

M.N.Kiselev

Strongly Correlated Systems:

High Temperature Superconductors Heavy Fermion Compounds Organic materials

Strongly Correlated Systems:

High Temperature Superconductors

Superconductivity: what and what for

Zero resistance at finite (but low) temperatures

- Discovered in 1911 by Kamerlingh-Onnes (Nobel Prize in 1913): Hg superconducting at 4.2 K
- Later observed in other metals like Nb, Al, ... but the critical temperature, T_c<23K

Applications (examples):

MRI (without need for liquid He cooling?)

Loss free power transmission (without cooling?)

Superconducting magnetically levitated train

Superconducting magnet used to detonate mines

Superconducting Cables

Short history of superconductivity

- 1908 Heinke Kemerlingh Onnes achieves very low temperature producing liquid He (< 4.2 K)
- 1911 Onnes and Holst observe sudden drop in resistivity to essentially zero SC era starts
- 1914 Persistent current experiments (Onnes)
- 1933 Meissner-Ochsenfeld effect observed
- 1935 Fritz and London theory
- 1950 Ginsburg Landau theory
- 1957 BCS Theory (Bardeen, Coper, Schrieffer)
- 1962 Josephson effect is observed

- 1967 Observation of Flux Tubes in Type II superconductors (Abrikosov, Ginzburg, Leggett)
- 1980 Tevatron: The first accelerator using superconducting magnets
- 1986 First observation of Ceramic Superconductor at 35 K (Bednorz, Muller)
- 1987 first ceramic superconductor at 92 K (above liquid Nitrogen at 77 K!) HTS era starts
- 2003 discovery of a metallic compound the B_2Mg superconducting at 39 K (x2 T_c of Nb₃Sn)
 - It took ~70 years to get first accelerator from conventional superconductors.
 - How long will it take for HTS or B₂Mg to get to accelerator magnets? Have patience!

What is a superconductor

Below the critical temperature T_c the resistivity drops

Below T_c the B-field lines are expelled out of a superconductor (perfect diamagnetic behaviour)

BCS Pairing mechanism

- When electrons form pairs, they behave like bosons and can condensed into a macroscopic quantum state
- Bardeen, Cooper, and Shriffer (BCS) develop rigorous description of pairing mechanism
 - Theory developed in the 1950s, Nobel Prize in 1973

 At T>20K, lattice vibration are strong and destroy pairs, superconductor becomes a normal metal

BCS theory

Normal conducting state

Superconducting state

- $T_c \sim 1/\sqrt{M_{isotopic}} \rightarrow$ phonons should play a role in superconductivity • Creation of Cooper pairs (over-screening effect)
 - An e⁻ attracts the surrounding ion creating a region of increased positive charge
 - The lattice oscillations enhance the attraction of another passing by e- (Cooper pair)
 - The interaction is strengthened by the surrounding sphere of conduction e⁻ (Pauli principle)
- In a superconductor the net effect of e⁻e⁻ attraction through phonon interaction and the e⁻e⁻ coulombian repulsion is attractive and the Cooper pair becomes a singlet state with zero momentum and zero spin
- To break a pair the excitation energy is $\Delta E = 2\Delta$

High Temperature Superconductivity

- Doped YBa₂Cu₃O₇
 - Normal states is insulating / poor metal
 - Discovered to be a SC with T_c=30K in 1986 (75 years after Kamerlingh-Onnes)
 - 1987 Nobel Prize for Bednorz and Muller
 - Within years, other transition metal oxides were discovered with *T_c*>100K (liquid Nitrogen cooled SC)
- There is general agreement that the pairing mechanism is not phonon mediated

Some examples of HTSC Compounds

- Mostly compounds
- Record holder:
 - Tc =138 K
- High Hc2:
 - Hc2 > 1000 000 G (YBCO)

