Overview of Financial Markets and Instruments

Pietro Millossovich

Dipartimento di Matematica Applicata "B. de Finetti" Università di Trieste E-mail: pietrom@econ.units.it

ICTP - DECEMBER 2007

1/72

- **1** Financial Markets and Primary Securities
- 2 Term Structure of Interest Rates
- **③** Forward and Futures Contracts

Bibliography

J. Hull.

Options, Futures, and other Derivatives, 6-th edition. Prentice Hall, 2005.

- J. C. Cox and M. Rubinstein. *Options Markets.* Prentice Hall, 1985.
- Z. Bodie, A. Kane and A. J. Marcus. Investments, 6-th edition. McGraw-Hill/Irwin, 2004.

Financial Markets and Instruments

- Financial instruments (assets, securities): claim to future cash-flows.
- Financial assets vs. real assets.
- Financial securities are **traded** in Financial markets.
- Financial market: 'place' where **supply** and **demand** of financial assets meet.
- Role of financial markets:
 - provide investment opportunity for agents with surplus (buy securities);
 - provide financing opportunity to agents with need of capital (issue securities).

Hence financial markets permit to redistribute wealth and consumption over time.

Financial Markets Players

- Agents differ according to their needs/preferences/behaviour.
- Some agents invest; some issue securities; some act as intermediaries (not exclusive roles).
- HOUSEHOLDS.
- FIRMS.
- BANKS; other FINANCIAL institutions.
- MUTUAL funds.
- PENSION funds; INSURANCE companies.
- SOVEREIGN entities.

• . . .

Financial Markets

- Securities can be traded on:
 - ▷ Primary market, i.e. when first issued, or
 - \triangleright after issuance, i.e. in the Secondary market.
- We distinguish between
- Organized markets (exchange):
 - ▷ Only specialized agents (members) can operate;
 - \triangleright traded securities must satisfy given conditions;
 - \triangleright trades are standardized;
 - $\triangleright~$ demand and supply do not directly meet.
- Over The Counter (OTC) markets:
 - ▷ Less restrictive rules for agents and traded assets;
 - \triangleright counterparties directly meet;
 - $\,\triangleright\,$ trades are not standardized.
- Primary securities: Stocks and fixed income (bonds).

Overview of Financial Markets and Instruments Financial Markets and Primary Securities

Stocks

- Common Stock or equities: represent ownership of a corporation
- Shareholders are entitled to
 - voting rights in shareholders' meetings: take part in corporate governance;
 - ▷ receiving part of firm profits as **dividends**.
- Features of common stock:
 - ▷ residual claim to firm assets;
 - ▷ **limited liability**: loss is limited to original investment.
- A publicly held corporation stock is traded in a market (otherwise: privately held corporation).

A stock traded on organized exchange is listed, e.g. NYSE, AMEX, LSE, ...

• Preferred stock: entitled to receive fixed dividends/no voting rights.

Fixed Income Securities

- Financial assets generating cash-flows computable according with **prespecified rules**.
- Loan is split in many obligations (bonds): one borrower, many lenders (bondholders).
- Bonds can then be **transferred** in financial markets.
- Bondholders receive periodical payments of interest (coupon) and capital at maturity.
- Credit Risk: failure of payments (interest or capital) or change in credit quality.
- Distinguish between
 - ▷ money market securities: short term, low risk;
 - \triangleright bonds: longer maturities, higher risk.

... Fixed Income Securities

- Many bonds provide fixed (**known**) cash-flows; e.g. zero-coupon bonds and coupon bonds.
- Some bonds pays coupons and/or nominal linked to economic variables:
 - \triangleright interest rates (floater);
 - \triangleright market index;
 - \triangleright currencies;
 - \triangleright inflation;
 - \triangleright stocks.
- Other bonds contains options: callable and convertible bonds.
- Some bonds are traded on organized exchanges; most are OTC.

Zero-Coupon Bonds (ZCB)

- Simplest type of financial security.
- Bonds that pays no coupon; 'sells at discount'

 → pure discount bond.
- Investor pays price P at time 0; receives nominal (face, par) value N at maturity T. Think of P/N as riskless discount factor.
- Clearly, P < N; N P is the discount.
- Typically maturity is 1 year or less.

Coupon Bonds

- Also known as bullet bonds/coupon bearing bonds.
- Payments occur at times $0 < t_1 < t_2 < \ldots < t_n = T$; T is the maturity;

typically $t_i - t_{i-1} = \Delta$ (e.g. $\Delta = 1/2, 1/4, ...$).

- Investor pays price P at time 0.
- Receive coupons C at t_1, \ldots, t_n and nominal (face, par) value N at t_n .

Coupon Bonds

- If P < =, =, > N, bond sells below, at, above par.
- discount = N P > 0; premium = P N > 0.
- Coupon measured as percentage of nominal: c = C/N coupon rate, $c' = c\Delta$ nominal rate.
- Bond is frequently quoted as with its clean price (flat price) Q, related to the price actually paid P (dirty or full price) through

$$P = Q + A,$$

where A is the accrued interest:

$$A = \frac{-t_0}{t_1 - t_0}C$$

 t_0 : issue or last coupon date.

