Problem 5

Using the definition of the Brillouin Functions calculate $B_{J}(x)$ for $J=1$ and $J=3 / 2$. Try to express these functions as a linear combination of Fermi/Bose distribution functions.

Problem 6
i) Consider one-dimensional symmetric potential well

$$
U(x)= \begin{cases}-U_{0}, & |x|<a \tag{1}\\ 0, & |x|>a\end{cases}
$$

Find an energy of shallow level $U_{0} \ll \hbar^{2} /\left(m a^{2}\right)$.

ii) Consider two-dimensional symmetric potential well

$$
U(\rho)= \begin{cases}-U_{0}, & \rho<a \tag{2}\\ 0, & \rho>a\end{cases}
$$

where $\rho=\sqrt{x^{2}+y^{2}}$. Find the energy of the shallow level $U_{0} \ll \hbar^{2} /\left(m a^{2}\right)$ corresponding to $M^{z}=0$ where M^{z} is a projection of the orbital moment on the axis z. Compare the result with i).