Element	Tc (K)
Тс	7.80
Nb	9.25
La _{1.85} Ba _{.15} CuO ₄	30
YBa ₂ Cu ₃ O ₇₊	93
Ca _{1-x} Sr _x CuO ₂	110
TI ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀	128
Hg _{0.8} Tl _{0.2} Ba ₂ Ca ₂ Cu ₃ O _{8.33}	138

Crystal Structure and Fermi Surface

Crystal Structure and Fermi Surface

Crystal Structure and Fermi Surface

High Tc Superconductivity (conventional wisdom)

- Model Copper oxide planes with single band 2D Hubbard models (Zhang & Rice, PRB 1989)
- Still not solvable, but thousands of papers published every year
- David Pines: "arguably the major problem in physics today"

Microscopic Model: Why are Cuprates Unique? (1987)

Minimum Hamiltonian : Space of three orbitals (d, p_x, p_y) per unit cell : $\mathcal{H} = K.E.(t_{pd}, t_{pp}) + Local Repulsions (U_d, U_p) + Ionic Interactions (V).$

Cannot be reduced to a Hubbard Model because the ionization energy of Cu is nearly the same as the ionization energy of oxygen.

What interactions/orders exist in High-Tc Superconductor?

Electron-phonon interaction

- Spin exchange interaction-antiferromagnetic order
- Charge density waves, spin density waves and other competing orders.

Of the many proposed pairing mechanisms, few remain likely:

Quasi particles in AF background (Hirsch 02)

 ++++
 +++++

 +++++
 +++++

 +++++
 +++++

 +++++
 +++++

Resonating valence bond (Anderson 87)

Valence bonds in benzene

Resonance in benzene leads to a symmetric configuration of valence bonds (*F. Kekulé, L. Pauling*)

Valence bonds in benzene

Resonance in benzene leads to a symmetric configuration of valence bonds (*F. Kekulé, L. Pauling*)

Valence bonds in benzene

Resonance in benzene leads to a symmetric configuration of valence bonds (*F. Kekulé, L. Pauling*)

Phase Diagram and Competing Orders

PG: Pseudogap, SC: Superconductivity, CO: Competing order, AFM: Antiferromagnetic

Strongly Correlated Systems:

Heavy Fermions

Heavy Fermions

Туре	Material	T^*	T_c, x_c, B_c	Properties	ρ	γ_n $mJmol^{-1}K^{-2}$	Ref.
Metal	$CeCu_6$	10K	-	Simple HF Metal	T^2	1600	[1]
Super- conductors	$CeCu_2Si_2$	20K	$T_e=0.17\mathrm{K}$	First HFSC	T^2	800-1250	[2]
	UBe_{13}	2.5K	T_{e} =0.86K	Incoherent metal \rightarrow HFSC	$\rho_e \sim$ 150 $\mu\Omega$ cm	800	[3]
	$CeCoIn_5$	38K	<i>T_c</i> =2.3K	Quasi 2D HFSC	Т	750	[4]
Kondo Insulators	$Ce_3Pt_4Bi_3$	$T_\chi \sim 80 K$	-	Fully Gapped KI	$\sim e^{\Delta/T}$	-	[5]
	CeNiSn	$T_\chi \sim 20 K$	-	Nodal KI	Poor Metal	-	[6]
Quantum Critical	$CeCu_{6-x}Au_x$	$T_0 \sim 10 K$	$x_{e} = 0.1$	Chemically tuned QCP	Т	$\sim \frac{1}{T_0} \ln \left(\frac{T_0}{T} \right)$	[7]
	$YbRh_2Si_2$	$T_0\sim 24K$	$B_{\perp} = 0.06 \text{T}$ $B_{\parallel} = 0.66 \text{T}$	Field-tuned QCP	Т	$\sim rac{1}{T_0} \ln \left(rac{T_0}{T} ight)$	[8]
SC + other Order	UPd_2Al_3	110K	$T_{AF}=14K,$ $T_{sc}=2K$	AFM + HFSC	T^2	210	[9]
	URu_2Si_2	75K	T_1 =17.5K, T_{sc} =1.3K	Hidden Order & HFSC	T^2	120/65	[10]

