to describe formation of spin liquid in th
Kondo lattice, we take Hamiltonian~1! in the original form

Heff5(
ks

«kcks
1 cks1

1

4
Js f(

i
cis

1cis8 f is8
1 f is . ~38!

As mentioned in the Introduction, we operate in t
range of parametersa'ac of Doniach’s diagram,3 in which
all characteristic temperatures (TK;«Fexp(21/2a),
TN0;«Fa2, and T* , which is to be calculated! are of the
same order of magnitude, so that in constructing the
phase diagram one must take into account the mutual eff
of all three types of correlation—in particular, the change
the Néel temperature with respect toTN0 as given by simple
perturbation theory in the parametera.

As noted above, in this study we limit discussion to t
range of high temperaturesT.TK ,TN0 , in which the mag-
netic subsystem is a lattice of paramagnetic spins imme
in the Fermi sea of conductance electrons, and NCA app
to the one-site paramagnetics f-scattering, i.e., each spin lo
calized at a lattice site scatters conduction electrons inde
dently of other spins. As the temperature is reduced, b
Kondo scattering and correlations among lattice sites du
the indirect RKKY interaction are intensified.

The problem of competition between the indirect e
change among lattice sites and one-sites f-scattering has
been discussed in literature many times, largely in terms
the Kondo problem with two impurities. In particula
Varma41 analyzed the mutual influence of Kondo scatteri
and RKKY interaction at high temperatures by perturbat
theory and concluded that the mutual influence of these
processes is small, at least in the leading logarithmic
proximation ina ln(«F /T). In this section, we will show tha
in the Kondo lattice, the effect of spin-flip scattering on ma
netic correlations is a decisive factor for stabilization of t
RVB phase in the critical region of Doniach’s diagram
a;ac .

In describing the intersite magnetic interaction und
conditions of Kondo scattering in the noncrossing appro
mation ~NCA!, the effective vertex of the RKKY exchang
J̃ij (T,e) is determined by the diagram in Fig. 4a. In th
diagram, dashed lines denote electron Green’s functions,
the ingoing and outgoing lines correspond to pseudoferm
operators. The one-sites f-exchange verticesG include loops
corresponding to the leading logarithmic approximation
a ln(«F /T) for the Kondo problem3! ~Fig. 5!. As a result, the
effective interaction is given by

J̃ij ~T,«m!5P~R,«m!G2, ~39!

where«m52mpT, R5uRi2Rju.
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In the spirit of the logarithmic perturbation theory,10 the
argument of vertexG should contain only the highest inpu
frequency, which is determined in our case by energies
electronic Green’s functions included in the polarization lo
P(R,«m) in the integralĴij (T,«m) ~Eq. ~39!!. The polariza-
tion operator in the coordinate representation has the for

P~R,«m!5T(
n

D~2R,vn1«m!D~R,vn!. ~40!

Since all heavy-fermion systems are characterized by la
lattice constants, we use for electronic Green’s functio
D(R,vn) an expression asymptotic inpFR:

D~R,vn!52
pF

2pvFR
expS 2

uvnu
2«F

pFR

1 ipFR sign vnD , ~41!

so that the polarization operator takes the form

P~R,«m!5S pF

2pvFRD 2

T (
n52`

n5`

expS 2
uvnu
vF

R2
uvn1«mu

vF
R

1 ipFR@signvn1sign~vn1«m!# D . ~42!

In the static limit,

J̃R~T,0!5T(
n

D2~R,vn!G2~vn ,T!. ~43!

The temperature dependence in Eq.~43! is largely deter-
mined by one-site vertices, and in the polarization loop o
can use the condition 2pTR/v f!1 and change summation
over discrete frequencies to integration~see Appendix I!.
Then the exchange integral takes the form

FIG. 4. ~a! Effective vertex of renormalized RKKY interaction; self-energ
part of the one-particle Green’s function in the mean-field approximation~b!
for the Néel and~c! RVB phase.

FIG. 5. Parquet diagrams for effective vertexG.
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FIG. 6. Single-site diagrams describing Kondo screening
a localized spin.
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JR~T,0!52S 2pvFRD cos~2pFR!

3E
T→0

` d«

2p
expS 2

«

«F
pFRDG2~«,T!. ~44!

This equation transforms to the standard RKKY exchan
integral when modified vertices are replaced with the ‘‘bar
integrals,G→Js fV0 , whereV0 is the elementary cell vol-
ume:

JR
05~Js fV0!2P~R,0!5~Js fV0!2

mpF
4

p3

3Fcos~2pFR!

~2pFR!3 1OS 1

~2pFR!4G
[S Js f

2

«F
D ~pFa0!6

2p3 F~2pFR!. ~45!

