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Overview of Financial Markets

Functions of Financial Markets:

Financial markets determine the prices of assets, provide a place for exchanging assets
and lower costs of transacting. This aids the resource allocation process for the whole
economy.

• price discovery process

• provide liquidity

• reduce search costs

• reduce information costs

Market Efficiency:

• Operational efficiency: fees charged by professional reflect true cost of providing
those services.

• price efficiency: prices reflect the true values of assets.

– Weak efficiency: current price reflect information embodied in past price
movements.

– Semistrong efficiency: current price reflect information embodied in past
price movements and public information.

– Strong efficiency: current price reflect information embodied in past price
movements and all public and private information.

Brief history:

Birth of shareholding enterprise, Muscovy Company (1553), East India Company
(1600), Hudson’s Bay Company (1668). Trading starts on the shares of these com-
pany. Amsterdam stock exchange (1611), Austrian Bourse in Vienna (1771). In
London coffee houses where brokers meet. New Jonathen’s Coffee house becomes the
Stock Exchange in 1773.

In New York dealers in stock met at 22 Wall Street (so called because of the building
of a wall to keep livestock in and Indians out by early Dutch traders who founded
NY). New York Stock Exchange and Board set up in 1817.

In France, the Societe des Moulin Du Balzac in Toulouse, which become the local
electricity company, was the first shareholding company, and was quoted in Toulouse
Stock exchange. First Bourse in Lyon in 1540. Bourse in Paris established in 1724,
closed in 1791 during revolution and opened again under Napoleon in 1801.

Traded Financial Assets:
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• Tangible: have physical existence.

• Intangible: legal claim to future cash flow, debt, equity, preferred stocks, con-
vertible bonds.

Intermediaries:

• brokers: purchases on the behalf of a client.

• dealers or market makers: stand ready and willing to buy and sell on their own
account, quote a bid and ask price. Keep an account. Provide immediacy. Bear
risks: uncertainty about future prices of a stock, uncertainty about the time
they must hold a position in a stock, possibility to trade with informed traders.
Bid-ask spread reflects dealers processing costs and perceived risks.

Classification of Financial Markets:

By type of claim:

• Fixed Income: debt and preferred stocks

• Equity (or Stock) Market: equity

• Derivatives Markets: where futures, options and swaps are traded.

By maturity of claim:

• Money Market: short term debt, one year or less.

• Capital Market: long maturity assets, both debt and equity.

By geographical location of issuer:

• Domestic: where assets issued by domestic issuer are traded (example stock of
American corporation traded in US).

• Foreign: where assets issued by foreign issuer are traded (example stock of
Japanese corporation traded in London). Securities regulated by authorities in
the country where they are issued.

• External: (also International Market or Euromarket) includes securities that
are offered simultaneously to investors in a number of countries and are issued
outside the jurisdiction of any single country.

• Emerging Markets: rapidly growing, markets of recently industrialized coun-
tries.
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By type of market:

• Exchanges: physical places where only members can trade, highly regulated,
only listed assets are traded who need to meet standards and pay fees.

• Over the counter markets: listed and not listed assets traded, transaction over
the phone. Most bond trade here.

• Electronic Markets: growing thenks to market deregulation and technological
advances.

Elements of trade:

• Security to trade

• quantity to be trade: round lot, odd lot, block trade.

• buy or sell: short sell and buy on margins. restriction on short selling: up-tick
and zero-tick rules.

• Arrangements for payment and delivery: clearing house. Netting. Counterpart
risk. Delivery agreements.

• type of orders: market, limit, stop.

– market orders

A market order is an order to buy or sell at the market price. A trader
who submits a market order faces the risk that the order is executed at a
price far from the desired one.

– limit orders

To guarantee that an order is executed only when the market price is below
or above a certain threshold a trader can submit a limit order. By delaying
transacting traders hope to trade at a more favourable price. Nonetheless,
limit order traders face uncertainty over when the trade will execute and
the estimated value of the asset may have changed since the order was
placed. Traders, then, risk to be left with a negative expected profit, or,
if the order is not matched during the trading window (given by the order
lifetime), not to trade at all.

– stop orders

Stop orders are market orders which are triggered by the market price
reaching a predetermined threshold. Even if they provide protection against
unexpected losses or rises they do not guarantee that the order will be ex-
ecuted at a price close to the specified threshold. Stop orders can be
submitted, for example to set up stop-loss hedging strategies.

