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Abstract: This is a preliminary version of a brief review of the EFT of LSS, the logic behind it

and the way it works in practice. I will set up the perturbative expansion and discuss the examples

of tree-level bispectrum, and 1-loop power spectrum where the counter-terms of the EFT that are

needed to make sense of loops are introduced. I will then discuss infra-red resummation which

explains broadening of the BAO peak. In the end, I will discuss the Zel’dovich approximation.

1 Introduction; the spherical collapse

Apart from understanding why the world around us is the way it is, an important motivation

to study the dynamics of structure formation in the universe is to extract information about

cosmological parameters such as σ8, ns, fNL, mν , w, etc. Those parameters set the initial

conditions and affect the dynamics and hence by a careful analysis what we observe can be

translated into quantitative constraints.

The problem we are dealing with is the gravitational collapse of over-dense regions into

halos, which when baryons are included, become hosts to galaxies we observe optically. Given

that we are talking about collapsing objects, the nonlinearities are much more important

compared to CMB. To warm up, let us study the collapse of a spherical over-density. In

a matter dominated universe consider a spherical region of mass M , and comoving size R

given by

M =
4

3
πR3ρ0 (1)

where ρ0 is the comoving energy density. Take a Newtonian potential well of depth φ0 within

this region at initial times

φ(x) = φ0(1− |x|2/R2), |x| < R, (2)

and 0 outside, where x is the comoving coordinate. In linear perturbation theory, φ remains
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constant in time, and implies a uniform density perturbations via Poisson equation

1

a2
∇2φ = 4πGρδ (3)

where I introduced the density contrast δ = δρ/ρ̄, and ρ̄ is the average density. For the

above given φ we find at linear order (where φ remains constant) a uniform, growing density

perturbation

δ(1) = − 3φ0

2πGρ0R2
a. (4)

So the over-density is negligible at very early times. However, as time grows the region evolves

as a closed cosmology which reaches a maximum radius and recollapses. This evolution can

be solved for using Newtonian gravity. Tracking the trajectory of a particle at the boundary

of the region, we have from energy conservation (here r is a physical length)

ṙ2 =
2GM

r
+ C, C < 0 (5)

where C is related to φ0. The solution is

r(θ) = A(1− cos θ), t(θ) = B(θ − sin θ) (6)

with constants A,B given in terms of C by

A = −GM
C

, B =
A√
−C

. (7)

From (6) we see that the maximum radius is reached at θ = π, and at

tc = πB. (8)

Hence, to determine the collapse time we need to find B. To do so note that at small times

θ2 =θ2
0

[
1 + a1θ

2
0 + a2θ

4
0 +O(θ6

0)
]
, a1 =

1

30
, a2 =

43

25200
,

θ2
0 ≡

(
3!t

B

)2/3

=

(
6

B2πGρ0

)1/3

a,

(9)

where I used the expression for the scale factor a in matter domination. (I keep the subsub-
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leading terms for a later purpose.) Then r can be expanded as

r(t) =A(
1

2
θ2 − 1

4!
θ4 +

1

6!
θ6 + · · · )

=
A

2
θ2

0

[
(1 + a1θ

2
0 + a2θ

4
0)− 2

4!
θ2

0(1 + a1θ
2
0)2 +

2

6!
θ4

0 +O(θ6
0)

]

=
A

2
θ2

0

[
1 + b1θ

2
0 + b2θ

4
0 +O(θ6

0)
]
,

(10)

where

b1 = a1 −
2

4!
= − 1

20
, b2 = a2 −

4a1

4!
+

2

6!
= − 3

2800
. (11)

Then we solve for density

ρ(t) =
3M

4πr3(t)
=

6M

πA3θ6
0

[
1 + c1θ

2
0 + c2θ

4
0 +O(θ6

0)
]
, (12)

where

c1 = −3b1 =
3

20
, c2 = −3b2 + 6b2

1 =
17

21
c2

1, (13)

the second term in brackets in (12) gives δ(1) = c1θ
2
0. B can be solved for by comparing this

to (4) and using (1), giving

tc = πGM

(
c1

−φ0

)3/2

. (14)

Given the initial statistics of φ perturbations, we can replace −φ by 〈φ(R)φ(0)〉1/2 in this

formula to estimate the time when typical halos of mass M collapse. Roughly, fluctuations

with wave-number k correspond to collapsing regions of comoving size 1/k.

1. Calculate δ(tc).

2. Show that the maximum radius of an over-density with the initial potential well φ0 is

HRmax ∼ φ
1/2
0 . (15)

Our universe is not made just of matter, however many qualitative features of structure

formation can be understood in a much easier way in matter-dominance. For this purpose

one linearly evolves perturbations during the radiation epoch to obtain the initial condition

for the subsequent period of matter dominance. Note that this evolution depends on the

comoving momenta of the modes. The shorter wavelength modes k > keq which enter the

horizon before matter-radiation equality (i.e. comoving scales for which k/aH = 1 before
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equality time) suffer a suppression, while the longer wavelength modes remain conserved.

The mapping between the primordial power spectrum, which is approximately scale invariant

〈ζ(k)ζ(k′)〉 =
A

k4−ns
(2π)3δ3(k + k′) (16)

with A ∼ 10−10, and the spectrum of Newtonian potential φ at the beginning of the matter

era is called the transfer function. At large scales φk�keq = −3ζ/5, while for k > keq there

is a suppression. It follows from (15) and smallness of φ that the structures form well inside

the horizon.