Let us substitute intoJ̃R(T,0) the vertexG(«,T) calcu-
lated in the leading logarithmic approximation, in acco
dance with diagrams given in Fig. 5 with the input frequen
« satisfying the condition ln(«F /«̄)@1. For the characteristic
energy«̄@1, which determines integral~44! ~see Appendix
II !, we find that the exchange parameter can be approxim
by the function

J̃R~T,0!'eF

~pFa0!6

2p3 S Js f

«F
D 2

F~2pFR!

3S 112a ln
T

«F
D 2n

. ~46!

The exponentn in this function depends ona and the argu-
ment of the oscillating functionF(pFR) ~see the insert in
Fig. 11!. Thus, one can see that Kondo scattering has l
influence on the form and spatial periodicity of the indire
exchange integral forT.TK .41 But this integral can be
larger, and the larger the separationR between magnetic
f -ions, the greater the increase.

In calculating the polarization operator and RKKY int
gral ~46!, we assumed that the electron Fermi surface w
spherical. Note, however, that the exponentn in Eq. ~46! is
sensitive to the asymptotic behavior of the functi
F(2pFR), so that the role of Kondo processes in intens
cation of the exchange turns out to be important in the c
of a highly anisotropic Fermi surface. In the limiting case
a cylindrical Fermi surface,

F~2pFR!52Fsin~2pFR!

~2pFR!2 1OS 1

~2pFR!3D G ~47!
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integral J̃R(T,0) is larger in the case of a cylindrical Ferm
surface than in the case of a spherical surface.

Thus, the spin system can be described atT.TK by the
effective RKKY Hamiltonian with the vertex shown in Fig
4a in the nearest-neighbor approximation and under the
sumption that the RKKY nearest-neighbor coupling has
antiferromagnetic sign. In the mean-field approximation,
treat the problem of stabilization of the spin liquid as a co
parison between temperatures of transitions to the RVB s
@T* (a)# and to the antiferromagnetic state@TN(a)# under
conditions of sufficiently strong Kondo scatterin
a→ac020, and the stabilization criterion is the inequali
T* (a).TN(a). The functionTN(a) deviates from the qua
dratic function prescribed by the bare RKKY vertex. Alon
with the intensification of one-site vertices described by E
~46! and discussed above, there is a dynamic Kondo scre
ing of localized spins, which is the reason for the suppress
of antiferromagnetic order asa→ac0 .

In the mean-field approximation, the transition tempe
turesTN(a) and T* (a) can be derived from the exchang
vertex in Fig. 4a by closing spin-fermion lines, as shown
Figs. 4b and 4c, respectively. The first of these diagra
determines the molecular field for commensurate magn
ordering characterized by the antiferromagnetic vectorQ
such thatQ–Ri j 5p. The suppression of magnetic correl
tion by Kondo scattering is described by the vertexF(T) in
the diagram of Fig. 4b.42,43Summation of the set of logarith
mic diagrams, the first of which are shown in Fig. 6, yield

F~T!5122a ln
«F

T Y ln
T

TK
. ~48!

Although the functionF(T) deviates from this formula as
T→TK ,44 and complete screening occurs only atT50, the
suppression of magnetic correlations compensates for the
change intensification and thus reducesTN asa→ac0 .

The self-energy part of the one-site Green’s functionG ii
~Eq. ~21!!, corresponding to the diagram of Fig. 4b, is

SN~T!5l J̃~R,T!^Sz&T ~49!

~the factor l is determined by the lattice configuration!.
Hence we derive for the mean spin

^Sz&T5
1

2
~^ai

1ai&1^bi
1bi&21!

a self-consistent equation

^Sz&T5
1

2
F~T!tanh

SN~T!

2T
, ~50!
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which is, naturally, the standard Brillouin equation f
Weiss’ molecular field taking Kondo screening into accou

The mean-field equation forD ~Eq. ~28!! is determined
by the self-energy part of the anomalous Green’s funct
Ĝij (t) ~Eq. ~23!! shown in Fig. 4c. This diagram can b
substituted into the Dyson equation~Fig. 3!, which in this
case takes the form

Ĝ~p,vn!5g0~vn!F122T(
m

(
q

J̃~p2q,vn2vm!

3Ĝ~q,vm!Ĝ~p,vn!G . ~51!

Hereg0(vn) is the zero one-site Green’s function with com
ponents~26!, and J̃(p2q,vn) is a Fourier transform of the
indirect exchange integral~39!, which in the nearest-
neighbor approximation takes the form

J̃~q,«m!5 (
l50,̂ l&nn

J̃R~«m!e2 iqr5 J̃0~«m!1 J̃R~«m!w~q!.

~52!

The one-site integralJ̃0(T,0) is estimated asa2T ln(«F /T).
Since this integral contains an additional small factora at
T;T* , as compared to the intersite integral~46!, it can be
omitted.