Market Indices

- Pure numbers reflecting market behaviour.
- Convey information for investor on market trend.
- Benchmark for mutual funds/derivatives/...
- Usually computed as weighted arithmetic average of market prices.
- Example: S&P500 (Standard & Poor's 500); average of 500 large US corporate common stock prices, weighted by number of shares:

$$S\&P500_t = \frac{I_t}{I_{t_0}},$$

where $I_t = \sum_{i=1}^{500} n_t^i S_t^i$ and n_t^i , S_t^i are number of shares outstanding and market price at t of *i*-th stock.

Derivatives

- DERIVATIVE CONTRACTS: as opposed to primary securities. (combined together sometimes)
- Financial instruments whose cash-flows depend on the value of one or more underlying economic variables.
- Underlying:
 - \triangleright stock
 - \triangleright fixed income
 - \triangleright interest rate
 - \triangleright market index
 - \triangleright commodity
 - \triangleright currency
 - \triangleright derivative
 - $\triangleright~{\rm credit}~{\rm risk}$

 $\triangleright \ldots$

Perfect Markets

- Very convenient for analysis to assume that markets are perfect:
- Agents:
 - ▷ **rational**, nonsatiated;
 - price-takers;
 - \triangleright share same information;
 - \triangleright default riskless (no credit risk).
- MARKETS: frictionless
 - ▷ continuously open;
 - ▷ securities are infinitely divisible;
 - ▷ short selling is allowed;
 - ▷ no taxation;
 - ▷ no transaction costs;
- Enough if these hypotheses hold for some (large) investor.

... Perfect Markets

• STRATEGIES: there are no arbitrage opportunities (NA). Arbitrage opportunity (or free lunch): strategy

Arbitrage opportunity (or free lunch): strategy involving available securities providing

- \triangleright nonnegative cash-flows at every time and state of nature;
- ▷ a positive cash-flow at some time, with positive probability.

Hence it is a riskless strategy that may result in a profit.

- NA is the key property:
 - ▷ necessary for equilibrium;
 - implies the Law of one price (LOP): two strategies providing the same cash-flows have the same value; if not, sell the more expensive, buy the cheaper (arbitrage).

Overview of Financial Markets and Instruments Financial Markets and Primary Securities

Long/Short Positions

- When faced with a security, an investor could take a long position or a short position.
- LONG POSITION: buying a security
 - \triangleright profit if price rises;
 - ▷ **unlimited** potential gain, **limited** liability.
- SHORT POSITION: short selling, i.e. selling a security that is not owned.
 - ▷ Security is borrowed form a third party's portfolio;
 - \triangleright short seller gains if price falls;
 - ▷ short seller must provide any cash-flow paid by security;
 - ▷ limited potential gain; unlimited potential loss;
 - ▷ requires margin as collateral.

Overview of Financial Markets and Instruments Term Structure of Interest Rates

Outline

I Financial Markets and Primary Securities

2 Term Structure of Interest Rates

3 Forward and Futures Contracts

4 Swaps

Time Value of Money

- Lending/borrowing provides interest/has a cost.
- $\in C$ today (**principal**) is the same as $\in C b(t)$ at t; b(t): **accumulation factor**. $\in M$ at t are the same as $\in M d(t)$ at 0 (today);
 - d(t): discount factor.

$$b = 1/d; b \uparrow, d \downarrow; b(0) = d(0) = 1.$$

- C b(t) is the accumulated value of C;
 M d(t) is the present (discounted) value of M.
- b(t) 1 is interest per unit of principal (interest rate).
- Different rules for computing interest: b(t) =?, d(t) =?.
- - ▷ DISCRETELY COMPOUND INTEREST;
 - ▷ Continuously compound Interest.

Simple Interest

• Interest is **proportional** to time:

$$b(t) = 1 + Lt; \ d(t) = (1 + Lt)^{-1}.$$

- L: 1 year interest rate.
- Example: LIBOR (London InterBank Offered Rate) rates:
 - ▷ Rates at which large UK banks lend/borrow deposits between them (EURIBOR in the € area);
 - standard reference rate for many other contracts/derivatives;
 - \triangleright maturities: 1 day to 1 year.
- Example: 6 months LIBOR: $L_{0,1/2} = 4\%$. Borrow now 1000000£, pay 1000000(1 + 0.04 · 1/2) = 1020000£ in 6 months.

Discretely Compound Interest

- Fix k > 0. After each $\frac{1}{k}$ -th (e.g. k = 1, 2, 4, 12, ...) of year interest is compounded i.e. added to principal.
- \bullet After n periods, accumulated value is

$$b(n) = \left(1 + \frac{R^k}{k}\right)^n;$$

interpolate linearly between points to get b(t), all $t \ge 0$.

- Equivalent 1 year interest rate is R given by $1 + R = \left(1 + \frac{R^k}{k}\right)^k;$ $\rightsquigarrow R^k = k[(1+R)^{1/k} - 1].$
- Example: €1000 invested for 6 months at 7% compounded monthly gives 1000 (1 + ¹/₁₂0.07)⁶ = 1035.51€. Equivalent 1-year rate is 7.23%.