The spherical collapse model is of course idealistic. The over-dense region collapses all

the way until it forms a black hole. In reality, the collapsing regions are all embedded in one

another and never perfectly spherical. As a result, after the collapse the constituent dark

matter particles virialize. That is, the system stops collapsing when the kinetic energy K

and potential energy U satisfy K = −U/2. We don’t expect to be able to find an exact

solution like the spherical collapse to the general problem, however we can use perturbation

theory to go beyond the linear approximation. Given that structures collapse well inside the

horizon, this allows us to access a larger range of modes by including those which are in the

mildly nonlinear regime.

3. Using the fact that at r = rmax the kinetic energy of the spherically collapsing region is

zero, show that

rvir =
1

2
rmax. (17)

2 Truncating Boltzmann Hierarchy; Cosmic Fluid

A collection of identical classical particles is in principle described by a distribution function

f(t, x, p) which gives the occupation of every cell in the phase space. Very often, at large

enough distances an effective description arises. Hydrodynamics, elasticity, superfluidity are

some examples. Suppose we apply the same logic and smooth the Boltzmann equation over

some scale Λ. This is done in practice by integrating different quantities against a window

function WΛ(x− x′), e.g.

FΛ(x) =

∫
dx′WΛ(x− x′)F (x′), WΛ(x) = (Λ/π)3/2e−Λ2|x|2 . (18)
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One obtains (see sections 1.1 and 1.2 of http://physics.ipm.ac.ir/conferences/tmc/note/L.Senatore3.pdf)

∂τδ + ∂i[(1 + δ)vi] =0 ,

∂τv
i +Hvi + ∂iφ+ vj∂jv

i =− 1

ρ
∂jτ

ij ≡ − 1

(1 + δ)
∂j τ̃

ij ,

(19)

where τ is the conformal time defined by dt = adτ (τ ij is a different thing, to be discussed

at length below), H = ∂τa/a, Ωm = 1 in matter dominated universe. Density contrast δ and

velocity vi are defined in terms of the density field and momentum field

ρ = ρ̄(1 + δ), vi =
πi

ρ
(20)

and

ρ(t,x) =
m

a3

∫
d3pf(t,x,p),

πi(t,x) =
1

a4

∫
d3ppif(t,x,p),

(21)

which are then filtered by WΛ. I have dropped the subscript of ρΛ and πiΛ to avoid clutter.

φ is related to δ via Poisson equation

∇2φ =
3

2
H2Ωmδ . (22)

The equations in (19) are just the expression of local conservation of mass and momentum.

τ ij on the r.h.s. of the momentum conservation is called the effective stress tensor and it is

introduced such that if τ ij = 0 the equation reduces to the Euler equation for a pressureless

fluid. τ ij can be separated into kinetic and potential contributions

τ ij = κij + Φij (23)

where in particular

κij = σijΛ − ρv
ivj (24)

with

σij(t,x) =
1

ma5

∫
d3ppipjf(t,x,p). (25)

The expression for Φij can be found in the above reference. Now one can ask if there is any

sense in which τ ij is small, and hence the matter fluctuations can be treated approximately
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as a fluid. Generically, the answer is obviously negative, since we are dealing with very

weakly interacting cold dark matter particles. We can have two streams moving in opposite

directions through each other without much resistance. Then even though πi = ρvi could

vanish, σij and as a result τ ij would be large. What allows fluid description to arise from a

microscopic description of fluid constituents is the existence of a finite mean free path, given

particle density n and cross section σ,

` =
1

nσ
, (26)

so that over distances larger than `, the motion of particles is fully correlated. There cannot

be two streams at the same point if we take Λ`� 1.

Nonetheless, the fluid description is not totally hopeless, if we recall that our goal is to

study structure formation. That is, the time-evolution of a very particular initial condition

arising from adiabatic super-horizon perturbations. These are perturbations that start from

vanishing initial velocity. As we saw in the spherical collapse problem the larger the mass

(or equivalently, the smaller the wavenumber k) the longer it takes for the perturbations to

collapse, which is approximately the time when multiple streams start appearing at those

length scales. Hence, at any time t there is a range of long wavelength modes with k < kNL(t)

for which the fluid description can be used [1004.2488].

There is another peculiar feature of the of the cosmic fluid. Even in the absence of any

long wavelength perturbations, the system is violently out of equilibrium at short scales,

since smaller halos keep forming and merging. Even though there is no correlation between

far separated events, their random distribution contributes to momentum space correlation

functions at small k. This is called Poisson noise or stochastic noise, and locality guarantees

it to be analytic in momentum, as can be seen in the following example.

4. Let’s calculate the Poisson contribution to halo power-spectrum. Take a random dis-

tribution of halos with average density n̄h. To implement the randomness, divide the

space into small cells of volume δv and introduce a random variable Xi for cell i which

is 1 with probability p = n̄δv � 1, and 0 otherwise. Define the halo density field as

nh(xi) =
Xi

δv
. (27)

The Fourier transform of this is

nh(k) =
∑
i

eik·xiXi (28)
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Show that

〈nh(k)nh(k
′)′〉 = n̄h(2π)3δ3(k + k′). (29)

This is a k-independent power Ph(k). Of course, at large enough k the halos can

no longer be approximated as points and Ph(k) starts to change. Experimentalists

beautifully call this “shot noise”.

