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Abstract

Two important applications of Einstein gravity are discussed.
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1 Schwarzschild Metric

Reading: LL §100

It is generally hard to find analytic solutions of a nonlinear system of equations, like those of

Einstein

Gµν = 8πGTµν . (1)

This is a hard problem even in vacuum, where Tµν = 0. Symmetries usually simplify the task. In

particular, assuming spherical symmetry allows us to find a simple and yet very important analytic

solution. Spherical symmetry means that we can write the metric as

ds2 = −h(t, r)dt2 + 2k(t, r)dtdr + l(t, r)dr2 + r2dΩ2, (2)

where dΩ2 is the metric of a unit round sphere

dΩ2 = dθ2 + sin2 θdφ2. (3)

Here we have chosen one of the coordinates (r) to describe the area of the symmetric spheres (4πr2).

This is must be familiar from the spherical coordinates in 3d Euclidean geometry where

ds2 = dr2 + r2dΩ2. (4)

However, it is a special feature of R3 that r also measures the distance to the origin. For instance,

the unit 3-sphere metric can be written as

ds2 =
dr2

1− r2
+ r2dΩ2. (5)

Here 4πr2 determines the area of 2-spheres at coordinate r, but it does not measure the distance

between them and the r = 0 point. One can think of the coordinate system (5) as picking an

arbitrary point (say the North pole) on the 3-sphere and foliating the manifold with 2-spheres at

constant distance from the North pole. These are a higher dimensional analogs of the latitudes on

the surface of the Earth; so I’ll call them such.

1. Show that the above metric is equivalent to

ds2 = dχ2 + sin2 χdΩ2, (6)

and find the distance between a point at r and the North pole (r = 0).

There is a coordinate singularity at r = 1 in (5). This is the analog of the equator. The 3-sphere

is not singular there, it is just the area of the latitudes that is not a good coordinate for the
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entire manifold because it ranges over the same values on the northern and southern hemispheres.

Similarly, the coordinates in (2) might not cover the entire manifold.

We can set gtr = 0 in (2) by the coordinate transformation

t→ f(t, r) with ∂rf(t, r) =
k(t, r)

h(t, r)
. (7)

The gtt and grr components will change under this transformation, but they remain functions of t

and r. It is convenient to parametrize the new metric as

ds2 = −eν(t,r)dt2 + eλ(t,r)dr2 + r2dΩ2. (8)

2. Find the transformation that takes the metric

ds2 = −dt2 + 2tdtdr + dr2 (9)

to one with gtr = 0, and gtt = −e2r. What is the new grr?

It is relatively easy to compute the Riemann tensor and hence Rµν , R and Gµν for the metric (8).

For instance

Gtr =
λ̇

r
, (10)

Gtt = eν−λ

(
λ′

r
− 1

r2

)
+
eν

r2
, (11)

Grr =

(
ν ′

r
+

1

r2

)
− eλ

r2
, (12)

where dot denotes d/dt and prime d/dr. In vacuum Gµν = 0. Therefore, from (10) we learn that

λ is a function of r only. From the combination

0 = eλ−νGtt +Grr =
ν ′ + λ′

r
(13)

we learn that

ν(t, r) = −λ(r) + ν̃(t). (14)

But we can set ν̃(t) = 0 by a coordinate redefinition of t→ t̃:

t̃ =

∫ t

eν̃(s)/2ds. (15)

Note that this does not involve r and hence does not change gtr or grr. I will drop the tilde and

call the new coordinate t, in terms of which ν = −λ. Finally, we can integrate (11) to find

ds2 = −
(
1− rg

r

)
dt2 +

dr2(
1− rg

r

) + r2dΩ2, (16)
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where rg (the gravitational radius) is an integration constant.

The fact that spherical symmetry uniquely fixes the vacuum solution up to one parameter rg

(also known as the Birkhoff’s theorem) is reminiscent of electromagnetism, where the role of rg is

played by the electric charge Q. This is the consequence of the fact that there is no spherically

symmetric electromagnetic or gravitational waves, which in turn results from the nonzero helicity

of photons and gravitons.

Newtonian limit. The Schwarzschild metric describes the spacetime outside spherically sym-

metric matter distribution. As a simple model for the matter distribution consider a non-relativistic,

static star. This means that there is a choice of coordinates where Ti0 = 0 and

T00 = ρ(r), ρ(r) =
r→∞

0. (17)

In these coordinates we continue to have gtr = 0 and ν̇ = λ̇ = 0 inside the star. In the non-

relativistic limit, the spacetime is close to Minkowski, so we can linearize in ν and λ, moreover

Tij ≈ 0. We can now use

8πGρ = Gtt =
1

r2
(λ+ rλ′) +O(ν2, λ2, νλ), (18)

and the trace of the Einstein equation

R = −8πGTµ
µ ≈ 8πGe−νρ, (19)

where using ν̇ = λ̇ = 0, and to linear order in ν, λ

R(1) =
2λ

r2
− 1

r
(rν ′′ + 2ν ′ − 2λ′). (20)

Eliminating λ gives

ν ′′ + 2
ν ′

r
≈ 8πGρ (21)

which is the Poisson equation for the Newtonian potential ϕ = ν
2 . Its solutions is

ϕ = −GM
r
, M ≡

∫ ∞

0
4πr2ρ(r)dr. (22)

3. What is the necessary condition on the radius of the star for the non-relativistic approximation

to be valid?

Orbits. Free test particles move on geodesics, described by

d

dτ

(
gµν

dxν

dτ

)
=

1

2
∂µgαβ

dxα

dτ

dxβ

dτ
, (23)
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where τ is the proper time for massive particles and the affine parameter for the massless ones.

4. Derive the geodesic equation by varying the point particle action with respect to xµ

Spp = −m
∫
dσ

√
−gµν(x)

dxµ

dσ

dxν

dσ
. (24)

At large distances, the orbits of the Schwarzschild metric are well approximated by Keplerian orbits,

however when r ∼ rg there are significant differences. For instance, there is an innermost circular

orbit as we will see next.

Without loss of generality, we can choose the circular geodesic to be in the θ = π
2 plane. Then

uµ = (ṫ, 0, 0, φ̇), ṫ ≡ dt

dτ
, φ̇ ≡ dφ

dτ
. (25)

Note that we changed the definition of dot from d/dt to d/dτ .

Since the metric is independent of t and φ, we have two conservation laws:

d

dτ
ut = 0 ⇒ ṫ =

e

1− rg
r

, (26)

d

dτ
uφ = 0 ⇒ φ̇ =

ℓ

r2
, (27)

where the constants e and ℓ are, respectively, the energy and angular momentum per unit mass.

The normalization of the 4-velocity uµuµ = −1 implies

e2 =
(
1− rg

r

)(
1 +

ℓ2

r2

)
. (28)

Finally, the r component of (23) implies

−rg
r2
ṫ2 + 2rφ̇2 = 0. (29)

Substituting the above expressions for ṫ, φ̇, and e gives

ℓ2 =
rgr

2
(
1− 3rg

2r

) . (30)

The minimum value for r for this to have a solutions is rmin = 3
2rg.
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2 Extension of Schwarzschild metric

Reading: Wald 6.4

We saw that the Schwarzschild metric describes the metric outside a spherically symmetric

matter distribution. Inside matter, the metric will differ from Schwarzschild, so for instance the t, r

coordinate system is perfectly suitable to describe the interior of a non-relativistic star. What if

the matter distribution gets so compact that at r = rg we are still in vacuum? The Schwarzschild

metric is singular at r = rg, but one can check that invariants made of curvature (e.g. RµναβR
µναβ)

and its derivatives remain finite at this point. This singularity is due to the failure of t, r coordinates

to cover the entire manifold. Below we will find an alternative.

1. How long does it take a free-falling observer who starts at rest at r = 2rg to arrive at r = rg

(a) in proper time?

(b) in coordinate time t?

This exercise hints at a way of extending the geometry in the future beyond rg, namely to

use the time measured by infalling observers rather than t, which is the time measured by the

asymptotic observer (i.e. one at r ≫ rg). This is the idea behind the Painlevé coordinates.

Instead, here we follow Kruskal and Szekeres and consider radially moving null rays. From

ds2 = 0 (for a null ray) we obtain
dr

dt
= ±

(
1− rg

r

)
. (31)

Let’s define the tortoise coordinate

r∗ = r + rg log
r − rg
rg

, (32)

which ranges from r∗ = −∞ at r = rg to r∗ = ∞ at r = ∞. In terms of r∗ the t − r part of the

Schwarzschild metric becomes conformally flat

ds2 =
(
1− rg

r

)
(−dt2 + dr2∗) + r2dΩ2, (33)

where r should be thought of as a function of r∗. The solutions to (31) in these coordinates are the

outgoing rays

t− r∗ = u, (34)

and the infalling rays

t+ r∗ = v, (35)

where −∞ < u, v < ∞ are constants that label the null rays. As we approach r = rg along an

infalling null ray (v = constant) u → ∞ and as we approach it by moving backward along an
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outgoing null ray (u = constant) v → −∞.

2. Find the affine time ∆σ and the coordinate time ∆t of an infalling null ray to reach rg starting

from 2rg, assuming dt
dσ (2rg) = 1.