• Trading Mechanisms:
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– Quote-driven markets: competing market makers supply liquidity by quot-
ing bid and ask prices and the number of shares at which they are willing
to trade. Investors demand liquidity through the submission of market
orders.

– Order-driven markets: investors can, but are not obliged to, submit limit
orders. Orders are stored in the exchange’s book and executed in the se-
quence they arrive to the market. A transaction occurs when a trader hits
the quote on the opposite side of the market. Transactions are executed
using time priority at a given price and price priority across prices. Limit
orders provide liquidity to market orders.

Major Financial Markets in the world:

• USA:

– NYSE (New York Stock Exchange) located in lower Manhattan, NYC.
Primarily a stock exchange but also bonds, futures and options. Ma-
jor exchange in the world. Uses DOT (1976) and (Designated Order
Turnaround) as an automatic electronic order execution service. Super
DOT (1984).

– AMEX (American Stock Exchange) also stocks, bonds and options.

– regional exchanges (Boston, Chicago, Cincinnati, Philadelphia, Midwest,
Pacific). Stocks and options

– CBOT (Chicago Board of Trade, 1848) future market.

– CME (Chicago Mercantile Exchange, 1874, future markets.

– IMM (International Monetary Market, 1972) futures in foreign currency.

– CBOE (Chicago Board Options Exchange, 1973): main option markets.

– NASDAQ (National Associations of Securities Dealers Automated Quota-
tions). Over the counter. Listed and non listed stocks and bonds. Hybrid
system.

– NYFE (New York Future exchange)

– NYMEX (New York Mercantile Exchange).

– COMEX (Commodity exchange).

• UK:

– LSE (London Stock Exchange): Uses SETS (Stock Exchange Electronic
Trading Systems) for top 100 stocks and SEAQ (Stock exchange Auto-
mated Quotation) hybrid system similar to NASDAQ, for other shares.
Also SEATS (Stock exchange Alternative Trading System)

– LIFFE (London International Financial Futures Exchange)

– LME (London Metal Exchange)
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– OMLX (London Security and Derivatives Exchange)

– LCE (London Commodity Exchange)

– IPE (International Petroleum exchange)

• Germany: Frankfurt.

• Canada: Toronto Stock Exchange, uses CATS( Computer Assisted Trading
System). Also derivatives.

• France: Paris Bourse. Uses CAC (Cotation Assistee en Continu) and NSC
(Nouveau Systeme de Cotation or supercac. MATIF and MONEP for futures
and options.

• Japan: Tokio, Osaka and 6 others. TIFFE future exchange.

• Switzerland SOFFEX (Swiss Options and Financial Futures Exchange)

• Sydney SFE (Sydney Futures Exchange)

• Singapore SIMES (Singapore International Monetary Exchange)

• Hong Kong: HKFE Hong Kong Future exchange.

Stock Market Indexes:

Three factors differentiate stock market indexes:

• Universe of stocks represented (composition may change over time).

• Weights assigned to stocks.

• Method of averaging.

Weights

• by market value of company or market capitalization: Capitalization = Number
of shares x Price of a share.

wi =
Ci∑N

j=1Cj

• By the price of one unit of the company’s stock.

wi =
pi∑N

j=1 pj
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• Equal weight.

wi =
1

N

Method of averaging

• Arithmetic Average (all market index are constructed using arithmetic average)

I = C
N∑

i=1

wipi

• Geometric Average
I = C(ΠN

i=1wipi)
1/N

Exercise: Construct an index using the three different weighting scheme using the
following data

APX P = 28.625 US$ N = 485.445 million

GE P = 105.250 US$ N = 852.935 million

3M P = 103.250 US$ N = 215.791 million

Merck P = 32.125 US$ N = 1282.316 million

Exxon P = 65.250 US$ N = 1241.618 million

Classification by producer:

• those produced by trading systems based on stocks traded on that system (ex-
ample: NYSE composite index, American Stock Exchange Market Value Index,
NASDAQ Composite Index, TOPIX).

• those produced by organizations that subjectively select the stock to be included
in the index (example: S&P500, DJIA or Dow Jones Industrial Average, Nikkei
225 Stock Average, FT100...)

• those produced by organizations that objectively select the stock to be included
in the index.

Major Indexes:

• US

– DJIA (1896 with 12 shares, 1928 with 30 hares): largest 30 blue chips
traded on NYSE. Prices are averaged with equal weight. Calculated every
minute. Accounts for splits and dividend.
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– S&P500 (1957): selected samples from of stocks traded on NYSE and
AMEX and OTC market. Based on market capitalization.