By neglecting, as usual, the frequency dependence o
RKKY interaction, we obtain the mean-field equation~35!
for D with the coupling constantJ5 J̃R(T,0). As follows
from the configuration of the anomalous self-energy p
~Fig. 4c!, the screening effect responsible for suppression
local magnetic moments does not affect the mean-field
rameterD, which can be naturally attributed to the singl
nature of the RVB-coupling. The Kondo ‘‘screening’’ radiu
can be estimated by high-temperature perturbation theor
be \vF/2TK , which is much larger than the correlation r
dius of the singlet RVB pair, since electron scattering
these pairs is inefficient.

Calculations of the temperaturesT* and TN by Eqs.
~35!, ~46!, ~49!, and ~50! are given in Fig. 7~see also Ref.
18!. This graph shows that asa→ac0 , these temperature
become closer, a new critical pointac emerges in Doniach’s
diagram, on the right of which the RVB phase is stable w

FIG. 7. Generalized Doniach diagram taking the RVB phase into acco
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takes place in the logarithmic neighborhood of the Kon
temperature. A calculation ofTN for a.ac makes no sense
because magnetic ordering in this region should follow
other scenario.

Thus, we conclude that stabilization of a homogeneo
RVB spin liquid in a three-dimensional Kondo lattice ca
occur only near the magnetic instability point under con
tions of sufficiently strong Kondo screening of localize
spins by conduction electrons. This result, obtained in
mean-field approximation, indicates that stabilization of t
spin-liquid phase is incompatible with formation of Kond
singlet states characterized by anomalous avera
^ci

1 f i&,
6,45 since anomalous Kondo scattering is frozen

T'T* .TK . This resolves Nozie`res’ well-known paradox46

about the impossibility of screening all spins in the Kon
lattice by electrons from a thin layer of widthTK near the
Fermi surface. In the scheme proposed above, the scree
vanishes at sufficiently high temperatures aboveTK , the
Kondo temperature itself is not a singular point of the theo
renormalization of thes f-exchange integral is frozen a
about J̃(T* ), and atT,TK , T* electrons interact not with
localized spins, but with spin-liquid excitations of the spin
type ~see also Ref. 47!.

In addition to the disadvantages related to violation
local gauge invariance, however, the mean-field approxim
tion in the case of RVB coupling has another flaw, namely
does not take into account the proximity of the spin syst
to the antifferomagnetic instability. In the following section
we discuss possible consequences of this proximity for
RVB state, first in the self-consistent field approximatio
then beyond this model.

4. EFFECT OF SPIN FLUCTUATIONS AND MAGNETIC
ANISOTROPY ON RVB PHASE STABILIZATION

In the previous section, we determined that antifer
magnetic fluctuations inevitably turn out to be strong in
RVB spin liquid in the three-dimensional Kondo lattice
high temperaturesT;T* , and can lead, in principle, to mag
netic ordering atT!T* . Leaving this issue for subseque
studies, let us consider now the effect of spin fluctuations
features of the transition to the spin-liquid state in the me
field approximation, but using its modification obtaine
through the projection technique, in which the order para
eter is defined by Eq.~28!. The diagram technique usin
Hubbard operators and developed in Sec. 2 allows us to
into consideration long-wave fluctuations of gauge fields d
to the U~1! noninvariance of the RVB order paramete
Terms that take the phase of functionD into account can be
introduced into the effective Hamiltonian in standa
fashion.13,14 It is known that long-wave fluctuations in cal
bration fields do not lead to divergences destabilizing R
averages in three-dimensional systems. Therefore, the in
duction of such fluctuations reduces to the usual Fermi-liq
renormalizations with due account of the particle–hole sy
metry condition. In two-dimensional Heisenberg lattice
however, fluctuations are important and must be taken
consideration.13,14 In what follows, we do not discuss th

t.
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FIG. 8. Self-energy part for the anoma
lous propagatorG ij , including the con-
tribution of critical fluctuations in the
mean-field approximation.
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analysis is limited to the mean-field approximation in a fix
calibration.

Having expressed the mean-field Hamiltonian in t
form of Eq. ~29!, we considered in the subsequent calcu
tions additional operators inYij

(p,h) as purely static projection
operators, eliminating nonphysical states in thermodyna
averages. We now consider the fluctuation component of
‘‘kinematic’’ interaction by transforming the effective mean
field spinon Hamiltonian for the Kondo lattice as follows:

HMF
~RKKY !5 J̃D(

ij s
f ij

s[ J̃D(
ij

~ai
1K ijaj2ajK ji

1ai
1

1biK ij
1bj

12bj
1K jibi!. ~53!

HereJ̃ is the renormalized constant of the RKKY interactio
given by Eq.~46!,

K ij 5Si
2Sj

12Si
zSj

z1
1

4
,

and K ij
15K ij . In the vicinity of the magnetic instability

point, it is natural to consider operatorK ij as an operator
describing critical excitations due to spinon propagation
temperatures close toTN .