3. Repeat the same exercise for an outgoing ray.

Next we switch to the null coordinates u, v. This is a common trick to simplify 2d metrics, and

here we are concerned with the t − r part of the metric. We can use v − u = 2r∗ to solve for the

singular factor 1− rg/r, and obtain

ds2 = −rg
r
e−r/rge

v−u
2rg dudv + r2dΩ2, (36)

where again r has to be thought of as an implicit function of u and v. We can now define the new

coordinates

U = −2rge
−u/2rg , V = 2rge

v/2rg , (37)

with the range −∞ < U < 0 and 0 < V < ∞ as u and v vary over the real line. Reaching r = rg

along infalling and outgoing null rays corresponds to reaching U = 0 and V = 0 respectively. In

terms of U, V

ds2 = −rg
r
e−r/rgdUdV + r2dΩ2. (38)

Now we see that nothing is singular if we extend U and V along the entire real line, as long as

r > 0. One can check that r = 0 is a real singularity of the manifold, where curvature invariants

diverge. We determine its location in terms of the U, V coordinates by using

r∗ =
v − u

2
= rg log

−UV
4r2g

, (39)

using (32) we get
r

rg
= log

UV

4rg(rg − r)
. (40)

Note that whenever we cross r = rg either U or V switch sign, so the argument of log is always

positive. At r = 0, we get

UV |r=0 = 4r2g , (41)

which comprise a past singularity V,U < 0 and a future singularity V,U > 0. Finally, we can also

reintroduce timelike and spacelike variables U = T −X, V = T +X, to find

ds2 =
rg
r
e−r/rg(−dT 2 + dX2) + r2dΩ2, (42)

where r = r(T,X). The resulting geometry is the maximally extended Schwarzschild geometry. It

is shown in figure 1-left. I will next review some of the features of this geometry.
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Figure 1: Left: The maximally extended Schwarzschild geometry. Right: A spatial slice of the geometry
(with spheres represented by circles), that connects the asymptotic regions. It is called the Einstein-Rosen
bridge. (Pictures from Wikipedia.)

Exterior regions. There are two identical exterior regions I and III with rg < r < ∞ (or

UV < 0) that asymptote to Minkowski as r → ∞. They are causally disconnected (no signal can

be sent from one to the other).

Interior regions. The two regions II and IV with 0 < r < rg (0 < UV < 4r2g) are respectively

the black hole and white hole regions. No signal can escape from the black hole, and no signal can

enter the white hole.

Horizon. This causal structure leads us to the definition of horizons as the boundaries of black

hole and white hole regions at r = rg (UV = 0). These are null hypersurfaces since either U = 0 or

V = 0 and constant U and constant V correspond to radially moving null geodesics. In this case

radial motion does not mean going to larger or smaller r — these are null rays that are stuck at

r = rg. These geodesics are called the generators of the horizon.

Spatial wormhole (or Einstein-Rosen bridge). There are spatial sections of the extended

geometry that look like a wormhole, a 3d geometry along which r shrinks from infinity to a minimum

and expands again. We can imagine a slight modification of the geometry where the asymptotics

r → ∞ of region I and III are identified. In this case the wormhole connects two far away points

in the same spacetime. However, as discussed above, this wormhole is nontraversable.

Real black holes. The maximally extended Schwarzschild geometry is an abstract model.

There is no evidence that such a thing exists in our Universe, but black holes do exist. Astrophysical

black holes are formed from the gravitational collapse of matter. Under the assumption of spherical

symmetry, the Schwarzschild solution would then describe the metric outside matter, but inside

matter r smoothly shrinks to 0. This eliminates regions III and IV and modifies parts of regions I

and II. Nevertheless, the future singularity at r = 0 is inevitable once matter distribution collapses

below r = rg. In region II r is timelike and falling toward r = 0 cannot be avoided. Penrose

singularity theorem proves the existence of future singularities under relatively mild assumptions,
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even if there is no spherical symmetry.
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3 Conformal Compactification

It is often desirable to draw a diagram that shows the causal structure of Lorentzian manifolds. In

2d, or when there is enough symmetry that one can focus on a 2d part of the metric (as in the case

of Schwarzschild) there is a way to do this. Let’s start from the example of 4d Minkowski metric,

which in spherical reads

ds2 = −dt2 + dr2 + r2dΩ2, −∞ < t <∞, 0 < r <∞. (43)

The idea is to suppress the spherical part and focus on the t− r part of the metric. Then we use

the same trick of transforming to null coordinates as in the last chapter

u = t− r, v = t+ r, (44)

with the range −∞ < u, v <∞ subject to the constraint

v ≥ u. (45)

To compactify the u− v part of the metric, we define

ū = tanhu, v̄ = tanh v (46)

which range over −1 < ū, v̄ < 1 subject to the constraint (45) which implies v̄ > ū. The metric

now reads

ds2 = − dūdv̄

(1− ū2)(1− v̄2)
+ r2dΩ2. (47)

As long as we are interested in radial motion (i.e. motion in ū, v̄) the causal structure is the same

as the 2d Minkowski space ds2 = −dūdv̄ except for the constraint on the range of the variables. So

we obtain
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Every point of this diagram should be thought of as a 2-sphere. At every point the lightcone (in

radial direction) is made of ū = constant and v̄ = constant lines that pass through that point.

The interesting parts of this diagram are u = v, corresponding to r = 0, u = v = ±1 corre-

sponding to future and past timelike infinity (i±), v = 1, which is future null infinity I +, and

u = −1, which is past null infinity I −.

1. (a) Mark the point corresponding to r → ∞ and t = constant.

(b) Draw the worldline of an observer at constant r.

(c) Draw the full trajectory of a null ray that passes through the origin.

2. (a) Show that every 2d metric can be transformed in the neighborhood of any point into a

conformally flat metric

ds2 = −Ω2(u, v)dudv. (48)

(b) How many independent components are there in the Riemann tensor in 2d?

Schwarzschild. Now we apply the same logic to the U − V part of the extended Schwarzschild

metric

ū = tanhU, v̄ = tanhV, (49)

with the range −1 < ū, v̄ < 1, but subject to the constraint

UV < 4r2g , (50)
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to avoid the r = 0 singularity. The resulting Penrose diagram is

The significance of Penrose diagrams is to illustrate the causal structure. The timelike and spacelike

curves can be deformed by change of variables ū→ f(ū), v̄ → g(v̄), as long as f and g are monotonic

functions in the range (−1, 1). Hence in the above diagram the r = 0 singularities, which are

spacelike hypersurfaces, are drawn horizontally even though from (49) we would obtain curves that

bulge out.

3. Alice lives in region I and Bob in region III of the extended Schwarzschild geometry. How

can they meet? How big should be rg for this to be a safe trip?

The Penrose diagram of a black hole formed from the collapse of spherically symmetric matter
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looks like

4. The surface temperature of a neutron star of radius 5rg is 6 × 105 K. As the star starts

collapsing into a black hole, the surface falls freely. What is the temperature measured by a

distant observer as a function of time t?
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4 Rotating Black Holes

Reading: Wald 12.3, 12.4

We have learned that total energy and total momentum is defined in asymptotically flat space-

times, leading to a well-defined notion of mass, called the ADM mass (see section 11 of part I).

Under the same conditions the expression for the angular momentum is self-evident

J i = εijk
∫
d3x xjτ0k, (51)

where εijk is the totally antisymmetric tensor on the spatial slice where we are computing the

integral and τµν is the pseudo-tensor of energy and momentum. As in the case of total energy and

momentum, this expression is useful because it reduces to a boundary integral, which is invariant

under linearized diffeomorphisms. Therefore, as long as we can choose a coordinate frame where

linearizing in hµν = gµν − ηµν is justified when r → ∞, J i is well-defined.

On a spherically symmetric spacetime (like Schwarzschild) J i = 0, but we could ask what

happens if we drop a particle with nonzero angular momentum in a Schwarzschild black hole, or

what is the end result of the gravitational collapse of a rotating star. This is known to be a rotating

black hole, described by the Kerr metric:

ds2 =−
(
∆− a2 sin2 θ

Σ

)
dt2 − 2a sin2 θ(r2 + a2 −∆)

Σ
dtdφ

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdφ2 +

Σ

∆
dr2 +Σdθ2,

(52)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2GMr, (53)

and a < GM .

1. The Kerr metric is asymptotically flat. Use (51) to show

J =Ma. (54)

The a → 0 limit of the Kerr metric is the Schwarzschild metric. At finite a the geometry has

less symmetries than Schwarzschild. It is stationary (invariant under time translations) and ax-

isymmetric (invariant under rotations along the z axis). These symmetries lead to two isometries,

χ = ∂t and ψ = ∂φ. Isometries are vector fields such that infinitesimal diffeomorphisms generated

by them leave the metric unchanged:

δξgµν = ∇µξν +∇νξµ = 0, ξ an isometry. (55)
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2. Show that if ξµ is an isometry, then ξµuµ =constant along geodesics.

Horizon. The Kerr metric has singularities at

r± = GM ±
√
G2M2 − a2, (56)

where grr = ∞. Approaching from infinity, one first encounters the r+ singularity. This is a

coordinate singularity just like the singularity at r = 2GM in Schwarzschild. One can show that

an infalling observer whose size is small compared to the black hole will cross r = r+ after a finite

proper time and without any drama.

While at r > r+ constant-r hypersurfaces are timelike (i.e. they include timelike curves) the

r = r+ hypersurface is null. This can be seen by considering the normalization of a 4-velocity in

the t− φ direction uµ = (ut, 0, 0, uφ):

gµν(r+)u
µuν =

sin2 θ

Σ
(aut − (r2+ + a2)uφ)2 ≥ 0, (57)

while for a timelike curve we must have uµuµ = −1 (adding a uθ component doesn’t help as it

makes (57) more positive). On the other hand, this hypersurface includes the null curves

ℓµ = (1, 0, 0, a/(r2+ + a2)) = χ+
a

r2+ + a2
ψ. (58)

One can show that these curves are null geodesics (for instance by taking the limit ϵ → 0 of null

geodesics passing at r = r+ + ϵ, with ur ∝ ϵ). One can also show that the r = r+ hypersurface is

achronal, namely no two points on it are timelike separated. This is the same property that the

future (or past) lightcone possesses. As a result the r = r+ hypersurface is the boundary of the

black hole exterior from which signals can escape to infinity and the black hole interior. As in the

case of Schwarzschild, the maximal extension of the geometry includes also a white hole region and

therefore two r = r+ hypersurfaces corresponding to the black hole and the white hole horizons.