– S&P100 (1983): selected samples from of stocks traded on CBOE. Capi-
talization Index.

– NYSE Index (1966), consists of 1500 stocks. Based on capitalization.

– AMEX Index (1973) based on about 800 stocks. Capitalization Index.

– NASDAQ Composite Index (1984)

– NASDAQ Industrial Index (1984)

– NASDAQ 100 (1985).

• UK

– FT 30 (1935), geometric average index.

– FTSE 100 (1984). Top 100 shares. Capitalization index. Calculated every
15 seconds.

– FTSE 250 (1992), 250 shares after the FTSE 100.

– FTSE Actuaries 350.

– Financial Times Actuaries Index started in 1962 and widened to include
800 stocks in 1992.

• France

– CAC 40 (1987). Represent all major sectors. 40 large company traded on
the exchange. Based on capitalization and measured every 30 seconds.

– SBF 240: older one. Calculated once per day using opening prices.

– SBF 250 (1993) replaced SBF 240.

– SBF 120 (1993): 40 shares in CAC 40 plus 80 more. Calculated every
minute.

– MIDCAC (1995): index of middle capitalization stock.

• Germany

– FAZ 100 (1950) calculated once per day. 100 largest company company
listed on the Frankfurt exchange.

– DAX (1987) 30 shares most actively traded on the Frankfurt exchange,
Calculated continuously, include dividends.

• Italy

– Comit all Shares

– BCI

– MIB 30

• Spain
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– Madrid SE

– IBEX 35

• Japan

– Nikkei Dow 225, based on average prices

– Nikkei 300 (1984) based on capitalization

– Topix, based on capitalization. All shares listed on the first section of
TSE.

• Hong Kong: Hang Seng Index

• Toronto: TSE 300

• International Equity Indexes: Morgan Stanley Word Index, FTSE Eurotrack
100, FTSE Eurotrack 200, Financial Times world Index, Salomon Brothers-
Russel Global Equity Index, Global Index.
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Introduction to Financial Derivatives

Derivatives can be seen as bets based on the behaviour of the underlying basic assets.
A derivative can also be regarded as a kind of asset, the ownership of which entitles
the holder to receive from the seller a cash payment or possibly a series of cash
payments at some point in the future, depending in some pre-specified way on the
behaviour of the underlying assets over the relevant time interval. In some instances,
instead of a ‘cash’ payment another asset might be delivered instead. For example,
a basic stock option allows the holder to purchase shares at some point in the future
for a pre-specified price. In general an option is a derivative with a specified payoff
function that can depend on the prices of one or more underlying assets. It will have
specific dates when it can be exercised, that is, when the owner of the option can
demand payment, based on the value of the payoff function.

Derivatives are used for a variety of purposes. They can be used to reduce risk by
allowing the investor to hedge an investment or exposure, and hence function as a
sort of insurance policy against adverse market movements. For example, if a firm
needs a particular commodity, such as petroleum, on a regular basis, then they can
guard against a rise in the price of oil by purchasing a call option. If the price of oil
remains low, then the option is not exercised and the oil is bought at the current price
in the market, while if the price rises above the strike, then the option is exercised to
buy oil at a below-market value.

Derivatives can also be used to gain extra leverage for specialized market speculation.
In other words, if an investor has reason to believe that the market is going to move
in a particular way, then a larger profit per dollar invested can be made by buying
suitable derivatives, rather than the underlying asset. But similarly, if the investment
decision is wrong, the investor runs the risk of making a correspondingly larger loss.

In London, organised derivatives trading takes place at the London International
Financial Futures and Options Exchange (LIFFE).

A derivative contract is defined by

• its payoff function f(t, S(t))

• its purchase price f0.

The most common types of derivatives are forwards, futures, swaps and options. This
course focuses mainly on options.

Most options can only be exercised once, and have a fixed expiration date, after which
the option is no longer valid. There are many different schemes for prescribing when
an option can be exercised. The most common examples are the so-called European
options, which can only be exercised on the expiration date, and American options,
which can be exercised at any time up to the expiration date. However you are never
forced to ‘exercise the option’.

The two most common options are the call option, which gives the owner the right
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to buy a designated underlying asset at a set price (called the strike price K), and
the put option which allows the owner to sell the underlying asset at a given strike
price. If we consider European options, then the payoff function depends only on the
value of the underlying assets St at the expiry date, t = T . This can be expressed
mathematically as

CT = [ST −K]+

where the compact notation [x]+ = max[x, 0] has been used.
The payoff of a long forward contract is instead

FT = [ST −K]

In the case of a put option, the payoff is only non-zero if the asset price at expiration
is less than the strike price. This is given by

PT = [K − ST ]+.