In order to obtain an expression for the spinon Gree
function corresponding to this approximation, we reconsi
the definition of its self-energy part. In the standard me
field theory ~Fig. 3!, projection operators were included
the static approximation. The diagrams in Fig. 8 show h
the diagonal and off-diagonal components of the self-ene
part of the Green’s functionG ij , including transverse and
longitudinal spin correlators, can be constructed from
vertices shown in Fig. 1. The lines with two arrows in Fig.
denote anomalous propagators

gij
↑52^Tt ai~t!aj

1~t8!&,

gij
↓52^Ttbi~t!bj

1~t8!&, ~54!

and wavy lines denote transverse and longitudinal correla
functions
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5^TtSj
1~t10!Si

2~0!&,

K ij
zz~t→0!5^Tt bj

1~t10!bj~t10!bi
1~0!bi~0!&

5
1

4
2^TtSj

z~t10!Si
z~0!&. ~55!

Unlike the fully anomalous Green’s function~23!, the
anomalous functions~54! are one-particle propagators, whi
intersite spin correlators~55! are formed from projection op
erators. Now the sum of diagonal elements

S ij ↑
~d!5S ij ↑

~11!1S ij ↑
~22!

in Eq. ~28! is determined by the diagrams in Fig. 8a, wh
the contribution of off-diagonal elements

S ij ↑
~nd!5S ij ↑

~12!1S ij ↑
~21!

corresponds to the diagrams in Fig. 8b. In deriving the
expressions, we have used definition~3! and condition~6!.
Similar diagrams can be obtained forS ij ↓ . Summation of all
these contributions in the mean-field approximation yie
the effective Hamiltonian~53!.

In the critical regionTN,T,T* , the main contribution
to spin correlators~53! is due to long-wave excitations with
k→0 and short-wave excitations withk→Q ~see, for ex-
ample, Ref. 48 and Sec. 5!. The behavior of the respons
function K(k) in the long-wave~hydrodynamic! limit k→0
is determined by fluctuations of the total magnetization
sublattices~which is zero in antiferromagnetic systems! and
is diffusive in nature:

KR~k,v!5K0~k!
iDk2

v1 iDk2
, ~56!

where

K0~k!5K ~k,v50!5
x0

t1@12J~k!/J~Q!#

'
1

2
x0~TN!,
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J~k!5J eikg, x ~T!5
S~S11!
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D 5
1

f p,
T

,g tanh
ẽ p

u~T/TN ,g!
~63!
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0 3T TN
~57!

~in Eq. ~56! we have passed to the retarded Green’s func
for real frequencyv!.

Near the antiferromagnetic vectorQ, the response func
tion behavior is relaxation-like:

KR~q,v!5
1

2 iv/Gx01K0
21~q!

, q5k2Q, ~58!

where

K0~q!5K ~q,v50!5
x0

t1~ql0!2 ~59!

is the Ornstein–Zernike static correlation function, andl 0 is
the elementary excitation mean free path, which is com
rable to the lattice constant.

In the mean-field approximation, we ignore the retard
tion of the RKKY interaction, and the diagrams in Fig.
yield for the self-energy

ẽk5S~k!52J̃T2 (
n,mq

(
s

w~k2q!gk~ ivn!K q
s~ i«m!

' J̃DS w~k!

2
12T(

q
w~k2q!K0~q! D . ~60!

Here s is the polarization index, while the anomalou
Green’s functiongk is expressed asgk( ivn)5( ivn2 ẽk)

21.
At high temperatures, we retain only the term with«m50 in
the sum over even Matsubara frequencies; then the
Green’s functionK s(q,0) in Fig. 8 has the same form i
both the hydrodynamic and critical regions,48 so that the
main contribution to the spinon spectrum renormalization
due to the static susceptibilityK0(q) ~Eq. ~59!!.

The order parameterD defined by Eq.~28! and corre-
sponding to the approximation of Eq.~53! and diagrams of
Fig. 8 is given by

D5
1

z (
pq

w~p2q!F1

2
dq,012TK0~q!G tanh

ẽp

2T
. ~61!

Self-consistent equations~35! and ~61! have been de-
rived for the simplest case of isotropic exchange, which
generally speaking, never realized in Kondo lattices. The
fore, before analyzing the effect of spin fluctuations onT* ,
we generalize the mean-field theory to the case of anisotr
exchange. Let us introduce an exchange integ
Jij 5$Ji ,J'%, whereJi andJ' are the coupling constants fo
nearest neighbors in the basal plane and in the perpendi
direction, respectively. The degree of exchange anisotrop
measured by the parameterg5J' /Ji . Now, instead of
Hamiltonian ~29! or ~53!, we must write the anisotropic
mean-field Hamiltonian

HMF5(
i,r'

J'D'Yi,i1r'
1(

i,r i

JiD iYi,i1r i
. ~62!

Here the anomalous averages^Yi,i1ru
&, whereu5',i , are

derived from the equation system
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with the dispersion relation

ẽ p
u~T/TN ,g!5JuDufu~p,T/TN ,g!. ~64!