From the point of view of the asymptotic observer (at large r), the null generators of the horizon

have a nonzero angular velocity dφ/dt = ℓφ/ℓt

ΩH ≡ dφ

dt
=

a

r2+ + a2
, (59)

which is identified as the angular velocity of the horizon.

Ergosphere. In the region

r+ < r < GM +
√
G2M2 − a2 cos2 θ (60)

the tt component of the metric flips sign, gtt > 0. As a result, causal curves must be corotating

16



with the black hole,

uφut > 0 ⇒ uφ

ut
> 0. (61)

This region is called ergosphere. Recall that the conserved energy measured at infinity is

E = −pt = −χµpµ. (62)

Any particle that can escape to infinity must have E ≥ m (the rest mass) and hence E > 0. On

the other hand, since in the ergosphere χµ becomes spacelike, there can be particles in this region

with pt > 0. Of course they won’t be able to escape to infinity. This allows a mechanism to extract

energy from the rotating black hole, known as the Penrose Process. Imagine we drop particle a

from infinity, and inside the ergosphere a→ b+ c. At the moment of decay

pµa = pµb + pµc . (63)

In particular pat = pbt + pct . Suppose particle c has pct > 0 and falls into the black hole but particle

b escapes to infinity. Then we will have

Eb > Ea. (64)

This process spins down the black hole as we will see next. Firstly, any particle that falls through

the Kerr horizon with momentum p must have

ℓµpµ < 0, (65)

because pµ and ℓµ are future directed vectors (in particular, ℓ is parametrized such that it co-rotates

with the black hole). Equation (65) can be written as an inequality between the energy and angular

momentum of the particle as measured from infinity. We expect the black hole to relax to a new

Kerr solution after a while with δM and δJ given by those of the particle. It follows that

δM − ΩHδJ > 0. (66)

So if δM < 0, as in the Penrose process, then δJ must also be negative. It is impossible to extract

energy from a non-rotating black hole.

Superradiance. So far we saw the Penrose process as a mere logical possibility. Black hole

superradiance is a clever setup that efficiently realizes this possibility. I will illustrate the idea

following the original work of Zel’dovich.1 Suppose you have a medium in which waves of a certain

kind dissipate (electromagnetic waves in a piece of Copper is an example). As a simple model

consider a massive Klein-Gordon field. In vacuum □ψ −m2ψ = 0. The wave equation in the rest

frame of the dissipative medium takes the form □ψ − a∂tψ −m2ψ = 0 with a > 0 a constant. If

1I highly recommend reading his two-page paper http://jetpletters.ru/cgi-bin/articles/download.cgi/

1604/article_24607.pdf.
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the medium is moving then the dissipation term transforms to

a∂tψ → aγ(∂tψ + v∂xψ), γ = 1/
√

1− v2. (67)

Now suppose we have an axisymmetric configuration like a Copper cylinder of radius R spinning

with angular velocity Ω, and shine on it a wave of frequency ω and angular momentum n along

the axis of symmetry, ψ = f(r)e−iωt+inφ. At the surface of the cylinder we replace v → ΩR and

∂x → 1
R∂φ in (67), which turns it into

−iaγ(ω − nΩ)ψ. (68)

When ω < nΩ, which is called the superradiance condition, this flips sign and the waves get

amplified.

Similarly, a non-rotating black hole absorbs all sorts of waves, but a rotating one will amplify

the modes that satisfy the superradiance condition. Now we can imagine surrounding a Kerr black

hole with mirrors and sending in such a mode. The amplification continues and the rotation slows

down until getting to Ω = ω/n. Admittedly this arrangement is still out of reach at the current

level of human development. However, for light fields the mass term can play the role of a natural

mirror and looking for the signatures of astrophysical black holes undergoing such a process is an

active area of research.
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5 Black Hole Thermodynamics

Reading: Wald 12.5

There is good evidence that after formation black holes relax to stationary configurations,

characterized by mass, angular momentum, and gauge charges. This is a negligible amount of data

compared to the many ways we can form black holes, suggesting that they ought to be thought of

as thermodynamic entities. If so we need to identify their temperature and entropy and ask if they

satisfy the laws of thermodynamics. This was a great discovery by Bekenstein and Hawking who

showed black holes are thermal only after quantum effects are taken into account and their entropy

is the horizon area/4G.

To motivate these answers, let us return to the Kerr solution and consider the area of a constant

t section of the horizon. The induced metric is

ds2 = Σdθ2 +
(r2+ + a2)2

Σ
sin2 θ dφ2, (69)

and the resulting area is

A = 4π(r2+ + a2) = 8π(G2M2 +
√
G4M4 −G2J2). (70)

In the last step we used J = Ma and the definition of r+ to write A in terms of black hole mass

and spin. Under an infinitesimal change dM and dJ , we obtain

dM = ΩHdJ +

√
G4M4 −G2J2

2G2MA
dA. (71)

This equation is reminding of the first law of thermodynamics dE = µdQ+ TdS (in a system

with rotation symmetry, Ω is the chemical potential associated to the conserved charge J). It

suggests identifying the horizon area with black hole entropy

SBH ∝ A, (72)

though we need a different calculation to determine the temperature and hence the (positive)

proportionality constant. Nevertheless, we can already see that (72) passes a nontrivial consistency

check. We learned in the last lecture that anything falling into the black hole satisfies δM−ΩHδJ >

0, which using (71) and (72), implies

δSBH > 0. (73)

Namely, the second law of thermodynamics holds, even in the Penrose process for which

δM < 0.

In fact, there is a much more general area theorem in classical GR that proves the area of
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sections of the event horizon can never decrease as long as the null energy condition is satisfied:

kµkνTµν ≥ 0, for all null kµ. (74)

(Notice that we used a particular version of this inequality, i.e. ℓµpµ < 0 for objects falling through

the Kerr horizon, to arrive at (73).) This strongly supports (72) for big black holes, for which

quantum effects are small.

Black hole temperature

Hawking showed that on the black hole background particles are created quantum mechanically

and with an effective temperature T = 1/4πrg. Particle production in a background field is familiar

from the Schwinger process in QED. The idea is that in vacuum virtual electron-positron pairs

are constantly created and annihilated. By energy conservation these can never materialize as

on-shell particles that escape to infinity and hit the detectors. However, a background electric field

can provide the work needed to put the particles on-shell. The typical distance of the virtual pairs

is of the order of the Compton wavelength λC ∼ 1/me. When

eEλC > me ⇒ E >
m2

e

e
, (75)

pair production becomes very efficient and the vacuum acts as a conductor, discharging the electric

field.

In a similar fashion, Hawking process results in the creation of physical particles near the

horizon of black holes. Here, a virtual particle-anti-particle pair need to separate enough for one of

them to end up inside the black hole and the other to escape to infinity. Below I will give a simple

argument that motivates the idea.

Thermal correlators. Let us first see that thermal correlators are periodic in Euclidean time.

To fix the notations, start from a massless scalar field in 4d Minkowski spacetime. In terms of

creation and annihilation operators

ϕ(t, r⃗) =

∫
d3k⃗

(2π)3
√

2|k|
(a

k⃗
e−i|k|t+ik⃗·r⃗ + h.c.) (76)

where h.c. means Hermitian conjugate, and

[a
k⃗
, a†

k⃗′
] = (2π)3δ3(k⃗ − k⃗′). (77)

The 2-point correlator of ϕ at fixed position is

⟨ϕ(t, 0)ϕ(0, 0)⟩ = −1

4π2(t− iϵ)2
. (78)
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Lorentz symmetry implies

⟨ϕ(t1, r⃗1)ϕ(t2, r⃗2)⟩ =
−1

4π2[(t1 − t2 − iϵ)2 − |r⃗1 − r⃗2|2]
. (79)

Now suppose we are at finite temperature T = 1/β. Then we will have nonzero thermal occupation

number 〈
a†
k⃗
a
k⃗′

〉
β
=

1

eβ|k| − 1
(2π)3δ3(k⃗ − k⃗′). (80)

(In the presence of gravity, it makes more sense to consider the thermal system in finite volume,

where the momenta would be discrete. Then, say in a cubic box of size L, we would have (2π)3δ3(k⃗−
k⃗′) → L3δ

k⃗,⃗k′ and
∫

d3k⃗
(2π)3

→ L−3
∑

k⃗
.)

The thermal 2-point function is

⟨ϕ(t, 0)ϕ(0, 0)⟩β =

∫
d3k⃗

(2π)32|k|

[
e−i|k|t +

1

eβ|k| − 1

(
e−i|k|t + ei|k|t

)]
. (81)

We can expand 1
eβ|k|−1

=
∑∞

n=1 e
−βn|k| to write the integrand as a sum of exponentials whose

integral can be taken easily (as in Minkowski)

⟨ϕ(t, 0)ϕ(0, 0)⟩β =
1

4π2

∞∑
n=−∞

1

(βn+ it)2
= − 1

4β2 sinh2 πt
β

. (82)

As a consistency check, in the zero temperature limit, β → ∞, this matches (78). We also see that

as a function the Euclidean time tE = it the thermal correlator is periodic, with periodicity

tE ∼ tE + β. (83)

Rindler observer. Next consider an accelerated observe in Minkowski, with proper acceleration

α. We choose the origin such that the trajectory is

t(τ) =
1

α
sinh(ατ), x(τ) =

1

α
cosh(ατ). (84)

Suppose the observer has a detector coupled to the same massless field ϕ. The 2-point correlator

measured as a function of the Rindler proper time τ is simply obtained from (78), with (t, r⃗)

substituted as functions of τ :

⟨ϕ(τ)ϕ(0)⟩R = − α2

4π2[sinh2(ατ)− (cosh(ατ)− 1)2]
= − α2

16π2 sinh2 ατ
2

. (85)

This is a thermal correlator with temperature

TR =
α

2π
. (86)
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Hence, the accelerated observer detects thermal radiation in Minkowski vacuum. This phenomenon

is called Unruh radiation.