Continuous Compounding

- Consider discrete compounding when $k \to \infty$: interest is compounded continuously.
- For fixed 1 year interest rate $R, R^k \to Y \doteq \log(1+R)$ as $k \to \infty$.

•
$$(1 + \frac{R^k}{k})^{kn} \to \mathrm{e}^{Yn}$$
 as $k \to \infty$;

•
$$\rightarrow$$
 $b(t) = e^{Yt} = (1+R)^t; d(t) = e^{-Yt} = (1+R)^{-t}$

- Y: force of interest; b'(t)/b(t) = Y, i.e. $b(t + \Delta t) \approx b(t)(1 + Y\Delta t)$.
- Note that b(t+s) = b(t)b(s).
- Example: 500\$ invested at 2% force of interest for 1 and 1/2 years gives 500 e^{0.02·1.5} = 515.23\$. Corresponding interest rate is 2.02%.

Term Structure of Interest Rates

- Fix time 0: today.
- Suppose a discount function $d(\cdot) \equiv d_0(\cdot)$ (price of hypothetical ZCB for any maturity) is given.
- Assume continuous compounding; interest rate prevailing for borrowing/lending up to time t is R_{0,t} (Y_{0,t} corresponding force of interest); d(t) = (1 + R_{0,t})^{-t} = e<sup>-Y_{0,t}t.
 </sup>
- The function $t \to R_{0,t}$ is the Term Structure of Interest Rates (at 0); it can take several shapes: flat, normal (increasing), inverted (decreasing), humped, spoon-shaped.
- Knowing $d(\cdot)$ you get $R_{0,\cdot}$, and viceversa.

Forward Rates

- $R_{0,t}$ is a spot rate, i.e. a rate prevailing now for [0, t].
- Fix 0 ≤ t < s; R_{0,t,s}: forward rate contracted now, for borrowing/lending over [t, s] (Y_{0,t,s}: corresponding force of interest).
- Buy 1 ZCB maturity s, sell d(s)/d(t) ZCB maturity t; no cash-flow in 0; cash-flow in t: -d(s)/d(t); cash-flow in s: 1. Hence

$$\frac{d(s)}{d(t)} \left(1 + R_{0,t,s}\right)^{s-t} = 1.$$

$$\rightsquigarrow \left[(1+R_{0,t})^t (1+R_{0,t,s})^{s-t} = (1+R_{0,s})^s \right].$$

• Forward rates are 'implied' by the term structure now; $R_{0,t,t} = R_{0,t}, Y_{0,t,t} = Y_{0,t}.$ Overview of Financial Markets and Instruments Term Structure of Interest Rates

Forward Rates

- \triangleright 1 + $R_{0,s}$ weighted geometric average of 1 + $R_{0,t}$, 1 + $R_{0,t,s}$;
 - \triangleright $Y_{0,s}$ weighted arithmetic average of $Y_{0,t}$, $Y_{0,t,s}$.
- Let $s \downarrow t$ in $Y_{0,t,s}$. Get instantaneous forward rates:

$$r_{0,t} \doteq \lim_{s \downarrow t} Y_{0,t,s} = -\frac{\mathrm{d}}{\mathrm{d}t} \log d(t) = -\frac{d'(t)}{d(t)}$$

 $t \rightarrow r_{0,t}$: term structure of instantaneous forward rates

• Also: $d(t) = e^{-\int_0^t r_{0,u} du}$, $Y_{0,t,s} = \frac{1}{s-t} \int_t^s r_{0,u} du$, $Y_{0,t} = \frac{1}{t} \int_0^t r_{0,u} du$ \rightsquigarrow knowing $r_{0,\cdot}$, recover $R_{0,\cdot}$, $Y_{0,\cdot}$ and $d_0(\cdot)$.

• Prove
$$r_{0,t} = Y_{0,t} + t \frac{\mathrm{d}}{\mathrm{d}t} Y_{0,t}$$
.

Term Structure of Simple Rates

- We could work with **simple** instead of **compounded** rates.
- Spot rate $L_{0,t}$: $\begin{array}{c}
 d_0(t) = (1 + L_{0,t}t)^{-1} \\
 t \to L_{0,t}: \text{ 'term structure of LIBOR rates'.}
 \end{array}$
- $0 \le t < s$; $L_{0,t,s}$: forward rates in 0 for [t,s] defined by $1 + L_{0,s}s = (1 + L_{0,t}t)(1 + L_{0,t,s}(s-t)).$
- When $s \downarrow t$ one gets

$$l_{0,t} \doteq \lim_{s \downarrow t} L_{0,t,s} = r_{0,t},$$

i.e. no difference between simple and compounded instantaneous rates.

Term Structure of Interest Rates

- As time goes on, the term structure moves (and change shape).
- Given dt(s) (s ≥ t), discount function at t, i.e. price at t of a riskless pure discount bond with unit face value
 → derive with obvious definitions Rt,s, Yt,s, Rt,s,u, Yt,s,u and rt,s.
- Many stochastic approaches to the term structure models the short (i.e. spot, instantaneous) rate r_t = r_{t,t} (one factor models; e.g. Vasicek, Cox-Ingersoll-Ross ...); others model the instantaneous forward rates r_{t,s} (e.g. Heath-Jarrow-Morton).