However, there is no shot noise when discussing correlation functions of δ, the mass-

density contrast. Peebles showed that energy and momentum conservation guarantees the

stochastic contributions to δ(k) are O(k2) rather than O(k0) in the k → 0 (see section

5 of 1509.07886). More importantly, given the source of the stochastic noise is collapsing

structures of characteristic size 1/kNL, this is an analytic expansion in k2/k2
NL (this has to be

the case since at k ∼ kNL we can no longer treat individual halos as point particles). Hence,

for k � kNL there is a well-defined perturbative expansion.

5. τ ij can have a uniform (zero-momentum) component. This is backreaction on the

background FRW cosmology due to the perturbations. Show that for virialized objects

this backreaction vanishes.

3 Time-evolution, linear theory

To start I ignore τ ij and solve the fluid equations to evolve the initial perturbations. First,

we show that the source for vorticity ωi = εijk∂jvk vanishes in the absence of initial vorticity,

and hence it remains zero given that it is zero initially. To see this, take the curl of the Euler

equation and use

vj∂jv
i = vj(εjikωk + ∂ivj) = εjikvjωk +

1

2
∂i(v

jvj) (30)

and use the fact that the curl of a gradient is zero, to obtain

∂τω
i +Hωi + ∂j(v

jωi)− ∂j(viωj) = 0. (31)

Vector perturbations decay outside of the horizon, so given that primordial fluctuations are

super-horizon, the initial vorticity for our problem is zero, and it remains zero in Eulerian

perturbation theory.

Hence, the velocity field can be written in terms of velocity divergence θ = ∂iv
i:

vi =
∂i
∇2

θ. (32)
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So we need to solve for the coupled system of δ and θ. To set up the perturbative expan-

sion, we first solve the linearized equations, derive the retarded Green’s function, and treat

nonlinearities as sources by evaluating them on the lower order solutions. At linear order

θ(1) = −∂τδ(1), (33)

taking the divergence of the Euler equation and using this relation we find

∂2
τ δ

(1) +H∂τδ(1) − 3

2
H2δ(1) = 0, (34)

or in terms of the scale factor

H2[a2∂2
aδ

(1) +
3

2
a∂aδ

(1) − 3

2
δ(1)] = 0. (35)

The growing and decaying solutions are, respectively,

D+ = a, D− = a−3/2. (36)

Given the rapid decay of the decaying mode we will only keep the growing part of the

solution. Hence, denoting the initial condition by δ1(k) we have

δ(1)(k) = aδ1(k) (37)

so the linear power spectrum grows as a2

〈
δ(1)(k)δ(1)(k′)

〉
= a2P11(k)(2π)3δ3(k + k′). (38)

As expected, linear perturbations grow in time, and thus nonlinearities eventually become

non-negligible. If we ask what is the typical amplitude of perturbations with comoving size

R at time t, it could be determined from

〈δ(t,x)δ(t, 0)〉 =

∫
d3k

(2π)3
P (k, t)eik·x, |x| = R. (39)

The linear theory predicts that this becomes O(1) when

∆(k) = a2k3P11(k) = 1 (40)

for k ∼ 1/R. As we will see ∆(k) is the loop expansion parameter.
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Next, we find the retarded Green’s function, which is the solution to

H2[a2∂2
aG(a, a′) +

3

2
a∂aG(a, a′)− 3

2
G(a, a′)] = δ(a− a′), (41)

with the condition that G(a < a′, a′) = 0. The solution is

G(a > a′, a′) =
2

5H0

[
a

a′
−
(
a′

a

)3/2
]
, (42)

where I used H = H0/a
1/2 in matter dominated universe.

4 Second-order solution and tree-level bispectrum

Our next goal is to include nonlinearities. It is very useful to have a diagrammatic rep-

resentation to organize various terms in perturbation theory. In our problem, these are

time-evolution diagrams which tell us how n initial fields evolve into a final δ(n). Graphi-

cally, they are all trees (or rather roots). When working with density and velocity field the

nonlinearities are two quadratic terms from continuity and Euler equations, respectively,

α = −∂i(δvi), (43)

and

β = −∂i(vj∂jvi). (44)

So the diagrams only have cubic vertices which combine two incoming field into one outgoing.

For instance, one diagram contributing to the forth order solution δ(4) is

I

I

I

I

J

I

J
J

δ1 δ1 δ1 δ1

δ(4)

(45)

See 1509.07886 for more examples and diagrammatic rules.
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The nonlinear equation for δ is

H2[a2∂2
aδ +

3

2
a∂aδ −

3

2
δ] = −β +H(a∂a + 1)α, (46)

which is solved for δ(n) by substituting the lower order solutions δ(m<n), θ(m<n) in the r.h.s.

and using the G(a, a′). Given the solutions δ(m≤n) and θ(m<n) one can use θ = −∂τδ + α to

solve for θ(n) and proceed to the next order.1

At second order, the source term for δ is (suppressing the x argument)

Sδ(a) = H0a

[
5

2
∂i

(
δ1
∂i
∇2

δ1

)
+ ∂i

(
∂i
∇2

δ1
∂i∂j
∇2

δ1

)]
. (47)

Integrating this against G(a, a′), gives

δ(2)(a) =

∫ a

da′G(a, a′)Sδ(a
′) =

2a

7H0

Sδ(a). (48)

Simplifying the result gives

δ(2) = a2

[
5

7
δ2

1 +
2

7

(
∂i∂j
∇2

δ1

)2

+
∂i
∇2

δ1∂iδ1

]
. (49)

6. Find θ(2).

7. Most of the times we are interested in expression in momentum space. So we write

δ(2) = a2δ2 with

δ2(k) =

∫
d3q1

(2π)3

d3q2

(2π)3
F2(q1, q2)δ1(q1)δ1(q2)(2π)3δ3(q1 + q2). (50)

(Below I’ll keep the momentum conserving delta function and the measure d3qi im-

plicit.) Find F2.