Let us see a geometric way of determining TR, by writing the t−x part of the Minkowski metric

in Rindler coordinates (the other “transverse” coordinates just go for a ride):

t = r sinh(ατ), x = r cosh(ατ). (87)

Note that τ corresponds to the proper time of a Rindler observer at r = 1/α (it is common to set

α = 1 by a rescaling of τ). The t− x part of the Minkowski metric becomes

ds2 = −r2α2dτ2 + dr2, (88)

which covers the Rindler wedge (x > |t|). Under Wick rotation τ → −iτE this becomes

ds2E = r2α2dτ2E + dr2. (89)

This is the metric of the Euclidean plane in radial coordinates, with y playing the role of the radius

and ατE the angular variable. However, unless we impose the periodicity τE ∼ τE + 2π/α there

will be a conical singularity at the origin. This periodicity coincides with the inverse of the Rindler

temperature (86). The reason is that the Minkowski vacuum state can be understood as being

prepared by a path integral over the Euclidean half-plane with no conical singularity at the origin.

Hawking temperature. Finally, let us zoom in the near horizon region of Schwarzschild

spacetime, by writing

r = rg + x, (90)

and keeping the leading nontrivial terms in x. The Schwarzschild metric becomes

ds2 ≈ − x

rg
dt2 +

rg
x
dx2 + r2gdΩ

2. (91)

In terms of the new radial variable

r = 2
√
rgx, (92)

the metric looks like

ds2 ≈ − r
2

4r2g
dt2 + dr2 + r2gdΩ

2. (93)

The t− y part of this metric has the same form as the Rindler metric. Hence if we prepare the of

the state of the system by a Euclidean path integral, in order to have a non-singular horizon, we

should as before impose periodicity on the Euclidean time tE = it

tE ∼ tE + 4πrg, (94)
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corresponding to the Hawking temperature

TH =
1

4πrg
. (95)

Black holes evaporate via Hawking radiation and as they do so their temperature increases. Small

black holes explode. For astrophysical black holes, the temperature is extremely small and the

Hawking radiation is of no phenomenological significance. On the other hand, it does constrain

black hole remnants from earlier stages of cosmic evolution. These black holes are called Primor-

dial Black Holes, and they are sometimes considered as a candidate for dark matter.

Returning to the first law of black hole thermodynamics (71), we can now use our result (95)

to verify the proportionality constant in Bekenstein-Hawking entropy

SBH =
A

4G
. (96)

This turns out to be valid for all large black holes, even if charged or rotating.
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6 FRW Cosmology

Reading: Wald 5

Friedmann-Robertson-Walker cosmology is a model inspired by the large scale homogeneity and

isotropy of our universe. It is a spacetime in which there is an infinite set of preferred observers

(called comoving observers) who all go through the same experience, and every spacetime point is

passed by the worldline of one such observer. This means that after synchronizing their clocks at

some initial time, there are preferred, maximally symmetric time-slices on which their clocks all

show the same time t. Up to an overall rescaling, there are three possible choices for the metric

of these 3d spatial manifolds, depending on whether their scalar Ricci R(3) is zero, positive, or

negative. Maximal symmetry means that there is no preferred point or direction, so R(3) fully

specifies the curvature. The full metric can be written as

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(97)

where a(t) is called the scale factor, and by an appropriate redefinition of a(t) and r, k can be taken

to be 0 if the spatial slices are “flat” (3d Euclidean), 1 if they are “closed” (spherical/positively

curved), or −1 if they are “open” (hyperbolic/negatively curved).

By definition, comoving observers are at fixed spatial coordinates (which are called comoving

coordinates) and they are moving along geodesics, with 4-velocity uµ = (1, 0, 0, 0). Consider two

nearby observers at comoving distance χ. The length of the shortest path that is restricted to a

t =constant slice and connects the two (often called the physical distance) is

xph = aχ, (98)

and hence

ẋph =
ȧ

a
xph. (99)

This relation between velocity and distance is called the “Hubble law”. The Hubble parameter is

thus defined by

H ≡ ȧ

a
. (100)

The homogeneity and isotropy of the FRW model restricts the stress-energy tensor to be a function

only of t and diagonal

T 0
0 = −ρ(t), T i

j = p(t) δij . (101)

This is how the stress-tensor of a perfect fluid with energy density ρ and pressure p looks like,

though the matter content of the universe might not be an actual fluid.

The ultimate goal in cosmology is to figure out the history of the universe. In the FRW model

this corresponds to finding a(t), ρ(t) and p(t) given the matter content and the current state
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of the universe. One equation that governs this evolution is the energy-momentum conservation

∇νT
ν
µ = 0. The only nontrivial component in this case is µ = 0 component, which gives

ρ̇ = −3H(ρ+ p). (102)

Another equation follows from the tt component of the Einstein equation, and is called the Fried-

mann equation

H2 =
8πG

3
ρ− k

a2
. (103)

The other components are either trivial or derivable from (102) and (103). Finally, we need a

relation between p and ρ to solve the system. This is called the equation of state, and depends

on the microscopic details of the theory. In general the relation can be quite complicated, but it is

useful and often a sufficiently accurate approximation to consider a mixture of a few components

each with a linear equation of state

pi = wiρi. (104)

If these components are decoupled, then their stress-tensors are separately conserved and (102)

holds for each of them separately. Under this assumption, we can integrate ρ̇i = −3H(1 +wi)ρi to

get

ρi ∝ a−3(1+wi). (105)

Let’s consider some important examples.

• A thermal gas of relativistic particles has p = ρ/3. It is commonly denoted as radiation

ρr ∝ a−4. (106)

• Non-raltivistic matter has negligible pressure, w = 0. In cosmology, matter usually means

non-relativistic matter

ρm ∝ a−3. (107)

• Cosmological constant if interpreted as a part of the stress-energy tensor corresponds to

Tµν = −Λgµν . Hence, on FRW metric it has ρΛ = −pΛ = Λ:

ρΛ = const. (108)

Our universe contains all of these three components. It is seen that in an expanding universe

radiation dominates at earlier times, while cosmological constant at late times.

There are theoretical reasons to believe not all equations of state can have a physical microscopic

description. These lead to various energy conditions that are imposed on components of Tµν . Null

Energy Condition is one of the weakest conditions, and it is expected to be satisfied classically.
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It says that kµkνTµν ≥ 0 for all null vectors kµ. In FRW cosmology, this implies

ρ+ p ≥ 0 ⇒ w ≥ −1. (109)

Cosmological constant saturates the bound, and hence nothing can dominate a Λ-dominated cos-

mology in the future.

One common way to specify the energy content of the universe is in terms of the fractional

contribution to the Friedmann equation at time t0 (which is usually taken to be the present):

Ωi ≡
8πGρi(t0)

3H2
0

. (110)

Also defining

ΩK ≡ − k

a20H
2
0

, (111)

we have ∑
i

Ωi +ΩK = 1. (112)

Hence, it is enough to know Ωi and H0 to determine k, and also a0 if k ̸= 0.

1. Find the age of a matter dominated universe Ωm = 1, with Hubble H0.

Solution: The Friedmann equation is in this case(
ȧ

a

)2

= H2
0

(a0
a

)3
. (113)

Since k = 0, we can rescale the comoving coordinates to set a0 = 1. Integrating the above

equation we find

a(t) =

(
3

2
H0t

)2/3

, (114)

where we chose the integration constant such that a(0) = 0. The Hubble rate is

H =
2

3t
, (115)

and therefore the age of the universe t0 = 2/3H0. At t = 0 the Hubble rate diverges and

there is a curvature singularity. This is called the Big Bang singularity.

Conformal time. We have seen that transforming the metric into a form that is conformal to

Minkowski (in all directions or at least in two directions) is useful in understanding the causal

structure of the spacetime. In such coordinates, null rays travel at 45◦. This is even more relevant

in cosmology because we observe the universe through such null signals, i.e. photons, and recently
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also gravitons. Hence we introduce the conformal time as

τ(t) =

∫ t dt′

a(t′)
, (116)

in terms of which the metric looks like

ds2 = a2(τ)(−dτ2 + ∂χ2 + r2(χ)dΩ2) (117)

where r(χ) = sinχ, χ, sinhχ for k = 1, 0,−1, respectively. Picking our conformal coordinate as the

origin, χ = 0, our past lightcone becomes simply τ + χ = τ0, where τ0 is the present value of the

conformal time. As an example, in matter-dominated universe

τ = 3

(
2

3H0

)2/3

t1/3, (118)

where I chose the integration constant such that the big bang occurs at τ = 0.
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7 Geometric Optics

Reading: MTW 22.5, 22.6

When the wavelength of electromagnetic waves is much shorter than the characteristic length

over which the background is changing we can describe the propagation of the waves in terms of

pointlike photons that move along null geodesics. This is called the geometric optics approxi-

mation.