Theories of the Term Structure

- Intuition suggest that forward rates (determined by 'short' and 'long' rates) convey information about expected future spot rates.
- (PURE) EXPECTATIONS THEORY: forward rates are unbiased expectations of future spot rates, i.e. $R_{t,s,u} = E_t[R_{s,u}]$
- LIQUIDITY PREFERENCE THEORY: forward rates are biased (upward) expectations; difference is premium for liquidity, i.e. preference for shorter investments.
- MARKET SEGMENTATION THEORY: bond markets are segmented; agents with different horizons invest in different segments; short and long rates are not directly related.

Pricing of Cash-flows

- Given today the term structure $d_0(\cdot) \equiv d(\cdot)$.
- Consider a security producing cash-flows C_i (>, < 0) at time t_i (i = 1,...,n), with initial value V₀.

•
$$V_0 = \sum_{i=1}^n C_i d(t_i)$$

Proof. The portfolio consisting of $|C_i|$ ZCB with maturity t_i (long if $C_i > 0$, short if $C_i < 0$), produces the same cash-flow as security. Apply LOP.

• Example: coupon bearing bond paying C at t_1, \ldots, t_n and N in t_n . Price P given by

$$P = C \sum_{i=1}^{n} d(t_i) + Nd(t_n).$$

Pricing of a Floater

- A (plain-vanilla) **floater** pays coupons linked to LIBOR: $C_i = N \Delta L_{t_{i-1},t_i}$ at $t_i \doteq i\Delta$ (i = 1, ..., n) and N at t_n .
- Coupons are predetermined: C_i is known at t_{i-1} .
- Denote FL_t price in t of floater. We have $FL_{t_i} = N$ (i = 0, ..., n - 1) i.e. floater trades at par at reset dates.

Proof Consider the **dynamic** strategy (roll-over) at t_i : start with N; invest N until t_{i+1} , get $N + C_{i+1}$; reinvest N until t_{i+2} , ... at t_n get $N + C_n$. This strategy produces same cash-flow as floater. Initial value is N. Apply LOP.

• If $t_{i-1} < t < t_i$, then $FL_t = (N + C_i) d_t(t_i)$, i.e. next coupon (already known) plus value after paying coupon (par), discounted to t.

Bond Return Measure: IRR

- Internal Rate of Return (IRR) of a bond is a popular measure of its return.
- If a bond pays coupons C_i at time t_i (i = 1, ..., n), and price is P, IRR (with continuos compounding) is R^*

solution of
$$P = \sum_{i=1}^{n} C_i (1+R^*)^{-t_i}$$

or the corresponding force of interest $Y^* = \log(1 + R^*)$.

• IRR: if term structure is flat at R^* , price is present value of coupons

 $\rightsquigarrow R^*$ is average of R_{0,t_i} $(i = 1, \ldots, n)$.

- For a ZCB maturity T, R^{*} = R_{0,T} and Y^{*} = Y_{0,T} → Y_{0,T} is also known as yield to maturity.
- For a coupon bond R^* has to be found numerically.

Bootstrapping the Term Structure

• Most bonds pays coupons; ZCB available only for short maturities.

How to extract $d_0(\cdot) \equiv d(\cdot)$?

- Example: suppose we have 4 bonds (1 ZCB, 3 coupon bearing, all with face value 100):
 - \triangleright ZCB maturity 6 months, price 98;
 - ▷ bond with semiannual coupons, nominal rate 4%, maturity 1 year, price 99.88;
 - ▷ bond with semiannual coupons, nominal rate 6%, maturity 18 months, price 103.155;
 - ▷ bond paying annual coupons, coupon rate 4.5%, maturity 2 and 1/2 years, next coupon date in 6 months, price 105.325.
- Translate these cash-flows as relationships between discount factors.

Overview of Financial Markets and Instruments Term Structure of Interest Rates

... Bootstrapping the Term Structure

- Maturities involved are $\frac{1}{2}$, 1, $\frac{3}{2}$, $\frac{5}{2}$. Let d(1/2) = x, d(1) = y, d(3/2) = z, d(5/2) = w.
- We must have

- Solving the system one gets x = 0.98, y = 0.96, z = 0.945 e w = 0.925.
- Extend to all maturities through interpolation (e.g. use interpolating splines).

Overview of Financial Markets and Instruments Forward and Futures Contracts

Outline

- 1 Financial Markets and Primary Securities
- 2 Term Structure of Interest Rates
- **3** Forward and Futures Contracts

Forward and Futures Contracts

- Agreement between two parties to exchange a real or financial asset (underlying) at a future date (delivery date) and at a given price (delivery price).
- Long party buys the asset;
 Short party sells the asset.
- Both parties have an obligation.
- Long/short party gains if price of underlying rises/falls.
- No cash-flow at inception.
- Settlement: cash or physical.
- Motivation:
 - HEDGING: investors exposed to the risk of movements of the underlying can mitigate this risk by taking a position in forward/futures;
 - SPECULATION: investors having an expectation on underlying price movements can exploit with a position in futures.

