Theory of Magnetism

 

Lecture # 1                   16.02.09

 

Introduction. Spin. Various magnetic states. Connection between spin and statistics. Fermions and Bosons. Pauli principle. Fermi sphere. BEC

 

Lecture # 2                   18.02.09

 

Magnetism of itinerant electrons. Pauli paramagnetism. Electron in a magnetic field. Landau levels. Landau diamagnetism.  

 

Lecture # 3                   20.02.09

 

Semi-classical theory of local ferromagnetism. Classical magnetic moments. Langevin function. Curie susceptibility. Molecular (Weiss) field. Curie-Weiss susceptibility.

 

Lecture # 4                   23.02.09

 

Quantum theory of local magnetism. Atomic magnetic moments. Russell-Saunders coupling scheme. Brillouin  function. Spin exchange models. Ising model. XY model. Heisenberg model.

 

Lecture # 5                   25.02.09

 

Mean field theories. Random Phase approximation. Static susceptibility.  Ornstein-Zernike function. Susceptibility of Heisenberg ferromagnets.

 

Lecture # 6                   25.02.09

 

Microscopic description of local ferromagnetism. Excitations in magnets: microscopic description. Holstein-Primakoff representation. Goldstone theorem.

Magnons. Transverse and longitudinal susceptibilities.

 

Lecture # 7                   02.03.09

 

Microscopic description of local antiferromagnetism. Antiferromagnetic magnons. Transverse and longitudinal susceptibilities. Mermin-Wagner theorem.

 

Lecture #  8                  04.13.09

 

Bloch equations.  Dynamic susceptibility of weakly interacting local moments. Macroscopic description: equations of motion.

Density matrix approach. Calculation of dynamic susceptibility: local moments in transverse magnetic field. Transverse and longitudinal relaxation times.

 

Lecture # 9                   06.03.09

 

Landau-Lifshitz equations. Excitations in magnets: macroscopic description. Magnons in ferromagnets. Magnons in antiferromagnets. Thermodynamics of ferro- and antiferromagnets.

 

Lecture # 10                 09.03.09

 

Causality and symmetry. Karmers-Kronig relations. Fluctuation-dissipation theorem (FDT). Onsager symmetry relations.

 

Lecture # 11                 11.03.09

 

Ferromagnetism in metals. Stoner model. Hubbard model. Anderson model. Spin Density Waves. Magnetism in strongly correlated systems. Neutron scattering.

Magnetic impurities in non-magnetic metals. Kondo effect. Calculation of resistivity. RKKY interaction. Oscillation of exchange integral. Magnetic orderings

 

Lecture # 12                 13.03.09

 

Magnetism in strongly correlated and mesoscopic systems. Heavy fermions. High temperature superconductors. Frustrated magnets.

Quantum dots. Magnetotransport. Spintronics.

 

Recommended literature:

 

1.           

R. White. Quantum Theory of Magnetism. (Springer-Verlag, 1983)

 

2.           

A. Auerbach. Interacting Electrons and Quantum Magnetism. (Springer-Verlag,1994)

 

3.           

T.Moria. Spin Fluctuations in Itinerant Electron Magnetism. (Springer-Verlag, 1985)

 

4.           

C.Kittel. Quantum Theory of Solids.(John Wiley and Sons, New York 1987)

 

5.           

J. M. Ziman. Principles of the Theory of Solids. (Cambridge University Press,
Cambridge, 1979)