In cosmology we have at best a probabilistic description of the initial condition, so we

can only make predictions about correlation functions. Those who are interested in inflation

have certainly heard about primordial non-Gaussianities and 3-point correlation function, or

bispectrum. Given δ(2) we are now able to find the leading non-primordial contribution to

1We could also try to solve for vi in terms of δ and obtain an equation for a single variable. However,
this doesn’t seem to be a very smart choice, since instead of only two cubic vertices, the resulting theory
would have vertices at all orders.
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the bispectrum (called B211):

〈δ(k1)δ(k2)δ(k3)〉 =a4 〈δ2(k1)δ1(k2)δ1(k3)〉+ permutations

=a4[F2(k2,k3)P11(k2)P11(k3) + perms.](2π)3δ3(k1 + k2 + k3).

(51)

Let us compare the size of this to primordial non-Gaussianities, which can be understood as

having a Newtonian potential which is nonlinearly related to a Gaussian variable

φ = g + fNLg
2, (52)

with fNL ∼ 1 being an interesting target after Planck. This leads to a bispectrum for δ,

which for k1 ∼ k2 ∼ k3 is

〈δ(k1)δ(k2)δ(k3)〉′primordial ∼
fNLH2

k2
1T (k1)

P 2
11(k1) (53)

where prime denotes stripping off the momentum conserving delta function, and T (k) is the

transfer function: T (0) = 1 and T (k > keq) ∼ k2
eq/k

2. On the same equilateral configuration

F2 ∼ 1, and hence
Bprimordial

B211

∼ fNLH2

k2T (k)
� 1, (54)

for most of the observable modes. For instance, at k = 0.03h/Mpc this ratio is O(10−3).

Thus for many purposes, we need to understand structure formation at nonlinear level to be

able to use LSS data. Indeed, as long as the perturbation parameter ∆(k) > 10−3, we have

to proceed to subleading orders in perturbation series to reach the desired precision. That

is, we need to calculate loops.2

8. Use induction to show that the perturbation theory solution for δ and θ is of the form

δ(t,x) =
∞∑
n=1

anδn(x), θ(t,x) = H
∞∑
n=1

θn(x). (55)

Show that δn and θn satisfy the following recursive relations

δn =
1

(n− 1)(n+ 3/2)

∑
m1+m2=n
m1>0,m2>0

∂i(v
j
m1
∂jv

i
m2

)− (n+ 1/2)∂i(δm1v
i
m2

). (56)

Transform this to momentum space and find the recursive relations in eqs. 43, 44 of

2Some estimates of this sort for various cosmological parameters and their prospects from the near future
LSS observations can be found in 1602.00674.
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0112551.

9. Reproduce the second order terms in the spherical collapse solution by taking angular

average of δ(2).

10. Show that in the “squeezed limit”, k1 � k2,

F2(k1,k2) ' k1 · k2

2k2
1

� 1, (57)

while B211 has no 1/k1 divergence. What about the unequal time 3-point function?

These relations are tree-level examples of what is called LSS consistency relations

1311.0290. In the vicinity of the BAO feature the equal-time consistency relation be-

comes nontrivial 1504.04366.

Finally, we can also have a diagrammatic representation for various terms in the corre-

lation functions. We need an extra ingredient, which is the initial correlation of δ1 fields.

When two initial fields are correlated we represent it by a dot. Time flows away from the

dots and towards the external legs. An example of a diagram contributing to the 6-point

correlation function is

•
•

•
•

•

IJ

J I

I

I

J

J

I

J

I

I

J

I

J

(58)

This is called a tree diagram, because all internal momenta are determined by the external

ones. They give the leading contribution to the correlation functions. Once we go to higher

order in ∆ contributions, we have loop diagrams.

11. Draw the diagrams for B211.
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5 Loops and counter-terms

So far we learned that in the mildly nonlinear regime one can expand density and velocity

fields as a power-series in the initial perturbations:

δn(k) =
1

n!

∫
∑
qi=k

Fn(q1, · · · , qn)δ1(q1) · · · δ1(qn). (59)

However, the indefinite momentum integrals inevitably introduce error in our result, since at

any moment, there is a finite range of modes with k � kNL which are described by the fluid

equations. At tree-level, this is not an issue because all momenta are fixed by the external

ones, which can be taken to be soft. However, at subleading order some of the integrals

survive and have to be dealt with in a proper way. I’ll demonstrate this in the example of

1-loop power spectrum.

To next-to-leading order

〈δ(t,k)δ(t,−k)〉′ =
〈
δ(1)(k)δ(1)(−k)

〉′
+
〈
δ(2)(k)δ(2)(−k)

〉′
+2
〈
δ(1)(k)δ(3)(−k)

〉′
= a2P11+a4P22+a4P13

(60)

where

P22(k) = 2

∫
q

F 2
2 (q,−q + k)P11(q)P11(|q − k|), (61)

is diagrammatically represented by

J I
•
•

k −k

P11(q)

P11(|q − k|)
(62)

and

P13(k) = 6P11(k)

∫
q

F3(q,−q,k)P11(q). (63)

by

J I

J

J

P11(q)

P11(k)
k −k

k − q

•
• (64)

As anticipated there is contribution from all momenta, including those beyond kNL. To fix

this we could cutoff the integrals at some momentum Λ� k, however the result would then
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depend on our arbitrary choice of the cutoff. Moreover, for any reasonable choice of Λ near

kNL, we make some error by excluding the contribution of short modes above Λ, and by

inaccurate evaluation of the effect of those below Λ. The role of the effective stress tensor,

which we neglected so far, is to fix both of these problems. Generically, the its structure

(i.e. momentum dependence) can be determined by investigating the cutoff dependence of

the loop. Thus we need to understand various limits of the perturbation theory kernels Fn.