The structure factorfu(p,T/TN ,g) renormalized by spin
fluctuations can be expressed in terms of a structure fa
wu(p) like that in Eq.~33!, where summation over neare
neighborsl is performed only in the basal plane (g,1) or in
the perpendicular direction (g̃5g21,1):

fuS p,
T

TN
,g D5

1

2
wu~p!12T(

q
wu~p2q!K0~q!. ~65!

Indexg on the left-hand side of Eq.~65! is due to the aniso-
tropic nature of correlatorK0(q). Thus, the character of th
transition to the spin-liquid state is determined by the deg
of anisotropy: in the case ofg,1 spin-liquid correlations
emerge first in the basal plane, and ifg.1 in thez-direction.
At lower temperatures, the spin liquid naturally takes
three-dimensional properties, given thatg Þ (0,̀ ).

The transition temperature to the spin-liquid state, wh
spin fluctuations are taken into account, is determined
solving the equation

Tu* 5
1

2
max$Ji ,J'%uuS Tu*

TN
,g D , ~66!

where

uuS Tu*

TN
,g D 5~zuN!21(

p
fu

2S p,
T

TN
,g D , ~67!

zi is the coordination number in the basal plane, andz'52.
In estimating the role of spin fluctuations for establishi

the spin-liquid regime, it is convenient to introduce the te
perature

Tu*
~0!5

1

2
max$Ji ,J'%uu

~0! ~68!

of the transition to the RVB state in the anisotropic latti
without taking spin fluctuations into account. In this case

uu
~0!5~zuN!21(

p
wu

2~p!. ~69!

Then the condition that the transition occurs by virtue of t
spin-fluctuation mechanism is

Yu~g,Tu*
~0!/TN!5uu~Tu*

~0!/TN ,g!/uu
~0!.1. ~70!

The parameterYu(g) (Yu(g̃)) for a simple cubic lattice is
calculated in Appendix III. Critical values of the anisotrop
parametersg1,2 at which the spin-liquid state stabilizes i
almost one-dimensional and almost two-dimensional m
netic lattices are given for the caseTu*

(0)/TN51 in Fig. 9 for
different values oft. It is clear that only in a strongly aniso
tropic situation, almost one- or two-dimensional~see Eqs.
~A.III.7 ! and ~A.III.8 !! spin correlations help formation o
the spin liquid, and in the anisotropic case, inclusion of a
tiferromagnetic fluctuations in the mean-field approximati
leads to suppression of the spin-liquid phase.
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The analysis in this section once again indicates that
mean-field approximation is insufficient for the descripti
of the spin liquid. In particular, even the diagrams of Fig
indicate that the static approximation, generally speak
does not apply to the critical region, since antiferromagne
fluctuations define their own time and energy scales, wh
determine the real character of transition from the param
netic state to the spin-liquid state.

5. CRITICAL ANTIFERROMAGNETIC FLUCTUATIONS AND
SPIN DIFFUSION

As mentioned in Sec. 4, in antiferromagnets critical flu
tuations have differing properties in the long-wave (k→0)
and short-wave (k→Q) regions, and the spin response fun
tion in these regions takes the form of Eqs.~56! and ~58!,
respectively. The critical dynamics of antiferromagnets
usually analyzed using renormalization-group techniques
plied to phenomenological models.49,50 Chubukov48 calcu-
lated the dynamic susceptibility of a two-dimensional an
ferromagnet in the diffusion and relaxation regions usin
diagram technique in the Schwinger boson representa
We investigate the dynamic susceptibility as a function
frequency and momentum in the thee-dimensional confi
ration using the pseudofermion technique.

In order to calculate the spin diffusion factorD and the
relaxation constantG, we need to know, in addition to th
spin correlators defined by the Larkin equation~19!, the low-
frequency behavior of the current correlator:

K
ṠṠ

ab
~k,t!5dab (

k1k2

V~k,p1!V~2k,2p2!

3^Tt~Sp11k/2
m S2p11k/2

r !t~S2p22k/2
m Sp22k/2

r !0&,

~71!

where

V~k,p!5J~k1p/2!2J~2k1p/2!.

FIG. 9. ParameterY describing the effect of critical spin fluctuations on th
transition temperature to the RVB phase for the quasi-one-dimensi
(1D) and quasi-two-dimensional (2D) Kondo lattices. Parametert charac-
terizes the proximity to the antiferromagnetic instability. The RVB st
emerges atg,g1 and g̃,g̃2 in the cases of axial and plane magne
anisotropy, respectively.
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There is an exact solution for the Fourier transform of co
elator KṠṠ continued to the upper half-plane expressed
terms of irreducible~noncuttable along the interaction line!
self-energy parts of the spin and current correlation fu
tions:

K
ṠṠ

R
~v!5S

ṠṠ

R
1v2

SSS
R

V SSS
R

12SSS
R

V
. ~72!