Forward vs. Futures

- Forward are OTC instruments/Futures trade on organized markets (CBOT, ...). → Futures are standardized/Forward are not.
- Futures are marked-to-market: every gain/loss is settled at the end of each trading day, through the margin system.

 \leadsto The value of a Futures contract is always 0. In a Forward contract gains and losses are realized at delivery date.

 \leadsto Futures contract are much less affected by credit risk than Forward.

- Every investor's counterparty is the Clearing House.
- Forward usually reach maturity (physical settlement)/Futures are usually closed before maturity (cash settlement), by taking an opposite position.
Forward Contracts: payoff

- Today: 0; delivery date: T.
- (S_t) : spot price process of underlying; K: delivery price.
- PAYOFF at delivery is

 $S_T - K$ long position; $K - S_T$ short position

Forward Contract Analysis

• Long Forward contract value: (V_t) ; Short Forward contract value: $(-V_t)$; Forward price at t for T: (F_t^T) = delivery price at t for T.

•
$$V_0 = 0, V_T = S_T - K;$$

 $F_0^T = K, F_T^T = S_T$ (convergence).

•
$$V_t = ?, F_t^T = ?$$
 for $0 \le t \le T$.

• Assume that owing the underlying asset generates no income/outcome during the life of the contract (commodities requires storage costs/stocks pays dividends/bonds pays coupons).

Overview of Financial Markets and Instruments Forward and Futures Contracts

٩

... Forward Contract Analysis

$$V_t = S_t - K d_t(T),$$

 $\rightsquigarrow F_t^T = S_t b_t(T)$ and in particular

$$K = S_0 b_0(T).$$

- Forward price = accumulated value of spot price.
- **Proof.** At time t < T, long position in the underlying, lend $K d_t(T)$ until T. Strategy produces same cash-flows as forward. Apply LOP. F_t^T defined by $K = F_t^T$ and $V_t = 0$.

... Forward Contract: example

- Consider a stock worth now S₀ = 100€, T = ¹/₄, force of interest is Y_{0,¹/₄} = 3%. The stock pays no dividend. Delivery price is then K = 100.753. Enter 1000 such contracts for buying stock at €100.753 in 3 months.
- After 1 month (t = ¹/₁₂), stock price is S¹/₁₂ = 100.5 and force of interest is Y¹/₁₂, ¹/₄ = 2.5%. Value of one forward contract for long position is V¹/₁₂ = 0.166. Market value is then 166€.
- At delivery date, stock price is S_{1/4} = 101. Payoff for one contract is S_{1/4} K = 0.247, so payoff is 247.18€.

Forward Contract Analysis: extension

- Suppose that owing the security generates a known income/outcome over [0, T].
- Let $Q_{t,T}$ be present value at t of income/outcome over [t, T]. Then $V_t = S_t - Q_{t,T} - K d_t(T)$ $\rightsquigarrow F_t^T = (S_t - Q_{t,T}) b_t(T)$ $\rightsquigarrow K = (S_0 - Q_{0,T}) b_0(T).$
- **Proof.** Same as before, but add: 'borrow $Q_{t,T}$ for relevant maturities, so as to reproduce cash-flow generated by holding the underlying'.
- Examples: forward contracts on stocks paying known dividens or on coupon bearing bonds.

Forward Contracts on Currencies

- Agreement on exchange rate to be applied at future date, on a given nominal.
- $(S_t) \in /$ (spot) exchange rate, i.e. price of $\in 1$ in $; \in 1$ is S_t ; 1 is $\in 1/S_t$.
- Parties agree on $\in/\$$ exchange rate K to be applied at T (i.e. to exchange $\in 1$ for K\$); payoff in \$ is $S_T K$.
- $V_t = S_t d_t^{\$}(T) K d_t^{\clubsuit}(T)$ in \$, where $d_t^c(T) = e^{-Y_{t,T}^c(T-t)}$ for c=\$, \clubsuit ;

proof. Borrow K in \$ up to T; lend $d_t^{\in}(T)$ up to T, convert in \$ at prevailing rate.

• \rightsquigarrow $K = S_0 e^{-(Y_{0,T}^{\notin} - Y_{0,T}^{\$})}$ interest rates parity relation.

Forward Rate Agreements (FRA)

- Agreement between two parties to lend/borrow a nominal N at a given simple interest rate L_{FRA} over [T, U] (0 < T < U; T settlement date, U maturity).
- Long party borrow/short party lend.
- Convention is to settle at T the difference between L_{FRA} and prevailing LIBOR rate $L_{T,U}$; payoff in T is

$$N(U-T)(L_{T,U}-L_{\text{FRA}})d_T(U).$$

- Could be seen as forward contract on ZCB.
- Initial value is zero $\rightsquigarrow L_{\text{FRA}} = L_{0,T,U}$.

Forward Rate Agreements (FRA)

• V_t^{FRA} value of the FRA $(0 \le t \le T)$. A FRA can be valued as if forward rates are realized:

$$V_t^{\text{FRA}} = N \left(U - T \right) \left(L_{t,T,U} - L_{\text{FRA}} \right) d_t(U).$$

Proof. Build the strategy at t: borrow $N(1 + L_{\text{FRA}}(U - T)) d_t(U)$ until U; invest $d_t(T)$ until T, then reinvest proceedings until Uat prevailing rate $L_{T,U}$.