5.1 Perturbation theory kernels

The first property of the Fn kernels is their overall scale invariance:

Fn(λk1, · · · , λkn) = Fn(k1, · · · ,kn). (65)

The second property is IR safety: Consider a time-evolution diagram which includes some

high momentum (hard) modes and some soft modes. As we saw in the example of F2 kernel,

the leading coupling of the two modes k and q with k � q is

k · q
k2

= O(q/k). (66)

This is called an infrared (k → 0) singularity. This comes from the vi∂iδ and vi∂iθ terms in

the evolution equations and it is dictated by the Equivalence Principle. A long wavelength

mode δ(q1) sources a gravitational field in which all smaller scale structures fall together.

Hence, the coefficient of this coupling is universally 1. It follows that if several hard momenta

add up to a soft momentum in a time-evolution diagram, the IR divergence due to attachment

of a soft velocity field cancels instantaneously. To see this freeze the rest of diagram and at

any given time t0 sum over all attachments of the soft velocity to get

θ(t0,k)
∑
i

k · qi
k2

A(q1, · · · , qi + k, · · · ) (67)

where A is the amplitude for the rest of the diagram. In the k � q limit we can neglect the

change in the argument of A and obtain

θ(t0,k)A(q1, · · · )
∑
i

k · qi
k2

= θ(t0,k)A(q1, · · · )
k · qtot

k2
+O(k0). (68)

Hence, if the total momentum in the diagram is small the soft velocity does not lead to any

IR growth.

The third property of Fn kernels is their double-softness when two almost equal but

14



opposite hard momenta O(q) combine to give a soft mode O(k). This can be seen by

a rewriting (following Goroff-Grinstein-Rey-Wise) of the source term Sδ in the evolution

equation (46):

Sδ = ∂i∂j(v
iπj) +

2

3H2
[∂i∂j(∂iφ∂jφ)− 1

2
∇2(∂kφ∂kφ)]. (69)

One subtlety (discussed in 1509.07886) is that for the double softness of the whole diagram

to follow, one needs to insure there is no IR divergence in the diagram, as we did. Combined

with the first property (65), we conclude that

lim
λ→∞

Fn(k1, · · · , kn−2, λkn−1, λkn) = O(1/λ2). (70)

12. Derive (69)

5.2 Counter-terms

Let’s return to P22 and P13 diagrams and renormalize them. For this we need to look at

the UV limit of the loop momentum q � k. Then P22 diagram correlates two δ(2)(k) which

are formed from two hard modes of momentum q and k− q. From the above discussion we

know that each of these comes with a k2 factor, and hence

PUV
22 ∝ k4. (71)

In the P13 diagram we have one δ(3)(k) which is formed by combining two short mode and

a δ1(k), so we have

PUV
13 ∝ k2P11(k). (72)

To renormalize 1-loop power spectrum, we just need to add two counter-terms whose k-

dependence match the UV behavior of these two diagrams. The first one, is a stochastic

counter-term. As we discussed the UV limit of P22 diagram corresponds to the possibility

that even in the absence of initial long wavelength perturbations, they will form via the

evolution and collapse of the shorter scales. This stochastic noise is analytic in momentum

(corresponding to local, uncorrelated processes in real space), and as promised for mass

density contrast δ, it starts from k2.

The counter-term corresponding to P13, on the other hand, depends on an initially ex-

isting long mode. It corresponds to the fact that the evolution of short wavelength pertur-

bations is modified in the presence of the long mode. This modification must be through

locally observable effect, such as the change in the local expansion rate ∝ δ1(k), or the tidal

shear ∂i∂jφ. Hence, the effective stress tensor τ ij would depend on these. To obtain the
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source for δ one acts by two more derivatives (see (19) and recall that we take divergence of

the Euler equation to obtain evolution equation for δ). Hence, at this order we have

δct(k) = `2
22(t)k2J(k) + `2

13(t)k2aδ1(k), (73)

where J is a delta-function correlated random variable 〈J(k)J(k′)〉 = (2π)3δ3(k + k′). The

renormalized 1-loop power spectrum is

P1−loop(k) = a4P22 + a4P13 + 2`2
13(t)k2a2P11(k) + `4

22(t)k4. (74)

This 1-loop result has two parameters `13(t) and `22(2) which will depend on the regular-

ization scheme (e.g. on Λ, if we cutoff the loops). If the loops are cutoff at Λ ∼ kNL, then

one would expect both `13, `22 ∼ 1/kNL. They characterize our ignorance about the short

scale dynamics. Note however that the collapse of cold dark matter is a well-defined problem

which can in principle be solved numerically to obtain the values of these coefficients.3

Finally, I should mention that depending on the initial power spectrum different 1-loop

counter-terms would be of different degree of importance. To understand this it is useful to

estimate the 1-loop result by dividing it into the contribution from the loop momenta q ∼ k,

plus the UV part which is degenerate with the counter-terms:

P1−loop(k) ∼ a2P11(∆(k) + (k/kNL)2) +
k4

k7
NL

. (75)

In our universe the power spectrum in the mildly nonlinear scale can be approximated by

a power-law kn with n ' −1.5. This gives ∆ ∼ (k/kNL)3+n ∼ (k/kNL)1.5. Hence, the UV

contributions become less important at smaller k. At l loops the q ∼ k contribution of loop

diagrams would go as ∆l, so in our universe the `13 counter-term is more relevant than 2-loop

diagrams.