HereV 5(SR)212(K0)21 is the vertex part determined b
the static response in the critical region.19,51

Using the Kramers–Kronig dispersion relations for r
tarded and advanced correlation functions, and the ana
properties of irreducible self-energy parts, one can der
from Eqs.~19! and ~72! the expression

KSS
R ~v!5K0

Gk,v

2 iv1Gk,v
, ~73!

which holds as bothk→0 andk→Q.
The spin correlation functions can be expressed in te

of the pseudofermion Green’s functions. For example,
expression for the one-site susceptibility has the form

K i
'~«m!5T(

m
G ii~vn1«m!G ii~vn!, ~74!

~see Eq.~16!!. HereG ii(vn) is a Fourier component of the
pseudofermion Green’s functionG ii(t)5^Tt f i(t) f i

†(0)&.
Since nonphysical states do not appear when calcula
single-site averages forS51/2, there is no need to introduc
projection operators. AsT→TN , scattering by the relaxation
mode contributes a component described by the diagram
Fig. 10 to the self-energy part of the Green’s functi
S(vn). Unlike the diagram of Fig. 8, here solid lines corr
spond to one-site propagatorsG ii , and points to exchange
verticesJ̃(q). The wavy line in this diagram corresponds
the spin Green’s function~16! determined by the Larkin
equation~19!. In the absence of spin-liquid correlations, l
us substitute into the self-energy partS(vn) of the pseudo-
fermion Green’s function the ‘‘bare’’ functiongis from Eq.
~26! and a spin functionK («m ,q) in the form of a relaxator:

S~vn!5 J̃2T(
m

N21(
q

w~q!2
1

i ~«m2vn!

Gx0~T!

u«mu1b~q!
,

~75!
whereb(q)5G@t1(ql0)2#, andG should be calculated in
dependently using the Dyson and Larkin equations. By c
culating the sum over frequencies in Eq.~75! and continuing
it analytically to the complexz plane, we obtain the follow-
ing equation for poles of the pseudofermion Green’s fu
tion:

z2S~z!50,

al

FIG. 10. Self-energy part of the Green’s functionG ii including the contri-
bution of critical fluctuations in the Born approximation.
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The projection diagram technique suggested in the paper
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v,
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rch

rch

a

mi
(
q p z21bq

2 F S 2pTD S 2pTD
2

pT

bq
1

ipT

z G , ~76!

where A5Gx0(T), and c(y) is the digamma function
Hence, it is clear that the pseudofermion Green’s function
this approximation isG ii

R(v);@v1 iG(T)#21. By substitut-
ing this into Eq.~74!, we find the one-site susceptibility

K i
R5

x̄0

12 iv/G
, ~77!

which is, in turn, can be substituted into the Larkin equat
~which also includes, generally speaking, vert
corrections48!, and thus the equation system forG and l 0 is
closed.

The spin-liquid effects on the behavior of the spin co
relation functions in the critical region can be accounted
by introducing anomalous intersite contributions intoS~v!
~Fig. 10!. Nonlocal fermion correlations lead to emergen
of a new characteristic length characterizing short-range
der, and change the temperature dependence of the static
susceptibility and dynamic response functions. As a res
we have changes in the scaling behavior and in the freque
and momentum dependence of the spin susceptibility.

The spin diffusion factor is also determined by the se
energy part of the current correlator:51

D5 lim
k→0,v→0

1

k2

ImS
ṠṠ

R
~k,v!

v
K0

21~k!. ~78!

Since the behavior of the current correlator is fully det
mined by relaxation processes, effects of nonlocal spin c
relations should also change scaling characteristics of
spin susceptibility in the hydrodynamic region.

The calculations described in this section are not con
ered a complete description of critical phenomena in anti
romagnets. These are instead illustrations given with the
lowing aims: first, to demonstrate applicability of th
suggested diagram technique to traditional problems of
theory of magnetic phase transition and, second, to out
feasible methods for taking into account the effect of sp
liquid correlations on antiferromagnetic fluctuations in t
critical region.

6. CONCLUSIONS

In this paper, we have demonstrated that the spin-liq
state in the Kondo lattice can be more stable than the Ko
singlet state, owing to the same processes as those res
sible for Kondo screening in the case of sufficiently stro
antiferromagnetics f-exchange. This rather paradoxical r
sult can be explained by the fact that strong competit
between Kondo scattering and spin-liquid correlations occ
at temperatures near the Ne´el point. Since all correlation ef
fects at such temperatures have the same order of magni
the simple mean-field approximation cannot be used in
scribing the spin subsystem in a three-dimensional Ko
lattice.
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and based on the similarity between the Hubbard Ham
tonian for electrons and Heisenberg Hamiltonian for pseu
fermions allows one, in principle, to go beyond the stand
mean-field model of the homogeneous RVB phase.6,16 At-
tempts to include antiferromagnetic fluctuations in the me
field approximation~Sec. 4! do not produce any trustworth
results. Preliminary analysis, however, indicates52 that the
diagram technique suggested in the paper may allow on
manage without the mean-field approximation in describ
effects which occur in the region of critical antiferromagne
fluctuations and devise a more realistic scenario of em
gence of the spin liquid in the Kondo lattice.

