Theory of Magnetism

 

Lecture # 1

 

Introduction. Spin. Various magnetic states. Connection between spin and statistics. Fermions and Bosons. Pauli principle. Fermi sphere.

 

Lecture # 2

 

Magnetism of itinerant electrons. Pauli paramagnetism. Electron in a magnetic field. Landau levels. Landau diamagnetism. 

 

Lecture # 3

 

Semi-classical theory of local ferromagnetism. Classical magnetic moments. Langevin function.  Spins and orbital moments. Brillouin function.

Curie susceptibility. Molecular (Weiss) field. Curie-Weiss susceptibility.

 

Lecture # 4

 

Quantum theory of local magnetism. Microscopic models of magnetism. Ising model. XY model. Heisenberg model. Random Phase approximation.

Static susceptibility.  Ornstein-Zernike function. Susceptibility of Heisenberg ferromagnets.

 

Lecture # 5

 

Microscopic description of local ferromagnetism. Excitations in magnets: microscopic description. Holstein-Primakoff representation. Goldstone theorem.

Magnons. Transverse and longitudinal susceptibilities.

 

Lecture # 6

 

Microscopic description of local antiferromagnetism. Antiferromagnetic magnons. Transverse and longitudinal susceptibilities. Mermin-Wagner theorem.

 

Lecture # 7

 

Spin impurities in Fermi liquids. Magnetic impurities in non-magnetic metals. Kondo effect. Basics of scattering theory. Resistivity in Kondo regime.

 

Lecture # 8

 

Spin dynamics. Dynamic susceptibility of weakly interacting local moments. Macroscopic description: equations of motion.

Calculation of dynamic susceptibility: local moments in transverse magnetic field. Transverse and longitudinal relaxation times. Bloch equation.

 

Lecture # 9

 

Magnetism of nano-systems. Quantum dots. Carbon nano-tubes. Molecular transistors. Quantum transport. Kondo effect in nano-structures. Magnetotransport. Spintronics.

 

Lecture #  10

 

Spin impurities in Fermi liquids. Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction. Oscillation of exchange integral. Magnetic orderings. Spin glasses.

 

Lecture # 11

 

Magnetism of strongly correlated systems I. Stoner model. Hubbard model. Anderson model. Spin Density Waves. Strongly Correlated Systems.

 

Lecture # 12

 

Magnetism of strongly correlated systems II. Resonance Valence Bonds. Magnetism in low-dimensional systems. Heavy Fermions.  Organic compounds: spin chains and ladders.

 

Lecture # 13

 

Magnetism: summary. Examples of dia- para - ferro and antiferro- magnetic systems. Magnetisation. Hysteresis. Magnetic domains.  Experimental techniques: Neutron scattering, Torque magnetometry, MuSR. Application of magnetism

 

Tutorial # 1

 

Basics of Fermi - liquid theory.

 

Tutorial # 2

 

Quantum oscillator.

 

Tutorial # 3

 

Basics of Scattering theory.

 

Tutorial # 4

 

Fluctuation to Dissipation Theorem. Kramers - Kronig relations.

 

Recommended literature:

 

1.            

R. White. Quantum Theory of Magnetism. (Springer-Verlag, 1983)

 

2.            

A. Auerbach. Interacting Electrons and Quantum Magnetism. (Springer-Verlag,1994)

 

3.            

T.Moria. Spin Fluctuations in Itinerant Electron Magnetism. (Springer-Verlag, 1985)

 

4.            

C.Kittel. Quantum Theory of Solids.(John Wiley and Sons, New York 1987)

 

5.            

J. M. Ziman. Principles of the Theory of Solids. (Cambridge University Press,
Cambridge, 1979)