Consider an observer in FRW spacetime at time τ0. Because of isotropy the past lightcone of

an observer at χ = 0 is made of null rays at constant θ, φ coordinates, so they travel along

χ(τ) = τ0 − τ. (119)

The four-momentum of these photons is given by kµ =
(
dτ
dλ ,

dχ
dλ , 0, 0

)
, where λ is the affine param-

eter. From (119) follows kχ = −kτ . The χ component of the geodesic equation reads

d

dλ
kχ =

1

2
kαkβ∂χgαβ = 0, (120)

where the last equality follows from the fact that ∂χgαβ ̸= 0 only if α, β = θ or φ, but kαkβ ̸= 0

only if α, β = τ or χ. Hence, kχ is a constant and

kµ =
c

a2
(1,−1, 0, 0), (121)

for a constant c. This means that the frequency of the photon measured by a comoving observer

at the time of emission ωe = −uµkµ redshifts by the time it arrives to the observer

ω0 = ωe
ae
a0
. (122)

This motivates defining the redshift z as the time variable:

1 + z =
a0
a
. (123)

So for instance when we talk about a galaxy at redshift z = 2, we mean a galaxy along our

past lightcone at the time when a/a0 = 1/3. In our cosmological observations we can often use

spectroscopy to identify atomic lines from which the original frequency ωe and z of the emission

point follows. If we could also determine the radial distance a0χ, or the circumference-defined

radius a0r(χ), then the relation a0χ(z) or a0r(z) would allow us to fix the cosmological model, i.e.

to determine Ωm,ΩΛ,Ωr,ΩK .2 Apart from the parallax effect, two conceptually simple methods to

2Recall that a0 relates comoving distances to physical distances we measure on Earth. We could set a0 = 1 by
allowing the spatial curvature k to be an arbitrary constant rather than 0,±1. Either way it is only a0χ or a0r that
is relevant for fixing the cosmological model.
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determine r(χ(z)) are using standard rulers and standard candles.

Standard Rulers are cosmological sources with a known physical size ℓ. We can determine r

by measuring the angular size ∆φ of such a ruler at redshift z. Using the fact that the φ coordinates

of photons along our past lightcone are fixed, we find that (for ∆φ≪ 1)

ℓ = ar(χ(z))∆φ = dA(z)∆φ, (124)

where the angular diameter distance is defined as

dA(z) =
a0r(χ(z))

1 + z
. (125)

So measuring ∆ϕ and z of a standard ruler allows us to determine a0r(χ(z)). A standard ruler

in our universe is the BAO scale: it is an enhancement of the correlation function of galaxies at

a comoving distance that has to do with the relatively well understood physics of the hot photon-

baryon plasma in the early universe.

Standard Candles are sources with known proper luminosity L (erg/s). We can determine r

by measuring their flux f (erg/cm2/s) and redshift z:

f =
L

4πa20r
2(χ(z)) (1 + z)2

, (126)

where one factor of 1/(1 + z) arises from the redshift of the emitted photons and the other from

the decrease in the arrival rate of photons compared to their emission rate. It is common to define

the luminosity distance as

dL(z) = a0(1 + z)r(χ(z)), (127)

in terms of which f = L/4πd2L(z).

The above idea of following the evolution of a swarm of photons can be applied much more

generally to any curve spacetime, as long as the geometric optics approximation holds. Using the

terminology of MTW 22.6, suppose we paint red the photons in an infinitesimal volume of phase

space ∆vx∆vk (measured by a locally inertial observer). Then at any later time, the region of the

phase space they occupy is going to be deformed but its volume ∆v′x∆v
′
k (measured by any locally

inertial observer) will be the same

∆v′x∆v
′
k = ∆vx∆vk, (128)

and always the same photons guard the boundaries of this region. This is the Liouville Theorem

in curved spacetime. It has the following interesting consequence. Suppose the photons are emitted

by a blackbody. Then (as we will see) the density of photons per phase space element is

fe(ω) =
2

(2π)3
(
eω/T − 1

) , (129)
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where ω = |k| is the frequency measured by the observer who lives on the surface of the source. If

these photons arrive to a distant observer via a complicated journey that satisfies the assumption

of geometric optics, but is otherwise arbitrary, then generically they get redshifted by a factor α

(= 1+ z in FRW). Crucially, α is the same for all photons that travel in a sufficiently narrow tube

around the same path, regardless of their original frequency ω. By Liouville theorem the phase

space density is the same, i.e.

fo(ωo) = fe(αωo). (130)

Since fe(ω) is just a function of ω/T , the observed photons also have a blackbody distribution with

a redshifted temperature

To =
T

α
. (131)

For instance, this is what happens to the Cosmic Microwave Background (CMB) photons. To an

excellent approximation they had a blackbody spectrum with T ∼ 3000K at the time when the

universe became neutral, and today we observe them as a blackbody with To ∼ 3K.
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8 Thermodynamics

Reading: Weinberg Cosmology 3.1, Baumann’s lectures on Thermal history

We have seen that our universe contains a thermal radiation component that becomes hotter

at higher redshifts (recall that we use redshift z as a time variable; it runs backward). This hot

radiation eventually ionizes the universe when it reaches the temperature T ∼ 1eV, at z ∼ 1000,

and brings into (an approximate) thermal equilibrium electrons and baryons (baryons are protons

and neutrons; neutrons are unstable unless they are captured in ions). At temperature T ∼ 1MeV

electrons become relativistic, and neutrinos come into equilibrium with photons. [. . . ]. Eventually

at T > 100GeV all standard model particles are thermalized and relativistic. The goal of this

section is to review some basics of thermodynamics.

Thermodynamic quantities can be computed by the help of the thermal partition function

Z = Tre−β(H−
∑

i µiQi) =
∑
En

e−β(En−
∑

i µiQi,n), (132)

where H is the Hamiltonian, β is the inverse temperature, Qi are the maximum set of commuting

conserved charges, and µi are chemical potentials associated to them. The sum is over all energy

levels of the Hamiltonian, which can be chosen such that they are also eigenstates of the conserved

charges since [Qi, H] = 0 and [Qi, Qj ] = 0.

We will focus on a weakly coupled system where energy levels are described in the Fock basis la-

beled by particle momenta and occupation numbers. The occupation number of a given momentum

eigenstate k with energy

ε(k) =
√
k2 +m2

a, k ≡
√
|k|2 (133)

is arbitrary if particle a is a boson but only 0 or 1 if it is a fermion. It is also common to introduce

a chemical potential for every species of particles. So for particle a with charge qi,a under the

symmetry Qi, we have

µa =
∑
i

µiqi,a. (134)

Antiparticles have opposite chemical potential µā = −µa, and particles with no conserved charges

(which are their own antiparticles) have µ = 0.

Under the above approximation the partition function factorizes in terms of the product over

the species Z =
∏

a Za, with

Za =
∏
k

[
nmax∑
n=0

e−βn(ε(k)−µa)

]g

, (135)

where g is the number of internal degrees of freedom (such as polarizations) on which ε and µ does

not depend and the upper bound of the sum nmax is 1 for fermions and ∞ for bosons. We can
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perform the sum over the geometric series in the latter case, and get the following simple result

log(Za) = ±gV
∫

d3k

(2π)3
log

(
1± e−β(ε(k)−µa)

)
, (136)

with the plus sign for fermions and the minus sign for bosons and we have approximated the sum

over the momentum levels at finite volume by an integral

∑
k

→ V

∫
d3k

(2π)3
. (137)

From the definition of Z, we can see that the thermal average of the number of particles of type a

is

⟨Na⟩ =
1

β
∂µa log(Z) = V

∫
d3kfa(k), (138)

where the phase space density of species a is given by

fa(k) =
g

(2π)3
(
eβ(ε(k)−µa) ± 1

) , (139)

again plus for fermions and minus for bosons. The overall factor of V in (138) results from the

translation invariance. More relevant quantities for us are the densities, such as na ≡ Na/V .

Similar results can be obtained for the energy density and pressure

ρ =
∑
a

∫
d3kε(k)fa(k), (140)

p =
1

3

∑
a

∫
d3kkε′(k)fa(k), (141)

where the sum runs over particles and antiparticles.

1. Derive the above expression for p by finding the rate of momentum transfer to an element

of area at the wall of the box containing the thermal gas of particles. Hint: Show that

v = dε(k)/dk for a relativistic dispersion relation (133).

2. Find the number density and the energy density of bosons and fermions in the relativistic

limit ε(k) = k.

Finally, the total entropy S is defined in terms of the (expectation value of the) energy and total

number of particles via

Z = eS−β(E−
∑

a µaNa). (142)

From this expression and the above definitions we can derive the following identity for the entropy
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density s = S/V :

s = β(p+ ρ−
∑
a

µana). (143)

3. The first law of thermodynamics follows from this expression if we multiply both sides by TV

and vary, and assume

dp = sdT +
∑
a

nadµa. (144)

Verify this identity.
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9 Thermal History

Reading: Weinberg Cosmology 2, 3, Baumann’s lectures on Thermal history3

Strictly speaking the constituents of an expanding universe are never in thermal equilibrium.

Thermal equilibrium is a stationary phase. But if the rate of interactions among some degrees of

freedom is much faster than the expansion rate of the universe (as it is in a pot of boiling water),

they will be in a state of quasi-equilibrium and the thermodynamic results can be applied. The

two-body interactions are often the most relevant ones since it is much harder for three or more

particles to meet simultaneously. At equilibrium, the average rate at which one particle A interacts

with B particles is

ΓA = nB ⟨σvAB⟩ (145)

where nB is the number density of B particles, vAB is the relative velocity and the average is over

its distribution. If ΓA ≫ H then the assumption of equilibrium for this reaction is justified.

In our universe, the existence of a small radiation component today, implies (as we will see)

that at redshift z ∼ 1000, the hydrogen atoms, which constitute the majority of baryon content of

the universe, will be ionized. Moreover, the increase in the density of free electrons (which have a

large cross-section with photons) brings the mixture of photons electrons and protons in thermal

equilibrium. At earlier times the temperature of (now radiation dominated universe) increases so

much that all SM particles become relativistic and come into equilibrium with photons. Indeed at

such high temperatures we can estimate the rate of any 2-to-2 SM interaction by

Γ ∼ g4T, (146)

where g is a representative for the SM coupling constants. On the other hand, during radiation

domination

H2 ≈ 8πG

3
ρr ∝

T 4

M2
pl

(147)

where Mpl ≡
√

3/8πG ∼ 1018GeV, and the proportionality constant in the last formula is of order

of the number of relativistic degrees of freedom, which would be about 100 for SM at T ≫ 100GeV.