The investigation of spin diffusion near the Ne´el point
reported in Section 5 indicates that the diagram techniq
used in describing critical antiferromagnetic correlations
high temperatures may yield new physical results in the
drodynamic region.

The authors are indebted to Yu. Kagan, N. V. Prokof’e
G. G. Khaliullin, D. E. Khmel’nitski�, and D. I. Khomski� for
helpful discussions and critical remarks. This work was s
ported by the Russian Fund for Fundamental Resea
~Project 95-02-04250a!, INTAS ~Project 93-2834!, and
Netherlands Organization for Support of Scientific Resea
~NWO, Project 07-30-002!.

APPENDIX I

In calculating the polarization operatorP(R) ~Eq. ~40!!,
we use the asymptotic form of the Green’s function~41!.
Substituting it into Eq.~42!, we obtain the expression for
spherical Fermi surface:

P~R,«m!5TS m

2pRD 2

expS 2
2u«mu

v
RD

3
cos~2pFR1 i«mR/v !

sinh~2pTR/v !
1TS m

2pRD 2

3expS 2
u«mu

v
RD F u«mu

2pT
1

sinh~ u«muR/v !

sinh~2pTR/v !

3expS 2
u«mu

v
R12ipFR sign «mD G . ~AI.1!

In the static limit, it reduces to

P~R,0!5TS m

2pRD 2 cos~2pFR!

sinh~2pTR/v !

5
mpF

4

8p3

cos~2pFR!

~pFR!3 F12
p2

6 S T

«F
pFRD 2

1 . . . G ,
~AI.2!

hence we have Eq.~45! at T50.
In the case of a quasi-two-dimensional cylindrical Fer

surface

g~R,z,vn!5E d3p

~2p!3

1

ivn2j~p!
exp~ ip–R1 ipzz!

411Kikoin et al.



pz0 dpz pdpdw 1

t

n

tio
o

d by
n

on
a-

the
n

ex-

e

5E
2pz0

2p
eipzzE

~2p!2 ivn2j~p!
eip–R,

g~R,z,vn!5
sin~pz0z!

pz
G~R,vn!. ~AI.3!

For pz0@pF the effective RKKY interaction is independen
of pz0 ,

JRKKY~R!5S J

ñ0
D 2

P~R,0!5S J

ñ0
D 2E dv

2p
g2~R,v!

5S J

n0
D 2E dv

2p
G2~R,v!.

~AI.4!

Hereñ054ppF
2pz0 /(2p)35pz0pF

2/2p25pz0n0 /p, n05pF
2/

2p is the two-dimensional density of electronic states, a
G(R,vn) is the two-dimensional Green’s function

G~R,vn!5E pdpdw

~2p!2

1

ivn2j~p!
exp~ ipR cosw!.

~AI.5!

Let us use the integral representation of the Bessel func

J0~z!5
1

2p E
0

2p

dw exp~ iz cosw! ~AI.6!

in the asymptotic limit for largeuzu:

J0~z!'A 2

zp
cosS z2

p

4 D . ~AI.7!

Then we have

G~R,vn!52 i sign vn

m

A2ppFR
expS 2

uvnu
2«F

pFR

1 i S pFR2
p

4 D sign vnD . ~AI.8!

Substituting this expression into Eq.~AI.4!, we obtain

P~R,«m!52T
m2

2ppFR
expS 2

2u«mu
v

RD
3

sin~2pFR1 i«mR/v !

sinh~2pTR/v !
2T

m2

2ppFR

3expS 2
u«mu

v
RD H u«mu

2pT

2
sinh~ u«muR/v !

sinh~2pTR/v !
expF2

u«mu
v

R12i

3S pFR2
p

4 D sign «mG J . ~AI.9!

In the low-temperature limit this expression becomes

P~R,0!52T
m2

2ppFR

sin~2pFR!

sinh~2pTR/v !
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n

52
mpF

2

4p2

sin~2pFR!

~pFR!2 F12
p2

6 S T

«F
pFRD 2

1 . . . G ,
~AI.10!

and atT50 to Eq.~47!.

APPENDIX II

Intensification of the RKKY interaction due to Kond
renormalization of the single-sites f-exchange vertex, which
is taken into account in the logarithmic approximation,

G~«,a!5
1

~112a ln~«/«F!!2 , ~AII.1!

is described by the expression

f S pFR,a,
T

«F
D5E

T/«F

` exp~2pFRx!dx

~112a ln~x!!2 . ~AII.2!

The temperature dependence of this integral is determine
both Doniach’s parametera and the separation betwee
neighboring Kondo centers~parameterpFR!.