• $V_t^{\text{FRA}} \ll 0$ according to $L_{t,T,U} \ll 0$.				
	$T \times U$	EURIBOR FRA rate		
	3×6	3.78		
	6×9	3.84		
	9×12	3.84		
	6×12	3.86		
	12×18	3.77		

Overview of Financial Markets and Instruments Forward and Futures Contracts

 \dots FRA

- Consider the 9×12 FRA equal to 3.84%, and a nominal amount of $1000000 \in$.
- Suppose in 6 months EURIBOR term structure (simple rates) is flat at 3.5%. Then forward rates equal spot rates. Value of the FRA is negative:

$$V_{\frac{1}{2}}^{\text{FRA}} = 1000000 \,\frac{\frac{1}{4}(0.035 - 0.0384)}{1 + \frac{1}{2}0.035} = -835 \textcircled{\in}.$$

• If at settlement (in 9 months) the prevailing 3 months EURIBOR has risen to $L_{\frac{3}{4},1} = 4.32\%$, then long party receives

$$1000000 \frac{\frac{1}{4}(0.0432 - 0.0384)}{(1 + 0.25 \cdot 0.0432)} = 1187.18 \in.$$

Futures: Marking-to-Market

- Delivery price: Futures price.
- An investor trading in futures must make an initial deposit in a margin account with its broker.
- At the end of each trading day, investor gains/losses (difference between closing and initial futures prices) increases/decreases the margin account;
 → contract value is 0 at the end of trading day; actually, any amount above initial margin can be withdrawn by the investor.
- If margin account falls below a maintenance margin
 → margin call: investor must deposit a variation margin and restore the initial margin.
- Broker has to maintain a similar account with clearinghouse.

Futures: Marking-to-Market

- Example: futures on gold (adapted from [Hull, 2006]).
- 1 futures contract on gold is for delivery of 100 ounces; futures price quoted (in \$) is for 1 ounce; initial margin is 2000\$ per contract; maintenance margin is 1500\$ per contract.
- Long position in 10 futures contracts
 → initial/maintenance margin is 20000\$/15000\$.

day	Futures price	Daily gain/loss	Margin account
1	400		20000
2	401	+100	21000
3	399	-200	19000
4	397.5	-150	17500
5	394	-350	14000
6	393.5	-50	19500

Forward and Futures Prices

- Assume interest rates are flat and nonrandom $(Y_{t,T} = Y, d_0(\cdot) = d_t(\cdot))$. Then futures prices equal forward prices.
- $0 < t_1 < t_2 < \ldots < t_n = T$; 0: today, T: maturity; futures contract is marked to market at t_i , $i = 1, \ldots, n$ (e.g. $t_i - t_{i-1} = \Delta_i = 1/365$).
- Let $f_t \equiv f_t^T$ futures price in t; F_0^T forward price, and S_t spot price; by convergence, $f_T = S_T$.
- First strategy: start at $t_0 = 0$, long $b(t_1)$ futures; at t_i , cash-flow $b(t_i) (f_{t_i} - f_{t_{i-1}})$, increase long position to $b(t_{i+1})$ contracts (i = 1, ..., n - 1).

Forward and Futures Prices

- At any date t_i , invest cash-flow $b(t_i)(f_{t_i} f_{t_{i-1}})$ up to $t_n = T$ at risk-free rate; get $b(T)(f_{t_i} f_{t_{i-1}})$.
- Globally, get $\sum_{i=1}^{n} b(T) (f_{t_i} f_{t_{i-1}}) = b(T) (f_{t_n} f_{t_0}) = b(T) (S_T f_0).$
- At 0, lend f_0 up to T, get $b(T) f_0$; entire strategy gives $b(T) S_T$ at T, and initial value f_0 .
- second strategy: long b(T) forward contracts at 0, lend F_0^T at risk free rate up to T; payoff in $T \ b(T) (S_T - F_0^T) + b(T) F_0^T = b(T) S_T$; initial value F_0^T .

• LOP
$$\rightsquigarrow f_0 = F_0^T$$
.

Outline

- **1** Financial Markets and Primary Securities
- 2 Term Structure of Interest Rates
 - **3** Forward and Futures Contracts

Overview of Financial Markets and Instruments

Swaps

Swaps

- Among most popular OTC derivatives.
- Agreement between two parties to exchange regular cash-flows based on some economic variable.
- Typically, one party pays fixed cash-flows, the other variable cash-flows.
- Can be seen as combinations (portfolios) of forward contracts.
- Cash-flows computed based on notional amount. Only net cash-flows are actually exchanged.
- Focus on standard type of swaps: interest rate swaps (IRS).
- Swaps are used for
 - \triangleright hedging;
 - ▷ asset/liability **transformation**;
 - ▷ exploiting comparative advantages; see [Hull, 2006].