Comparing (146) and (147) shows the assumption of equilibrium is well-justified when T ∼ 103GeV.

(One actually gets that for any 100GeV ≪ T ≪ 1013GeV Γ ≫ H, but we don’t know enough about

the energy range 103GeV-1013GeV to trust this conclusion.)

Starting from this quasi-equilibrium initial state, we will review some major events that happen

as the universe cools.

During the radiation dominated phase the energy density of the universe depends on which

3My presentation is approximately a shortened version of this reference, which can be found here http:

//cosmology.amsterdam/education/cosmology/.
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particles are relativistic. For such (weakly coupled) particles at zero chemical potential the Bose-

Einstein and Fermi-Dirac distributions give

ρa =
π2

30
gaT

4

 1, bosons

7
8 , fermions

(148)

The total energy density is therefore

ρ ≈ g∗(2σBT
4) (149)

where σB is the Stefan-Boltzmann constant and the effective number of relativistic degrees

of freedom is defined via

g∗ =
∑
b

gb +
7

8

∑
f

gf . (150)

From the relation pa = ρa/3, and sa = (pa + ρa)/T it follows that sa = 4ρa/3T and hence

s =
8

3
g∗,SσBT

3, (151)

where g∗,S is the effective number of relativistic degrees of freedom in entropy. So far

we assumed all relativistic degrees of freedom are in equilibrium and therefore have the same

temperature. This implies g∗,S = g∗. However, as we will see below this condition no longer holds

after neutrino decoupling.

When all SM particles are relativistic we have

g∗ = 106.75. (152)

As temperature drops with the expansion of the universe, heavy SM particles start to become non-

relativistic and their number density (and energy density ≈ mn) falls exponentially ∝ exp(−m/T ).
For instance, most of tops and anti-tops annihilate by the time T = mt/6 ≈ 30GeV and g∗ reduces

by

∆g∗ = −7

8
× 3× 4 = −21

2
, (153)

where the factor of 3 comes from the number of colors and 4 from spin degrees of freedom of t and t̄.

Note that even if a top particle does not find an anti-top to annihilate with, it will eventually decay

into lighter SM particles. For a stable particle with only short-range interactions, the total number

of particles can freeze out to a finite value after it becomes non-relativistic and dilute enough such

that the number changing processes go out of equilibrium. This is one of the standard scenarios

for explaining the origin of dark matter.

Evolution of temperature. Total entropy is conserved in thermal equilibrium. Hence the

entropy density dilutes as s ∝ 1/a3. This implies that temperature does not simply drop as 1/a
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while the number of relativistic degrees of freedom is changing:

T ∝ 1

g
1/3
∗,S a

. (154)

QCD phase transition happens at T ∼ 150MeV. Right above this temperature up, down and

strange quarks and gluons are relativistic, but below they confine into hadrons and mesons, among

which only the three pions are relativistic, resulting in ∆g∗ = −44.5.

Above we have neglected chemical potentials. Recall that they are associated to conserved (or

approximately conserved) charges, and they lead to an asymmetry between particle and anti-particle

number. In the non-relativistic limit, they often translate into the conservation of the number of

the lightest particle(s) carrying the charge. Since baryon number is conserved and nonzero in our

universe the total number of protons and neutrons (which are almost degenerate and in thermal

and chemical equilibrium until T ∼ 1MeV) does not decay to zero. From the proton equilibrium

density,

np ≈ 2

(
mpT

2π

)3/2

e(µp−mp)/T , (155)

we conclude that in order for np to fall as 1/a3

mp − µp
T

=
3

2
log

(
a2

T

mp

)
+ const. (156)

which impliesmp−µp → 0 approximately as 1/a. This nonzero baryon number is obviously essential

for our existence. Also, several cosmological observables are extremely sensitive to its exact value

(e.g. the relative height of the peaks in the CMB power spectrum). However, its contribution to

the energy density of the universe is negligible until T ∼ 1eV.

Neutrino decoupling. At T ∼ 1MeV, the SM particles we are left with are photons, electrons

and positrons, baryons and neutrinos. Neutrinos are thermalized with the rest via

ν + e− ↔ ν + e−

ν + ν̄ ↔ e+ + e−.

(157)

The rate of these processes can be estimated by using the Fermi theory. For the cross-section we

have σ ∝ G2
F , and since all components are relativistic the only relevant dimensionful parameter

to build the rate is T :

Γ ∼ G2
FT

5. (158)

During the radiation dominated era we have

T ∼ g
−1/4
∗ (MplH)1/2 ∝ t−1/2. (159)
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This implies that Γ ∝ t−5/2 drops faster than H ∼ 1/t. Therefore, neutrinos decouple at some

point. This is when

Γ ∼ H ⇒ T ∼ (G2
FMpl)

−1/3 ∼ 1MeV. (160)

Below this temperature neutrinos are effectively a gas of free relativistic particles, which as we have

seen maintain their (fermionic) blackbody distribution, but with

Tν ∝ 1

a
. (161)

From the neutrino oscillation, we know that at least some of the neutrino species must be massive∑
imνi > 60 meV. Hence, today neutrinos will contribute to the matter content of the universe.

The smallness of their mass leaves a signature in the structure formation in our universe, and

cosmological observations (like galaxy surveys) are a promising avenue to determine
∑

imνi .

Returning to the hot universe, we know since neutrinos were originally in thermal equilibrium

with photons, Tν and T (photon temperature) redshift in the same way until electron-positron

annihilation. The number of relativistic degrees of freedom in the sector that is in equilibrium

with photons starts from 11/2 (= 2 for photons +7
8 × 4 for e+e−) at T > me and drops to 2 when

T ≪ me. It follows from (154) that afterwards

T

Tν
=

(
11

4

)1/3

. (162)

Below this temperature, we can continue to use (149) and (151) with

g∗ ≈ 2 +
7

8
3× 2×

(
Tν
T

)4

g∗,S ≈ 2 +
7

8
3× 2×

(
Tν
T

)3

,

(163)

which are no longer equal. The approximation sign in these equations is because the neutrinos

are not 100% decoupled during e+e− annihilation. This is usually taken into account (for ρ) by

introducing an effective number of neutrino species Neff = 3.046.

1. Calculate Ων as a function of
∑

imνi , given that the CMB temperature today is 2.73K and

H0 ≈ 70km/s/Mpc.

Big Bang Nucleosynthesis (BBN). The difference between the neutron and proton mass is

Q = mn −mp ≈ 1.3MeV. (164)
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Since np + nn is conserved, in thermal equilibrium they are in detailed balance

nn
np

= e−Q/T . (165)

If the neutrons do not get bound inside nuclei like He4 they will decay and all baryon number

will be in the form of protons, which would then combine with electrons to form Hydrogen atoms.

(Other elements can be produced also during supernova explosions but there is good evidence that

heavier elements existed before supernovas.) An important nucleus in the process of nucleosynthesis

is deuterium (made of one proton and one neutron) whose binding energy is 2.22 MeV. Once

deuterium forms below this temperature it goes through a chain of reactions that produces He3,

He4, and Li7.4

Recombination. The photon-baryon-electron plasma remains in a quasi-equilibrium state

until much lower temperature when there are not enough high energy photons to ionize hydrogen

atoms. Photons and electrons are tightly coupled because of the Thompson scattering γ + e− →
γ + e−, and electrons and protons because of the Coulomb scattering e− + p → e− + p. When

most of free electrons combine into neutral hydrogen atoms H, the rate for Thompson scattering

significantly drops and photons decouple. This thermal gas of free photons is called the Cosmic

Microwave Background (CMB)

To determine the recombination and photon decoupling temperature, we should analyze the

reaction

e− + p+ ↔ H + γ, (166)

which implies µe + µb = µH . The binding energy of hydrogen is

B ≡ me +mp −mH = 13.6eV. (167)

By the time nH becomes appreciable, e−, p+ and H are non-relativistic and satisfy

ni = gi

(
miT

2π

)3/2

e(µi−mi)/T , (168)

where ge = gp = gH/2 = 2 (for H there are two spin states of p+ times two of e−). We can eliminate

µi by looking at the combination

nH
nenp

≈
(

2π

meT

)3/2

eB/T , (169)

where in the prefactor we approximated mH ≈ mp. Because of the neutrality of the universe

ne = np, and this is equal to nH/n
2
e. It is useful to express everything in term of Xe the fraction

of free electrons out of all electrons. This is approximately Xe ≈ ne/nb because the majority of

4Weinberg presents a very nice account of BBN in his popular science book “The First Three Minutes”.

38



baryons at this stage are protons (either free, or in hydrogen atoms). Under the same approximation

nH ≈ nb(1−Xe). So we obtain the so-called Saha equation

1−Xe

X2
e

≈ 2ζ(3)

π2

(
2πT

me

)3/2

ηbe
B/T , (170)

where we defined the baryon-to-photon ratio

ηb ≡
nb
nγ

(171)

which below e+e− annihilation is a constant that is known empirically to be O(10−10). We also

used

nγ =
2ζ(3)

π2
T 3. (172)

Because ηb is exponentially small in our universe, we see that for Xe to deviate significantly from

1, that is, for the majority of electrons and protons to combine into hydrogen atoms, T has to be

well below B. In practice, Trec ≈ 0.3eV ≪ 13.6 eV. Intuitively, this follows from the fact that until

arriving at such a low temperature there are enough ionizing photons in the tail of the blackbody

spectrum to keep protons and electrons unbound.
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10 Cosmological Perturbations

Reference: Weinberg Cosmology 6.2, 6.3, 6.4

Our universe is not exactly homogenous and isotropic. The late universe is extremely inhomoge-

nous at short distances, but as we go to cosmological scales, or to earlier times the inhomogeneities

become smaller and can be described as perturbtaions on FRW. Observation of these perturbations

at various scales can teach us about (1) the initial state of our universe, and since we have to evolve

them to the observer, also about (2) the cosmological parameters of the FRW background, and (3)

microscopic physics.

