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Superconductivity: what and what for
•Zero resistance at finite (but low) temperatures

− Discovered in 1911 by Kamerlingh-Onnes (Nobel 
Prize in 1913): Hg superconducting at 4.2 K

− Later observed in other metals like Nb, Al, … but the 
critical temperature, Tc<23K

•Applications (examples):

MRI (without need for liquid 
He cooling?)

Loss free power transmission 
(without cooling?)
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Superconducting magnetically levitated train
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Superconducting magnet used to detonate mines
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Superconducting Cables
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1908 Heinke Kemerlingh Onnes achieves very low temperature producing liquid He  (< 4.2 K)
1911 Onnes and Holst observe sudden drop in resistivity to essentially zero SC era starts
1914 Persistent current experiments (Onnes)
1933 Meissner-Ochsenfeld effect observed
1935 Fritz and London theory
1950 Ginsburg - Landau theory
1957 BCS Theory (Bardeen, Coper, Schrieffer)
1962 Josephson effect is observed
1967 Observation of Flux Tubes in Type II superconductors (Abrikosov, Ginzburg, Leggett)
1980 Tevatron: The first accelerator using superconducting magnets
1986 First observation of Ceramic Superconductor at 35 K (Bednorz, Muller)
1987 first ceramic superconductor at 92 K (above liquid Nitrogen at 77 K !) HTS era starts
2003 discovery of a metallic compound the B2Mg superconducting at 39 K (x2 Tc of Nb3Sn)

It took ~70 years to get first accelerator from conventional superconductors.
How long will it take for HTS or B2Mg  to get to accelerator magnets? Have patience!

Short history of superconductivity
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What is a superconductor
Below Tc the B-field lines are expelled out of a 
superconductor (perfect diamagnetic behaviour)

Type I superconductors
the superconductivity disappears as T > Tc | B > Bc | J > Jc

Type II superconductors
For Bc1 < B < Bc2 there is a partial flux penetration through 
fluxoid vortexes and a mixed phase

Below the critical temperature 
Tc the resistivity drops

ρ T( )= ρ0 + cT 5

phonon-e-

interaction

Cooper pair appearance
Meissner 1933

T < Tc
B < Bc

B = 0
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BCS Pairing mechanism
• When electrons form pairs, they behave like bosons and 

can condensed into a macroscopic quantum state 
• Bardeen, Cooper, and Shriffer (BCS) develop rigorous 

description of pairing mechanism
− Theory developed in the 1950s, Nobel Prize in 1973

• At T>20K, lattice vibration are strong and destroy pairs, 
superconductor becomes a normal metal
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BCS theory
Superconducting state

Tc ~ 1/ √Misotopic -> phonons should play a role in superconductivity
Creation of Cooper pairs (over-screening effect)

An e- attracts the surrounding ion creating a region of increased positive charge
The lattice oscillations enhance the attraction of another passing by e- (Cooper pair)
The interaction is strengthened by the surrounding sphere of conduction e- (Pauli 
principle)

In a superconductor the net effect of e-e- attraction through phonon interaction 
and the e-e- coulombian repulsion is attractive and the Cooper pair becomes a 
singlet state with zero momentum and zero spin
To break a pair the excitation energy is ∆E = 2∆

Normal conducting state
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High Temperature Superconductivity

• Doped YBa2Cu3O7
− Normal states is insulating / poor 

metal
− Discovered to be a SC with Tc=30K 

in 1986 (75 years after Kamerlingh-
Onnes)

− 1987 Nobel Prize for Bednorz and 
Muller

− Within years, other transition metal 
oxides were discovered with 
Tc>100K (liquid Nitrogen cooled SC)

• There is general agreement that 
the pairing mechanism is not 
phonon mediated
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Some examples of HTSC Compounds

•Mostly compounds

•Record holder: 

Tc =138 K

•High Hc2:

Hc2 > 1000 000 G
(YBCO)

30La1.85Ba.15CuO4

93YBa2Cu3O7+

138Hg0.8Tl0.2Ba2Ca2Cu3O8.33

128Tl2Ba2Ca2Cu3O10

110Ca1-xSrxCuO2

9.25Nb
7.80 Tc

Tc (K) Element 
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Crystal Structure and Fermi Surface
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Hab

H
c

Crystal Structure and Fermi Surface
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Crystal Structure and Fermi Surface
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High Tc Superconductivity 
(conventional wisdom)

• Model Copper oxide planes 
with single band 2D 
Hubbard models (Zhang & 
Rice, PRB 1989)

• Still not solvable, but 
thousands of papers 
published every year

• David Pines: “arguably the 
major problem in physics 
today”

t
U
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Microscopic Model:

cu

o

o

Cannot be reduced to a Hubbard Model because the ionization energy
of Cu is nearly the same as the ionization energy of oxygen. 

Why are Cuprates Unique? (1987)
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• Electron-phonon interaction

• Spin exchange interaction-antiferromagnetic order

• Charge density waves, spin density waves and other competing 
orders. 

What interactions/orders exist in High-Tc Superconductor?
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Of the many proposed pairing 
mechanisms, few remain likely:

•Quasi particles in AF background (Hirsch 02)

•Resonating valence bond (Anderson 87)
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Resonance in benzene leads to a symmetric configuration of valence bonds 
(F. Kekulé, L. Pauling)

Valence bonds in benzene
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Resonance in benzene leads to a symmetric configuration of valence bonds 
(F. Kekulé, L. Pauling)

Valence bonds in benzene
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Resonance in benzene leads to a symmetric configuration of valence bonds 
(F. Kekulé, L. Pauling)

Valence bonds in benzene
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Phase Diagram and Competing Orders

PG: Pseudogap, SC: Superconductivity, CO: Competing 
order, AFM: Antiferromagnetic
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Strongly Correlated Systems:

Heavy Fermions
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Heavy Fermions
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Specific heat

T
C

2T

B=ϕtan
A

3BTATC +=
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de Haas-van Alphen Effect (dHvA)

ε

S

S

F
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Heavy Fermion Compounds

4f

5f
s-p-d s-p-d
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Models: Kondo Lattice
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Kondo-Effect

Kondo i i
i

H J S s
→ →

= ∑
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Resistance at low temperatures



35

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Kondo Cloud

Kondo-Screening
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Ruderman-Kittel-Kasuya-Yosida (RKKY) Wechselwirkung

,
RKKY ij i j

i j
H I S S

→ →

=∑
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I
RKKY

2p  R
F

Ferromagnetic Ordering

Antiferromagnetic Ordering
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Antiferromagnetic Ordering

cTT >

cTT <
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Spin Liquid
Resonating Valence Bonds
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Heavy Fermions: Phase Diagram
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Strongly Correlated Systems:

Organic Conductors
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Bechgaard salts
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Molecular Superconductors

ET=BEDT-TTF

Bis(EthyleneDiThio) TetraThiaFulvalene

J.A.Schlueter et al, 2004



45

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Conducting/Magnetic Hybrid Molecular Solids

J.A.Schlueter et al, 2004
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X[Pd(dmit)2]2

Pd CS

One free electron 
spin on each 
vertex of a 

triangular lattice

M. Tamura et al., J. Phys. Soc. Jpn. 75, 093701 (2006)
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Spin Ladders
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Phase Diagram
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and Nanostructures …