Interest Rate Swaps (IRS)

- Plain Vanilla fixed-for-floating swap: agreement to exchange payments based on a fixed rate (fixed branch), known as swap rate L_{SWAP}, against payments based on a variable rate (floating branch), e.g. LIBOR), applied to same notional amount.
- Long party: fixed rate payer/short part: fixed rate receiver.
- Payments at $t_i = i\Delta$ (e.g. $\Delta = 1/2$), i = 1, ..., n. Net cash-flow at t_i (long position) is $N\Delta(L_{t_{i-1},t_i} L_{\text{SWAP}})$ known at reset date t_{i-1} .
- Maturity ranging from 2 to 30 years.
- L_{SWAP} is fixed so that initial contract value is 0: no cash-flow at $t_0 = 0$.

Overview of Financial Markets and Instruments Swaps

Fixed/floating branches

Floating branch

Fixed branch:

Overview of Financial Markets and Instruments Swaps

IRS as portfolio of FRAs

- Cash-flow at t_i is that of FRA with settlement t_{i-1} and maturity t_i , FRA rate = SWAP rate.
- V_t^{SWAP} value of swap at t for long position:

$$V_t^{\text{SWAP}} = \sum_{i=1}^n V_t^{\text{FRA}_i}$$

Using results for FRAs, get

$$L_{\text{swap}} = \frac{\sum_{i=1}^{n} L_{0, t_{i-1}, t_i} d_0(t_i)}{\sum_{i=1}^{n} d_0(t_i)}.$$

• Swap rate is weighted average of forward rates. Single FRAs would not be worth 0 at beginning but balance on average.

IRS as fixed coupon/floater exchange

• Add notional amount N at t_n for both fixed and floating branch.

Net cash-flows remians unchanged.

• \triangleright fixed branch \equiv fixed coupon (coupon rate = L_{SWAP}) bearing bond;

 \triangleright floating branch \equiv floater.

- CB_t , FL_t prices of coupon bond and floater at t; $V_t^{\text{SWAP}} = FL_t - CB_t$.
- Recall floater trades at par at reset dates: $\rightsquigarrow V_{t_i}^{\text{SWAP}} = N CB_{t_i}.$
- L_{SWAP} is such that $CB_0 = FL_0 = N$; i.e. coupon rate such that coupon bond trades at par: par rate:

$$L_{\text{SWAP}} = \frac{1 - d_0(t_n)}{\Delta \sum_{i=1}^n d_0(t_i)}$$

IRS as fixed coupon/floater exchange

Modified loating branch \equiv floater:

Modified fixed branch \equiv fixed coupon bond:

Outline

- **1** Financial Markets and Primary Securities
- 2 Term Structure of Interest Rates
- **3** Forward and Futures Contracts

Overview of Financial Markets and Instruments Options

Options

- Agreement between two parties: one party (long position, or option holder) has the right to buy/sell the underlying at a given price (strike price or strike price), from/to the other party (short position, option writer).
- A call option gives the holder the right to buy, a put option gives the holder the right to sell.
- Unlike forward (or futures, or swaps), options gives rights, not obligations. The writer must stand the holder decision.
- Deciding whether or not to buy/sell is known as exercising the option.
- An option is European/American if exercise can take place at maturity/at any time before maturity.
- Since an option confer a right, the holder has to pay a price (option premium) at inception.

Option Markets

- Options can be used for hedging and speculation; unlike forward, allow to make profits without incurring any loss.
- Options are traded both on exchanges (CBOE, ...) (with a margin system like for futures) and OTC.
- Underlying can be: stock/indices/currencies/commodities/futures/Swaps (Swaptions)...
- Most options are American; European are simpler to analyze.
- Typically, several strikes and maturities are quoted at any trading date.
- Standard options are called plain-vanilla; many other types of options are exotics.

Overview of Financial Markets and Instruments Options

Options payoff

- 0: today; T: maturity;
- (S_t): spot price of underlying; K strike price. C_t, P_t: prices of American call/put, c_t, p_t: prices of European call/put,
- At any time 0 < t < T, holder can (i) sell the option (ii) if American, exercise the option (early exercise) (iii) do nothing;

at maturity T, holder can (j) exercise the option (jj) do nothing.

• Since holder is rational, at maturity T exercise call/put iff $S_T > K/S_T < K$.

Call payoff (Call value): $C_T = c_T = \max\{S_T - K, 0\}$

Put payoff (Put value): $P_T = p_T = \max\{K - S_T, 0\}$

• Call/put Writer payoff: $\overline{\min\{0, K - S_T\}}$ and $\min\{0, S_T - K\}$.

Overview of Financial Markets and Instruments

Options

Options payoff

Option Strategies

- One can build many strategies using options.
- EXAMPLE I. Long put+long stock: $\max\{K - S_T, 0\} + S_T = \max\{S_T, K\}$ (minimum guarantee).
- EXAMPLE II. Long call strike K_1 , short call strike $K_2(>K_1)$ (bull spread):

Overview of Financial Markets and Instruments Options

... Option Strategies

• EXAMPLE III. Long call strike K_1 and K_3 , short 2 call strike K_2 ($K_1 < K_2 < K_3$): (butterfly spread):

 \uparrow butterfly spread payoff

Option Moneyness

- At any time $0 \le t \le T$ the option is in/at/out of the money if immediate exercise (only hypothetical for European options) generates a positive/null/negative cash-flow.
- Hence a call option is in/at/out of the money according to S_t >, =, < K. A put option is in/at/out of the money according to S_t <, =, > K.
- A necessary condition for exercise is that the option be in the money (also sufficient at maturity).
- The intrinsic value of an option at $0 \le t \le T$ is $\max\{S_t K, 0\}$ for a call, $\max\{K S_t, 0\}$ for a put.
- $C_t \ge \max\{S_t K, 0\}, P_t \ge \max\{K S_t, 0\}$ (otherwise, buy option and exercise). The difference, if positive, is the time value of the option.

