GR HW 6

Due Jan 9 at 11am, in class
Goals: Coordinate systems, Curvature, Geodesic deviation

1. Calculate components of d-dimensional Euclidean space metric in spherical coordinates $r, \theta_{1}, \cdots, \theta_{d-2}, \phi$. Calculate the corresponding integration measure $\sqrt{g} d^{d} x$. (Hint: first do it for $d=3$.)
2. Consider a two-dimensional sphere of radius R embedded in the Euclidean space,

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=R^{2} . \tag{1}
\end{equation*}
$$

As we discussed, one can construct a coordinate patch (x, y) covering all of the sphere, but the north pole, by considering a stereographic projection on the plane

$$
\begin{equation*}
z=-R . \tag{2}
\end{equation*}
$$

Calculate components of the induced metric on the sphere in stereographic coordinates.
3. Trieste latitude is 45°. A vector is applied in Trieste, pointing towards the north pole, and then is parallel transported along the 45° latitude, moving west, back to Trieste. Which way will the vector turn, and by what angle?
4. Calculate the extrinsic curvature (the proper acceleration $\sqrt{a_{\mu} a^{\mu}}$) of lines of constant ϕ and lines of constant θ in S^{2}, and of lines of constant r and lines of constant ϕ in \mathbb{R}_{2}.
5. Lobachevski plane is defined by the metric

$$
\begin{equation*}
d s^{2}=\frac{d x^{2}+d y^{2}}{x^{2}}, \quad x>0, \tag{3}
\end{equation*}
$$

a) Find the geodesics by direct minimization of the length. Draw the geodesics on the $x y$ plane.
b) Show that $R_{\mu \nu \alpha \beta} \propto x^{-4}, R_{\mu \nu} \propto x^{-2}$ and $R=$ const. Using this, find all these quantities by doing parallel transport along a convenient contour.
6. Solve problem 1.(a) of section 14 of the notes.