Specific heat

de Haas-van Alphen Effect (dHvA)

	γ_0	T_F	m^*/m	T_c	T_K
System	(J/K^2mol)	K		K	K
$CeCu_6$	1.6	300	500	-	5
$CeAl_2$	0.14	4000	42	-	3.9
$CeCu_2Si_2$	1.1	350	450	0.8	10
$CeRu_2Si_2$	0.35	1200	100	-	20
UBe_{13}	0.72	700	260	-	8
UPt_3	0.42	1100	180	5	80
UCd_{11}	1.42	400	425	5	-
$U_2 Z n_{17}$	0.42	1100	180	10	-

Models: Kondo Lattice $H = \sum_{k} \varepsilon(k) c_{k,\sigma}^{+} c_{k,\sigma} + J \sum_{i} \overrightarrow{S}_{i} \overrightarrow{s}_{i} + \sum_{i} I_{ij} \overrightarrow{S}_{i} \overrightarrow{S}_{j}$ CeRu₂Si₂ [001] $H_{Kondo} = J \sum S_i s_i$ $H_{RKKY} = \sum_{i,j} I_{ij} \vec{S}_i \vec{S}_j$ Ce Ru [100] [110]

Fig. 10. Crystal structure of CeRu₂Si₂.

Kondo-Effect

 $H_{Kondo} = J \sum_{i} \vec{S}_{i} \vec{s}_{i}$

 $\rho = \rho_v + c_m a \ln(\mu/T) + bT^5$

Resistance at low temperatures

Ruderman-Kittel-Kasuya-Yosida (RKKY) Wechselwirkung

 $H_{RKKY} = \sum I_{ij} \stackrel{\rightarrow}{S}_{i} \stackrel{\rightarrow}{S}_{j}$ i, j

$$I_{RKKY}(q) = -\frac{m^* p_F}{4\pi^2 \hbar^3} \left(\frac{J}{n}\right)^2 \left[1 + \frac{(2p_F)^2 - q^2}{4p_F q} \ln \left|\frac{2p_F - q}{2p_F + q}\right|\right]$$

Antiferromagnetic Ordering

 $T > T_c$

$$\mathcal{N} = \tanh\left(\frac{I_{\mathbf{Q}}\mathcal{N}}{2T}\right)$$

$$T < T_c$$

$$\mathcal{N} = \tanh\left(\frac{I_{\mathbf{Q}}\mathcal{N}}{2T}\right) \left[1 - \frac{a_N}{\ln\left(T/T_K\right)} \frac{\cosh^2(\beta I_{\mathbf{Q}}\mathcal{N}/2)}{\cosh^2(\beta I_{\mathbf{Q}}\mathcal{N})}\right]$$

Spin Liquid

Resonating Valence Bonds

$$\Delta = -\sum_{\mathbf{q}} \nu(\mathbf{q}) \tanh\left(\frac{I_{\mathbf{q}}\Delta}{T}\right)$$

$$\Delta = -\sum_{\mathbf{q}} \nu(\mathbf{q}) \left[\tanh\left(\frac{I(\mathbf{q})\Delta}{T}\right) + a_{sl} \frac{I_{\mathbf{q}}\Delta}{T\ln(T/T_K)} \right]$$

Heavy Fermions: Phase Diagram

Strongly Correlated Systems:

Organic Conductors

Bechgaard salts

Organic (super-) conductors

Propagation of electrons along the chains

Molecular Superconductors

ET=BEDT-TTF

Bis(EthyleneDiThio) TetraThiaFulvalene

J.A.Schlueter et al, 2004 44

Conducting/Magnetic Hybrid Molecular Solids

J.A.Schlueter et al, 2004 45

$X[Pd(dmit)_2]_2$

One free electron spin on each vertex of a triangular lattice

M. 1 amura et al., J. Phys. Soc. Jpn. 15, 093/01 (2006)

and Nanostructures ...