Option Bounds

- If an American option has time value, **exercise is not convenient** (better wait or sell it!), even if option is deep in the money.
- Pure no-arbitrage reasonings lead only to bounds for option prices.
- Clearly, $C_t \ge c_t$ and $P_t \ge p_t$, for $0 \le t \le T$.
- Bounds for options on non-dividend paying stock: for $0 \le t \le T$,

BOUNDS FOR CALL OPTIONS:

 $\max\{S_t - K d_t(T), 0\} \le c_t \le C_t \le S_t;$ BOUNDS FOR EUROPEAN PUT OPTIONS: $\max\{K d_t(T) - S_t, 0\} \le p_t \le K d_t(T);$ BOUNDS FOR AMERICAN PUT OPTIONS: $\max\{K - S_t, 0\} \le P_t \le K;$ **Proof.** If an inequality does not hold, build an

^{65/72} arbitrage.

Overview of Financial Markets and Instruments Options

... Option Bounds

- Note that Ct ≥ max{St K dt(T), 0} > max{St K, 0} (provided Yt,T > 0 and St > K), so that it is never convenient to early exercise an American call option on a non dividend paying stock → Ct = ct; instead, early exercise of an American put may be convenient.
- EUROPEAN PUT-CALL PARITY: for all $0 \le t \le T$ $p_t + S_t = c_t + K d_t(T)$

Proof. Long position on put and stock = long position on call+lending $K d_t(T)$. AMERICAN PUT-CALL RELATION: for all $0 \le t \le T$ $C_t + K d_t(T) \le P_t + S_t \le C_t + K$. Overview of Financial Markets and Instruments Options

... Option Bounds

- Previous inequalities extend to stocks paying known dividends.
- If Q(t,T) denotes present value in t of dividends paid in [t,T], put-call European parity becomes: $p_t + S_t - Q(t,T) = c_t + K d_t(T).$
- Early exercise of American call may be convenient only immediately before dividend paying dates.
- Early exercise of American put may be convenient only immediately after dividend paying dates.

Binomial Model

- In order to value options, we have to set up a model.
- Simplest type is binomial: uncertainty can evolve with 2 possible scenarios.
- Consider a market with two assets, stock and a bond.
- Only 2 dates (1 period), 0 and 1. Price today is $S_0 = S$, price in 1 is S_1 with either $S_1(u) = S u$ or $S_1(d) = S d$ with u > d(> 0). Interest rate for [0, 1] is R.

Overview of Financial Markets and Instruments Options

...Binomial Model

- A strategy is $(\phi, \eta) \in \mathbb{R}^2$; the value at 0 is $V_0^{\phi,\eta} = \phi S_0 + \eta$; value at 1 is $V_1^{\phi,\eta} = \phi S_1 + \eta (1+R)$.
- An arbitrage opportunity is a strategy (ϕ, η) such that $V_0^{\phi,\eta} = 0$ and $V_1^{\phi,\eta}(u) \ge 0$, $V_1^{\phi,\eta}(d) \ge 0$ (with one of the two inequalities strict).
- No arbitrage iff

$$0 < q \equiv \frac{(1+R) - d}{u - d} < 1$$

iff d < 1 + R < u.

Think of q as probability of 'u' movement, 1 − q of 'd' movement. Call Q this probability.

Overview of Financial Markets and Instruments Options

...Binomial Model

$$\phi = \frac{C(u) - C(d)}{S_0 (u - d)}, \quad \eta = \frac{C(u) d - C(d) u}{(1 + R)(u - d)}$$

We say that markets are complete (any contingent claim is replicated). Moreover,

$$V_0^{\phi,\eta} = E^Q \left[\frac{C}{1+R} \right]$$

 $\rightsquigarrow V_0^{\phi,\eta}$ is the initial price one should pay for C.

Exotic Options

- Barrier Options: option is activated/cancelled if a barrier is reached/not reached during option's life.
- Lookback Options: underlying or strike is the minimum or maximum value of stock during stock's life.
- Asian Options: underlying or strike is the average value of stock during stock's life.
- Compound Options: option on an option.
- Binary Options: receive a fixed amount in case of exercise.
- Basket Options: options on maximum or minimum of several assets.
- Exchange Options: options to exchange an asset for another asset.

Embedded Options

- Many securities contain embedded options:
- Callable bonds: issuer may retire the bond (has a call option).
- Convertible bonds: bondholder can convert bond into issuer company's stock.
- Minimum guarantees: insurance contracts are often equity-linked with minimum guarantee.
- Surrender option: policyholder may surrender an insurance contract.
- Prepayment options: mortgagors have the right to prepay mortgage.
- Executive stock options: options to incentivate corporate managers.

• . . .