It can be seen in Fig. 1 that adding `13 counter-term significantly improves the reach

of perturbations theory (i.e. it increases the maximum k that the theory fits simulations

within say 1% error). This a framework that allows systematic improvement at k � kNL.

The structure of counter-terms as we go to higher orders become more complicated, but we

have finally understood how to systematically construct and count them to all orders [see

for instance 1509.07886, 1511.01889].

However, this improvement comes at the expense of having more and more free parame-

ters analogous to `13. As a result with a finite data set, the improvement saturates. This is

not unexpected, effective field theories are great in determining the universal features of IR

3One-loop power spectrum was first studied in the context of EFT in 1206.2926.
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Figure 1: The ratio of various theoretical approximations to the power spectrum to the simulation
result. Solid: IR-resummed, short-dashed: 1-parameter 1-loop EFT, dot-dashed: 0-parameter 1-
loop EFT with R = 0, and long-dashed: linear. The gray shaded region on the IR-resummed EFT
curve gives the statistical error.

physics, but they are not tools for marching towards UV.

6 BAO and IR-resummation

As seen in Fig. 1, the 1-loop EFT power spectrum has large oscillations with respect to

the simulation results. The source of these oscillation is BAO, and it is understood how

to deal with them in perturbation theory. The physics behind this mismatch can be best

understood by thinking about the real-space correlation function. This correlation function

has a peak at the scale `BAO ∼ 100h−1Mpc. It can be thought of as preferential clustering at

a distance `BAO from any over-density. However, the motion vi due to modes with wavelength

between that scale and the width of the peak σ � `BAO significantly distorts the shape of

the (hypothetical) BAO shell that surrounds every over-dense region, leading to a broader

peak. In fact, this broadening can be calculated equally well for any biased tracer, since by

the Equivalence Principle everything falls in the same way in a long wavelength gravitational

fields, with deviations suppressed by additional derivatives.4

4What follows is based on 1504.04366. For a pioneering work on BAO broadening and reconstruction see
0604362. In the context of EFT, IR-resummation was first discussed in 1404.5954.
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6.1 Squeezed Bispectrum

Consider a long wavelength mode δL(τ,x) = δq(τ) cos(q · x). By the above argument the

motion in the gravitational field of this mode is easiest to find from matter equations of

motion. For matter, the linearized continuity equation implies v ' − ∇∇2∂τδ. The total

displacement since τ = 0 is then

∆x = −δq(τ) sin(q · x) q/q2. (76)

13. Derive this equation.

Cosmological observables (like galaxies) are often observed at a single point in their lifespan.

Hence, even though ∆x depends on x, the relative motion of any given pair of points

is impossible to determine, since we don’t know where they have started from. What is

possible is to see how the distribution of pairs is correlated with δL. For pairs of any objects,

say galaxies, equation (76) implies〈
δg(
x

2
, τ)δg(−

x

2
, τ)
〉
δL

' ξg(x, τ) + 2δq(τ) sin
(q · x

2

) q
q2
· ∇ξg(x, τ), (77)

where ξg(x, t) is an average 2-point correlation function, of galaxy density contrast. Not

surprisingly, the distribution of pairs with separation much less than the long wavelength,

q ·x� 1, is hardly affected by the long mode. The second line would in this case correspond

to the effect of living in an over (under) dense Universe. An effect of order δLx|∇ξg|, which

for an approximately scale invariant spectrum, |∇ξg(x, t)| ∼ ξg(x, t)/x, is comparable to

dynamical contributions of order δLξg, which are neglected anyway on the right-hand side.

By dynamical contribution I mean the modification of the correlation function because in

the presence of the long mode the short wavelength modes experience a different background

cosmology (e.g. recall that an over-dense spherical region is like a closed cosmology).

However, even if q · x � 1, when we do expect the long-wavelength mode to induce a

large relative motion, the second line of (77) is often negligibly small. Scale invariance now

implies that it is of order δLξg/qx.

The relative motion is noticeable only if the distribution of pairs has a feature such that

the derivative of ξ on the r.h.s. of (77) becomes large. One such feature does exist in the

Universe at the baryon acoustic oscillation peak. For x ∼ `BAO,

|∇ξg| ∼
1

σ
ξg �

1

`BAO

ξg, (78)

where σ is the width of the peak. At this separation, the effect of the long mode on the
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distribution of pairs is of order δL`BAOξg/σ for q � `−1
BAO, and δLξg/qσ for `−1

BAO � q � σ−1,

which are both dominant compared to the O(δLξg) dynamical effects.

An approximate three-point correlation function can be obtained in this regime by cor-

relating (77) with δ(q, τ) to get〈
δ(q, τ)δg(

x

2
, τ)δg(−

x

2
, τ)
〉
' 2Plin(q, τ) sin

(q · x
2

) q
q2
· ∇ξg(x, τ), (79)

where Plin(q, t) is the linear matter power spectrum (= a2P11(q) during matter domination).