Fortunately, the initial perturbations turn out to be extremely small and hence linear pertur-

bation theory gives a very accurate description at large scales and early times. So we start with a

toy model of a massless scalar field on flat FRW

S =
1

2

∫
dτd3x a2[ϕ′2 − |∇ϕ|2], (173)

where τ is the conformal time, a the scale factor and prime denotes d/dτ . Since the equation of

motion is linear and x-independent, it is diagonal in the momentum basis:

ϕ′′k + 2Hϕ′k + k2ϕk = 0, (174)

where H ≡ a′/a = ȧ = aH is the comoving Hubble parameter, k2 =
∑

i k
2
i and

ϕ(τ,x) =

∫
d3k

(2π)3
ϕk(τ)e

ik·x. (175)

k is called the comoving momentum. Note that it is a constant vector. At large k (geometric optics

limit), it can be thought of as the conserved momentum of the ϕ particles ki = giµk
µ.

Equation (174) has two extreme regimes:

1. Superhorizon k ≪ H: the solution is a superposition of a “growing mode” and a “decaying

mode”

ϕk(τ) = cg + cd

∫ τ dτ ′

a2
. (176)

2. Subhorizon k ≫ H: the solution is wavelike with an adiabatically changing amplitude,

ϕk(τ) =
1

a

(
c+e

ikτ + c−e
−ikτ

)
. (177)

Consider an FRW cosmology with a single energy component with p = wρ. The Friedmann equation
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in this case gives H2 = H2
0a

−3(1+w), from which we learn

1

H
∝ a

1
2
(1+3w). (178)

H−1 is called the comoving horizon. It grows if w > −1/3. Of course this conclusion also

holds if a cosmology contains multiple components, but it is dominated by one or a subset of the

components with wi > −1/3. This is the case in our universe during its hot phase, and for most

of the subsequent evolution until z ∼ 0.2, where Λ starts dominating. Hence, the perturbations

of our hypothetical field ϕ start in the superhorizon regime at early enough time, and (unless k is

extremely small) they will enter the subhorizon regime. In order for the perturbations to remain

finite as τ → 0, we must have cd = 0. This will fix the ratio c+/c− in the subhorizon regime.

A useful way to think about the superhorizon regime is the separate universe picture. In

this regime the gradients are much smaller than the curvature length. Therefore, one can think of

points separated by r ∼ 1/k as different FRW cosmologies that evolve independently with different

homogeneous initial conditions for ϕ and ϕ′. Any initial ϕ′ quickly redshifts, and one is left with

a time-independent configuration. When k > H, the gradients become relevant and ϕk starts

oscillating.

Adiabatic Perturbations

What is the initial condition for perturbations in our universe? Let’s consider the simplest option.

Imagine at some early time all constituents of the universe are in thermal equilibrium and there

is no conserved charge. Then T fully determines the state of an FRW cosmology. Moreover, T

is just a time variable. Different values of T correspond to different times in the evolution of the

same cosmology. If instead of having T = constant on an early time slice, we let it fluctuate

at superhorizon scales, then, as long as these temperature fluctuations are superhorizon, different

patches of the universe go through the same history but with a relative time-shift. This is called

adiabatic initial condition. We can generalize it to include conserved charges, or other energy

contents, by ensuring the basic property of having identical (but shifted with respect to one another)

histories at superhorizon scales.

During radiation domination, it is easy to solve for the evolution of adiabatic fluctuations. At

subhorizon scales these are just the sound waves satisfying

δ′′k + c2sk
2δk ≈ 0, (179)

where δk = δρk/ρ̄, and c2s = 1/3. To match with the superhorizon initial condition, one has to
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include metric fluctuations and linearize Einstein equations and ∇µT
µ
ν = 0 to find

δk = Ak
ωτ(ω2τ2 + 2) cos(ωτ)− 2 sin(ωτ)

ω3τ3
, (180)

where ω = csk and Ak is the unknown amplitude. After the modes cross the sound horizon, ωτ > 1,

the solution approaches Ak cos(ωτ) which is just the solution to (179). The solution (180) and its

asymptotic limit both with Ak = 1 are plotted respectively in blue and orange
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We have good evidence that the perturbations in our universe are predominantly adiabatic, and

their amplitude Ak is an approximately scale-invariant Gaussian random variable,

⟨AkAk′⟩ = ∆

k4−ns
(2π)3δ3(k − k′), (181)

with 1− ns ≪ 1, ∆ ∼ 10−9.

One important manifestation of these perturbations is in the CMB temperature anisotropy, i.e

the variation of the CMB temperature as we look in different directions in the sky. This arises from

fluctuations at different locations on the last scattering surface and along the trajectory of photons

from there to us along our past lightcone. Their statistical average as a function of angular scale

looks like

(182)

The solid line is the prediction of the ΛCDM cosmological model, with an adiabatic initial condition.

Let’s now imagine taking a snapshot at time τ∗ of all k modes in (180), square them, correlate
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them and multiply by k3 to cancel the 1/k3 in (181). Since the result only depends on kτ (up

to 1 − ns corrections), the k dependence of the result would be the same as the τ dependence of

(δk(τ)/Ak)
2 at fixed k:
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0.6

0.8

1.0

(183)

We see that it bears some resemblance with (182). Of course (183) is too simplistic because (i) we

only looked at perturbations at a fixed time rather than different angles along our past lightcone,

(ii) we neglected Ωm ̸= Ωb ̸= 0, (iii) δT/T is not exactly δρ/ρ, (iv) there is a nonzero damping of

the sound waves, . . .

It is the sensitivity of the map (182) to all these details and the smallness of the error-bars

that make CMB such a great probe of the cosmological model. For instance, keeping Ωm fixed but

changing Ωb would change the relative height of the peaks, making CMB one of the best sources

of evidence for the existence of dark matter.

Finally, two examples of less minimal initial conditions are (i) fluctuations in the chemical

potentials, and (ii) fluctuations of a light scalar field, both at fixed T .

Structure Formation

Most large scale structures (galaxies, clusters of galaxies, etc) were formed during the matter

domination. They are the result of the Jeans instability, i.e. the dominance of gravitational

attraction over the pressure for a large enough body of mass. Since we are dealing with non-

relativistic matter the basic idea can be understood in Newtonian gravity. Consider a ball of gas

with radius R, density ρ, and ∂p
∂ρ = c2s ≪ 1. The Euler equation for the gas velocity reads

v̇ + v · ∇v = −∇p− ρ∇Φ (184)

where Φ is the Newtonian potential. We can estimate

|∇p| ∼ c2sρ

R
, |ρ∇Φ| ∼ ρ

GM

R2
∼ Gρ2R. (185)
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The maximum size at fixed ρ, where it is possible to have a pressure supported distribution can

then be estimated to be

RJ =
cs√
Gρ

. (186)

For R≫ RJ the matter distribution will collapse.

A flat matter dominated FRW never collapses. The Hubble expansion gives just enough kinetic

energy to the elements to escape the gravitational well. However, in the presence of perturbations

over-dense regions will collapse. Using Gρ ∼ H2, we find

RJ ∼ cs
H

≪ 1

H
, (187)

which implies that there is a large range of comoving scales where perturbations are subhorizon

but “super-Jeans”. They grow in time and form the structures like the ones we observe.
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11 Inflation

Reference: Weinberg Cosmology 4, Mukhanov Cosmology 5

Inflation is a period of accelerated expansion that is hypothesized to occur before the hot phase.

Originally, it was invented to explain several puzzles in the hot big bang cosmology, two of which

will be reviewed below. However, it turned out to be the most compelling scenario to explain the

origin of nearly scale-invariant adiabatic fluctuations that we observe today.

Flatness problem. Recall that we defined ΩK , as

ΩK = − k

H2a2
, (188)

which measures the fractional deviation of the total energy density from the critical energy density

1− ρ/ρcr. Today we only have constrains on ΩK :

|Ω0
K | < 10−3. (189)

It is useful to think of ΩK as a function of time and ask how closeness to the critical density

evolves in various phases of FRW cosmology. During matter domination, we have ΩK ∝ a. So at

matter-radiation equality (z ≃ 3400)

|Ωeq
K | < 10−6. (190)

During the radiation era, ΩK ∝ a2. So at Grand Unification temperature TGUT ∼ 1016GeV, we

can estimate

|ΩGUT
K | < g

−2/3
∗ 10−56, (191)

where g∗ is the number of relativistic degrees of freedom at TGUT. This is unknown, but it doesn’t

change the fact that |ΩGUT
K | is so incredibly small.5 It is puzzling why the initial energy density

was so close to the critical one, though it is of course a logical possibility to have exactly k = 0.

Horizon problem. Perhaps more puzzling is the fact that the CMB temperature is so close

to being isotropic (with typical anisotropies δT/T ∼ 10−5). In hot big bang cosmology, the last

scattering surface (LSS), by which we mean the sphere obtained by the intersection of our past

lightcone and the photon decoupling hypersurface, can be divided into many causally disconnected

patches. This is evident from the comoving radius at t1 of the past lightcone of an observer who

lives at t2 > t1

χ(t2, t1) =

∫ t2

t1

dt

a
=

∫ a2

a1

da

Ha2
. (192)

5Since inflation was invented when Grand Unification was popular, one often encounters such references to the
GUT scale. Switching to other UV scales would not qualitatively change the conclusion.
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We find χ(t0, tLSS) ∼ 1/H0, while

χ(tLSS, tGUT) ∼
1

aLSSHLSS
≪ 1

H0
. (193)

Again, the horizon problem is not a contradiction. It is a question about naturalness of some initial

condition.