If we neglect logarithmic renormalization~AII.1!, the
integral in ~A.II.2! equals 1/pFR for T!«F/kB , and the in-
tegral in ~44! reduces to the usual RKKY formula~45!.
When Kondo processes are taken into account, the functif
defined by Eq.~A.II.2! can be approximated in the temper
ture range of interest,@TK,3TK#, by the expression

f S pFR,a,
T

«F
D'

1

pFR

1

~122a ln~T/«F!!n~pFR,a! ,

~AII.3!

where the exponentn5n(pFR,a) is independent of tem-
perature. As a result, the high-temperature behavior of
RKKY interaction is determined by the functio
f̃ (pFR,a,T/«F)5 f (pFR,a,T/«F)pFR, which can be ap-
proximated as

f̃ S pFR,a,
T

«F
D'

1

~112a ln~T/«F!!n~pFR,a! . ~AII.4!

Figure 11 shows the temperature dependence of the
act function f̃ (pFR55.0,a50.09) calculated numerically
~solid line! and the approximate function
f̃ (pFR50.5,a50.09) ~dotted line! in the temperature rang

FIG. 11. Numerical values of integralf̃ (pFR) ~solid line! and of the ap-
proximating functionf (pFR) ~see text!.
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function ~AII.4! is shown in the insert as a function ofpFR
in the range 2,pFR,8 for several values ofa in the inter-
val 0.04,a,0.165. The exponent was determined using
least-square fit in the temperature range 1.2TK,T,3TK .

APPENDIX III

In this Appendix, we calculate the parameterY defined
by Eq. ~70!, which characterizes the effect of spin corre
tions on the transition temperature to the RVB phase fo
simple cubic lattice with anisotropic RKKY interaction du
for example, to a nonspherical Fermi surface. Let us in
duceJi[Jx5Jy and J'[Jz . Then we must substitute int
Eq. ~57! for the spin correlatorK0(q,g) the parameter

j q[Jq /uJQu52 j i~w i1gw'!, ~AIII.1 !

where w i(q)52(cosqx1cosqy), w'(q)52 cosqz, and
j i5Ji /JQ (a51). To calculate sums in Eq.~65! like

T(
q

wu~p2q!K0~q,g!5
S~S11!T

6TNj 0
(

q

wu~p2q!

T/TNj 02 j q / j 0
,

~AIII.2 !

we use the integral representation for the spin correlator

K0~q,g!5
S~S11! j q

6TNj 0
E

0

`

dt expH 2S T

TNj 0
2

j q

j 0
D tJ .

~AIII.3 !

When the interaction in the basal plane is dominant (g,1),
the spectrum of spin-liquid excitations has the form

ẽ p
i ~T/TN,g!5

1

2
JiD iF12~21g!

T

TN
A~g,T/TN!Gw i~q!,

~AIII.4 !

where the functionA(g,T/TN) can be expressed in terms
integrals of Bessel functions:

A~g,t!5E
0

`

dt exp$2~21g!~11t!t%I 1~ t !I 0~ t !I 0~gt !.

~AIII.5 !

Given thatu i
(0)5u'

(0)51 for the simple cubic lattice, we ob
tain

Y i~g,Tu*
~0!/TN!5@12~21g!~11t!A~g,t!#2/4. ~AIII.6 !

When the interaction perpendicular to the basal plan
dominant (g̃,1), we have instead of Eqs.~A.III.4 !–
~A.III.6 !

ẽ p
'S T

TN
,g D5J'D'F12~112g̃ !

T

TN
ÃS g,

T

TN
D Gcospz ,

~AIII.4 8!

Ã~ g̃,t!5E
0

`

dt exp$2~112g̃ !~11t!t%I 1~ t !I 0
2~ g̃t !,

~AIII.5 8!

Y'~ g̃,Tu*
~0!/TN!5@12~112g̃ !~11t!Ã~ g̃,t!#2/4.

~AIII.6 8!
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A~g,t! ug,t→0
}2 ln max~g,t!,

Ã~ g̃,t! u g̃ ,t→0
}@max~ g̃,t!#21/2,

we obtain for the neighborhood ofTN in the case of strong
anisotropy

Y i~g,Tu*
~0!/TN!}2 ln max~g,t!, ~AIII.7 !

Y'~ g̃,Tu*
~0!/TN!}@max~ g̃,t!#21/2, ~AIII.8 !

and as a result, strong spin fluctuations stabilize the s
liquid.

1!Preliminary results of this study were given in the short note.
2!A procedure similar to that suggested below was described in Ref. 3

the cases of the Anderson impurity and Anderson lattice. But since
Anderson Hamiltonian, unlike spin Hamiltonians~1! and ~2!, does not
have local SU~2! symmetry, and the requirement of exact particle-ho
symmetry is not imposed, there are many differences between formula
of rules of the diagram techniques.

3!Since in the caseS51/2 for one-site processes the constraint condition
satisfied automatically,10 it is unnecessary to introduce projection oper
tors.
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