6.2 Large-scale displacements at one loop

Intuitively, the above result describes how galaxy pairs, which are more likely to be found

at distance `BAO, are moved to larger or smaller separations in the presence of a mode of

wavelength longer than σ. When averaged over the long modes, these motions lead to the

well-known spread of the acoustic peak.

For this purpose, it is necessary to keep higher order terms in the expansion (77). At

second order in relative displacement, now caused by the modes q1 and q2, the r.h.s. reads

2δq1(τ)δq2(τ) sin
(q1 · x

2

)
sin
(q2 · x

2

) qi1qj2
q2

1q
2
2

∂i∂jξg(x, τ). (80)

As before, this is the leading effect of the long mode if x ≈ `BAO, and ξg is the correlation

function in the absence of the q modes. By correlating (80) with two long modes one can

obtain the double-squeezed four-point correlation function. Alternatively, averaging over

the long modes with q < λ � 2πσ−1, gives the first correction to the observed two-point

correlation around the peak:

ξ̃g(r, τ) ≈ ξg,L(r, τ) + ξg,S(r, τ) + Σ2
λξ
′′
g,S(r, τ), (81)

where r ≡ |x|, prime denotes ∂/∂r, and terms suppressed by σ/`BAO are neglected. ξg,L(x, τ)

– the direct contribution of the long-modes to the correlation function – and ξg,S(x, τ) – that

of the short modes in the absence of the long modes– are assumed to be isotropic. Note that

while ξg,S contains the full short scale nonlinearities, only the leading effect of the long modes

on the short modes has been kept in (81). For each q mode, this scales as Plin(q)(`BAO/σ)2

for q � `−1
BAO, and Plin(q)/(qσ)2 for q > `BAO. The neglected terms are suppressed by one

or more powers of σ/`BAO and qσ, respectively. Hence, due to the bulk motions, ξ̃g has a
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broader peak with Σ2
λ given by

Σ2
λ ≈

1

6π2

∫ λ

0

dq Plin(q)[1− j0(q`BAO) + 2j2(q`BAO)], (82)

where jn is the nth order spherical Bessel function.

14. One can perturbatively confirm the above result when ξg is taken to be the matter

correlation: Show that the leading contribution of the long wavelength modes q � k to

the one-loop power spectrum (i.e. P22 and P13 diagrams) is

Pw
1−loop(k > λ) =

1

2

∫ λ d3q

(2π)3

(q · k)2

q4
Plin(q)[Plin(|k+q|)+Plin(|k−q|)−2Plin(k)] . (83)

Next separate Plin into an oscillating piece Pw and a smooth piece P nw:

Plin(k) = Pw
lin + P nw

lin (k) (84)

where Pw
lin ∝ sin(`BAOk) times a smooth envelope. Show that for q � k the expression

in the square brackets simplifies to −4Pw
lin(k) sin2(q · k̂`BAO/2), up to terms which are

suppressed by q/k. Hence, giving

Pw
1−loop(k > λ) = Σ2

λk
2Pw

lin(k), (85)

and taking the Fourier transform with respect to k reproduces (81).

However, the 1-loop result gives a very bad prediction for the nonlinear real-space correla-

tion function at `BAO. This is because the variance of displacements Σ is too big to be treated

perturbatively. In the momentum space, this failure is apparent from large oscillations of

the 1-loop EFT result for P (k) in fig. 1.

6.3 Infra-red resummation and BAO broadening

We can obtain a better formula which is valid to all orders in the relative displacement δq/q,

by rewriting (77) as

〈
δg(
x

2
, t)δg(−

x

2
, t)
〉
δL

'
∫

d3k

(2π)3
eik·x exp

[
2iδq(τ) sin

(q · x
2

) q · k
q2

]
〈δg(k, t)δg(−k, t)〉 .

(86)

As before, this is only relevant in the presence of a feature. Taking the expectation value over

the realizations of the q modes, approximating them, as we did so far, as being Gaussian, and
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Figure 2: Various theoretical approximations to the acoustic peak in the correlation function as well
as simulati on measurements. Solid: linear, dashed: IR-resummed linear, dot-dashed: IR-resummed
1-loop, and dotted: Zel’dovich.

using 〈exp(iϕ)〉 = exp(−〈ϕ2〉 /2) if ϕ is a Gaussian variable, we obtain our final expression

for the dressed two-point correlation function around r ≈ `BAO

ξ̃g(x) '
∫

d3k

(2π)3
eik·xe−Σ2

εkk
2 〈δg(k, t)δg(−k, t)〉ε . (87)

To write the exponent in the above form, we have used the fact that ∇2 ≈ ∂2
r [and therefore

k2 ≈ (x̂ · k)2] up to corrections of order σ/`BAO. In principle, the exponential factor should

only multiply the peak power Pw
g (k), though in practice the smooth background at r ≈ `BAO

is insensitive to the presence of this factor since Σ� `BAO. The subscript ε on the momentum

space expectation value on the r.h.s. indicates that it should be evaluated in the absence of

modes with momentum q smaller than εk, though it contains all short scale nonlinearities.

Within a perturbative framework, it is possible to include dynamical effects of the long

modes, as well as their non-Gaussianity by writing more complicated expressions.