To see how to solve flatness and homogeneity problems, let us examine the underlying reason

behind them in a single-component FRW. In the former case, it is the growth of the comoving

horizon in matter and radiation cosmology that leads to the smallness of |ΩK | at early times:

|ΩK | = k

H2
∝ a1+3w. (194)

If the hot phase was preceded by a long enough period dominated by a component with w < −1/3

then during that period |ΩK | would decrease. Hence the initial condition for that phase could be

|ΩK | = O(1). On the other hand, if the integral (192) diverges if the lower bound is taken a1 = 0

then the past lightcones of all points intersect far enough in the past and the horizon problem

would have been solved. For p = wρ, we have

χ(a2, 0) =
1

H0

∫ a2

0
da a

1
2
(3w−1) =

 finite w > −1
3

∞ w ≤ −1
3 .

(195)

Hence the period with w < −1/3 could also solve the horizon problem. During this period the

comoving horizon shrinks

Ḣ > 0 ⇒ ä > 0 (196)

so as alluded to above we need a period of accelerated expansion. This condition can be written

as −Ḣ/H2 < 1. If Ḣ < 0, it is called inflation.

The other possibility Ḣ > 0, can occur, for instance, if we live in a bouncing cosmology that has

a period of contraction in the past. During the bounce Ḣ > 0. However, given that |ΩK | ≪ 1 when

the universe was small such a bouncing cosmology requires violating the Null Energy Condition

(NEC), which is believed to hold in sensible classical theories.

1. Show that Ḣ > 0 implies ρ+ p < 0 in flat FRW.

Slow-roll Inflation

Inflation can be realized by a scalar field rolling down a potential, with action

S =

∫
dtd3x

√
−g

[
−1

2
(∂ϕ)2 − V (ϕ)

]
. (197)
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The stress-energy tensor is

Tµν = ∂µϕ∂νϕ− gµν

[
1

2
(∂ϕ)2 + V (ϕ)

]
, (198)

which on FRW background, and assuming homogeneity becomes diagonal Tµν = diag(ρ, pa2, pa2, pa2)

with

ρ =
1

2
ϕ̇2 + V, p =

1

2
ϕ̇2 − V. (199)

Suppose V has a minimum at ϕ0, with V
′(ϕ0) = 0 and V (ϕ0) > 0. If ϕ is stuck at this minimum we

have w = p/ρ = −1, the minimum allowed value by NEC. It is equivalent to having CC Λ = V (ϕ0).

However, this model has no clock to end the inflation, so it cannot be connected to the subsequent

phases of our cosmology.

On the other hand, by choosing the potential to be sufficiently flat (to be quantified below) we

get very close to w = −1, and still have a sign-definite ϕ̇ ̸= 0, so that ϕ(t) plays the role of the

clock. So let us assume

ϕ̇2 ≪ V ⇒ w = −1 +
ϕ̇2

V
. (200)

Under this assumption, the expansion rate is

H2 ≈ V

3M2
pl

, M2
pl =

1

8πG
. (201)

The conditions for this slow-roll solution can be derived from the ϕ equation of motion:

ϕ̈+ 3Hϕ̇+ V ′ = 0 (202)

where prime on V means d/dϕ. To maintain (200), and have a nonzero, sign-definite ϕ̇ for a long

period, we need to have

|ϕ̈| ≪ H|ϕ̇| (203)

This fixes

ϕ̇ ≈ − V ′

3H
. (204)

Therefore, (200) holds if

ϵ ≡
M2

plV
′2

2V 2
≪ 1. (205)

On the other hand (204) and (201) imply

ϕ̈

Hϕ̇
= −

M2
plV

′′

V
+
M2

plV
′2

2V 2
. (206)
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Therefore, for (203) to hold, we also need

η ≡
M2

plV
′′

V
≪ 1. (207)

ϵ and η are called slow-roll parameters. We also see that −Ḣ/H2 ≈ ϵ ≪ 1. Hence H is approxi-

mately constant and the scale factor grows exponentially a ∝ exp(Ht).

2. Show that the slow-roll solution (204) is an attractor. Namely, show that any initial condition

(ϕi, ϕ̇i) will converge to (204) with a characteristic time-scale 1/H.

Since ϕ̇ ̸= 0, we can imagine a model in which after some time ϕ reaches a region of V (ϕ) where

the slow-roll conditions no longer hold. An appropriate coupling between ϕ and standard model

degrees of freedom (e.g. ϕ2|H|2) could then result in the transfer of the energy density in ϕ into

SM and initiating the hot phase. This is called reheating. The “re” in reheating comes from the

idea that perhaps the universe was in a hot (but inhomogenous) phase before inflation began.

3. Suppose V = 1
2m

2ϕ2. Find the field values for which slow-roll conditions hold. Near the

bottom of the potential m ≫ H and the conditions don’t hold. Show that the approximate

solution for the homogenous field is

ϕ(t) ≈ A

a3/2
cos(ωt+ α), (208)

where A and α are constants. How does the energy density decay with a?

In order for inflation to solve the flatness problem, we would need an initial Ωi
K = O(1) to decrease

by about 56 orders of magnitude by the end of inflation. Using ΩK = −k/H2 = −k/a2H2 and the

fact that H is approximately constant, we need (ai/ar)
2 ∼ 10−56 or

Ne ≡ log
ar
ai

≈ 60., (209)

where Ne is called the number of e-folds.

The flatness problem is similarly solved, by bringing the entire observable universe in causal

contact:

χ(tr, ti) =

∫ tr

ti

dt

a
≈ 1

Hi
, (210)

which can be made larger than 1/H0 by taking inflation long enough.

4. Alice and Bob are comoving observers at physical distance L < 1/H, at t = 0. Bob sends a

message to Alice every minute. At what frequency does Alice receive messages? When was
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the last message that she receives sent by Bob? Suppose inflation is much longer than Alice’s

lifetime and neglect ϵ corrections.

Commentary: Bob is said to fall behind Alice’s cosmological horizon. Much like when he falls

behind a black hole horizon, no communication is possible afterward.

Origin of Perturbations

Because of the accelerated expansion, inflation rapidly dilutes any preexisting classical pertur-

bations. In other words, since the comoving horizon expands momentum modes go from being

subhorizon to superhorizon during inflation. It is natural to expect that whatever initial condition

led to inflation, it did not have fluctuations at arbitrarily large momenta. In terms of the physical

frequencies, this is saying that we expect an observer who lives at time ti sees ϕk modes with

frequencies above some ωmax not to be excited:

kexcited
ai

< ωmax. (211)

For small enough ai (equivalent to long enough inflation), 1/kexcited is a comoving distance much

longer than the entire observable universe.

This (arguably justified) assumption would then fix the initial condition for the shorter wave-

length modes. They are in Minkowski vacuum except their physical wavelength is being slowly

stretched by the expansion of the universe. This initial state fully determines what happens when

the modes become superhorizon. In particular, the one-point functions vanish, e.g. ⟨ϕk⟩ = 0, and

the statistical nature of the fluctuations results from their quantum mechanical origin. Cosmological

perturbations originated from the zero-point fluctuations of the inflaton field ϕ during inflation.

A full derivation of the spectrum of these fluctuations is a beautiful calculation, but beyond

the scope of these lectures. It requires taking into account both metric and ϕ fluctuations. Here I

will explain some of the features of the result, and estimate its size. Let us focus on the two-point

correlation function

⟨ϕk(t)ϕk′(t)⟩ = P (t, k)(2π)3δ3(k + k′), (212)

where I used the translation invariance and isotropy of the background. If t is such that k/aH ≪ 1,

that is, k is superhorizon, then we expect the fluctuations to be frozen up to slow-roll corrections.

Because ϵ, η determine how the potential deviates from CC. So in this limit P (t, k) → P (k).

Neglecting the slow-roll corrections the background metric looks like

ds2 = −dt2 + e2Htdx2. (213)

This means that a rescaling of x can be compensated by a shift in time. But at superhorizon

scales, there is no time-dependence. As a result the correlation function ⟨ϕ(t,x)ϕ(t, 0)⟩ should be
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x-independent, up to slow-roll corrections. This implies that

P (k) =
A

k3+O(ϵ,η)
, (214)

Finally, by dimensional analysis

A ∝ H2. (215)

Intuitively, this says that from the point of view of an observer who lives during inflation the field

ϕ fluctuates with a typical amplitude H. In fact, this observer has a horizon and measures a finite

temperature T = H/2π, and the fluctuations we are talking about are analogous to the Hawking

radiation from a black hole.

Finally, we can use the fact that ϕ is effectively the clock that determines when inflation ends.

We have seen that this clock is fluctuating over the space, so inflation would end at different times

at different points. We can translate this into the metric by performing a compensating time shift

∆t = −∆ϕ/ϕ̇ to obtain

ds2 ≈ −dt2 + e2Ht+2ζdx2, (216)

where

ζ = −H∆ϕ

ϕ̇
= O(H/

√
ϵMpl). (217)

These fluctuations are indeed adiabatic because they correspond to identical histories but shifted

with respect to one another at different locations.

5. Consider the average field over a ball of radius R

ϕ̄(t) =
3

4π2R3

∫
|x|<R

d3xϕ(t,x). (218)

Use (79) to show that in Minkowski vacuum

〈
ϕ̄(t)2

〉
=

9

16π2R2
. (219)

Next consider the spectrum (214) for k > ki and P (k) = 0 for k < ki and estimate
〈
ϕ̄2

〉
as a

function of ki and R.
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