The IR-resummed 1-loop EFT result in fig. 1 is obtained using this nonlinear treatment

of modes with q � k. The resulting real-space correlation function is in very good agreement

with the simulation results, as can be seen in fig. 2.
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7 Lagrangian Perturbation Theory

Consider a fluid element that at time τ0 is located at position x0. Its position at time τ is

given by xfl(x0, τ0; τ) which satisfies:

xfl(x, τ ; τ ′) +

∫ τ

τ ′
dτ ′′v(xfl(x, τ ; τ ′′), τ ′′) = x. (88)

It is convenient to define the (Lagrangian) location of a fluid element at the initial time

z(x, τ) ≡ xfl(x, τ ; 0). The displacement field is then defined as

ψ(x, τ) = x− z(x, τ). (89)

To make contact with the standard notation of the Lagrangian perturbation theory it is useful

to invert the function z(x, τ) and express the displacement field in Lagrangian coordinates

ψ(z, τ) = x(z, τ)− z =

∫ τ

0

dτ ′v(x(z, τ ′), τ ′). (90)

From this definition it follows that

ψ̇(z, τ) ≡ ∂

∂τ
ψ(z, τ) = v(x(z, τ), τ), (91)

and

ψ̈ = Dτv ≡ (
∂

∂τ
+ v · ∇)v, (92)

where we introduced the convective derivative Dτ . Thus the Euler equation becomes:

ψ̈i +Hψ̇i +
∂

∂xi
φ = − 1

ρ̄(1 + δ)

∂

∂xj
τ ij. (93)

One can decompose ψi into a gradient and a curl piece and obtain equations for each of

these pieces. For this purpose, one needs to express the Eulerian gradient of φ to Lagrangian

derivatives of ψ. From the mapping between Lagrangian and Eulerian space x = z+ψ and

mass conservation

ρ̄ d3z = ρ̄(1 + δ) d3x, (94)

we have that 1 + δ = 1/J , where J is the determinant of the Jacobian matrix

Aij ≡
∂xi
∂zj

= δij + ∂zjψi (95)
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where δij is the Kronecker delta (not to be confused with density contrast). Spatial indices

are raised and lowered using δij and its inverse. Finally, we need to use

∂

∂xj
= A−1

ij

∂

∂zi
, (96)

to express the derivatives with respect to xi in terms of those with respect to zi. Using

these and the Poisson equation we can replace ∂φ/∂xi in terms of a nonlinear function of ψi

and its derivatives. Solving this nonlinear eqution perturbatively is the goal of Lagrangian

Perturbation Theory (LPT).

15. Use (89) and (94) to obtain the following expression for δ in Fourier space

δ(k) =

∫
d3z eik·(z+ψ). (97)

7.1 Zel’dovich approximation

Suppose we ignore the stress tensor and linearize (93): To first order in ψi,

δ(1) = −∂iψi, (98)

and to the zeroth order, A
(0)
ij = δij, therefore

∂

∂xi
φ = −3

2
ΩmH2∂i∂j

∇2
ψj +O(ψ2), (99)

where spatial derivatives on the r.h.s. are all with respect to z. We obtain (setting Ωm = 1)

ψ̈i +Hψ̇i − 3

2
H2∂i∂j
∇2

ψj = 0. (100)

As always, on an isotropic background the equations for the curl and gradient piece of ψ

separate.

16. Noticing that, by definition, ψ has to vanish at τ = 0, show that the initial condition

for ψ is curl-free.

So we can solve for the divergence of ψi, which gives the same δ(1)(τ) obtained in section

3. Hence,

ψ(1)(τ,k) = −ik
k2
aδ1(k), (101)
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which is the displacement field we calculated in (76). Using (97), we obtain the first order

Lagrangian solution for δ:

δ
(1)
LPT =

∫
d3zeik·(z+ψ(1)). (102)

This is called the Zel’dovich approximation. Note that it contains terms of all orders in

δ1. However, if we want to know δ to order O(δn1 ), we have to calculate ψ(1),ψ(2), · · · ,ψ(n)

to be consistent. And one can show that the result would match what is obtained by

using Eulerian perturbation theory. This must be the case since Lagrangian and Eulerian

perturbation theories are solving the same equations but in terms of different variables.5

However, the Zel’dovich approximation has two interesting properties:

Exactness in one-dimension: If we consider perturbations which only depend on

one of the coordinates, say x1, then we have an effectively 1d problem and the Zel’dovich

approximation becomes exact before shell-crossing. This can be understood intuitively from

the fact that in this approximation ∂φ/∂xi is calculated at linear order. Hence, the force

on individual particles is set by the initial condition, without updating it as they move.

However, in Newtonian gravity in 1d (or if we are talking about force of parallel infinite-

sheets in 3d) the force does not depend on the distance. It remains constant until particles

cross one another (which is the definition of “shell-crossing”). Since the Eulerian equation

(without τ ij) is valid under the assumption that there is no shell-crossing, the Eulerian

perturbation theory in this 1d set up is just the Taylor expansion of δZel in δ1.

On the other hand, shell-crossing happens eventually. And almost instantaneously, if we

start from an initial power spectrum which has power at short scales. Thus the Zel’dovich

approximation quickly fails to be exact, even in 1d, and the same follows for the Eulerian

perturbation theory. The counter-terms in τ ij are needed to account for this failure.6

IR-resummation: The Zel’dovich approximation automatically resums the first order

displacements. Hence, it gives a good prediction for the correlation function at BAO scale.

See fig. 2.

5See 1511.01889 for a hybrid approach.
6This problem is studied in detail in 1502.07389 and 1710.01736.
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