Now we need to determine the price f0 that someone should pay at time zero to buy
a derivative that pays off f(t, St) dollars at time t. A plausible guess is

f0 = e−rTE[f(T, ST )]

which represents the discounted expected payoff of the derivative, that is, the prob-
ability weighted average of the possible payoff.

This guess is a typical ex- ample of the ‘expectation hypothesis’. But we will see that
this is wrong.

Time value of money:

Note that in general we assume that the value now of a dollar promised at time T
is given by e−rT where r is the continuously compounded interest rate (that we have
here assumed constant could be itself random).

Interest rates and compounding frequencies

Suppose we invest an amount I for one year and compound interest periodically (and
reinvest interest) m times during the year at a rate

rm/m

where rm is the annual rate compound m times. The terminal value of this investment
is

I(1 + rm/m)m.

What is the equivalent annual rate r1 compounded only once? We need to impose

I(1 + rm/m)m = I(1 + r1)
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which gives
r1 = (1 + rm/m)m − 1.

In general if we want to compare compounding m1 versus m2 times during the year
we have to impose

I(1 + rm1/m1)
m1 = I(1 + rm2/m2)

m2 .

The annual rate compounding m1 times equivalent to a annual rate compounding m2

times is given by
rm1 = ((1 + rm2/m2)

m2/m1 − 1)m1.

Note that for m1 = 1 this reduces to previous case.

Consider now the case of an investment which pays a rate r, compounded m times
during the year, for n years. The terminal value is

I(1 + rm/m)nm.

Remember that
lim

m→∞
(1 + x/m)m = ex.

hence
lim

m→∞
(1 + rm/m)nm = ercm.

where rc is called continuously compounding rate and correspond to rm compounded
m = ∞ times.

To convert from discrete compounding to continuous compounding we impose

ercn =
(
1 +

rm

m

)mn

or
rc = m ln(1 +

rm

m
)

and
rm = m(erc/m − 1)

Hedging

So far we have talked about investors that buy derivatives, but there must likewise
be a financial institutions selling them. These sellers are generally investment banks,
stock exchanges, and other large institutions. When selling a derivative, the issuer
makes an initial gain up-front from the fee that they charge. The issuer who has sold
a derivative can do better than just wait and see, he can hedge the contract.

They issuer will use the up-front money, possibly in conjunction with borrowing, to
hedge the derivative that they have sold by buying other instruments in the market
to form a hedging portfolio, in such a manner that, regardless of the way that the
prices of the underlying assets change, they neither gain nor lose money.

The ability of the issuer to hedge the contract should be reflected in the price.
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Abitrage pricing

Arbitrage is the key to understanding the mathematics of derivative pricing.

No arbitrage means that it is not possible to construct a strategy that on average
makes a profit higher than the risk free rate without taking some risks.

This also imples that is not possible to construct a strategy that requires no cash
input but has some positive probability of making profits without any risk of a loss.

No arbitrage also implies that given two strategies with the same initial position,
and guaranteed final positions, then these final positions must be equal. Otherwise,
by going long the strategy with the higher final value and short the other we would
generate an arbitrage. Similarly if two strategies have the same final value and involve
the same risk they need to have the same initial value.

Any no arbitrage argument for pricing a derivative is ultimately based on a replication
strategy, which is a trading strategy that uses market instruments to ‘replicate’ the
initial and final positions required by the derivative.

No arbitrage implies the value of the derivative contract must be equal to
the cost of setting up the hedging portfolio.

The principle of no arbitrage may be the key to understanding derivative pricing, but
what kind of law is it? It is clearly not a fundamental law of nature, and is not even
always obeyed by the markets. In some ways it is similar to Darwin’s theory of natural
selection. An institution that does not price by arbitrage arguments the derivatives
that it sells will suffer relative to institutions that do. If the price is set too high,
then competitors will undercut it; if the price is too low, then the institution will be
liable to market uncertainty as a hedging portfolio cannot be properly constructed.

But how is the value of the initial payment to be calculated? What is the composition
of the hedging portfolio? These are the two big questions in derivatives pricing.
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The Binomial Model

The simplest assumption we can make about prices is that they are descrete and
follow a random walk.

A random walk is a formalization of the intuitive idea of taking successive steps, each
in a random direction. A random walk is a simple stochastic process sometimes called
a ”drunkard’s walk”.

In general we assume the time horizon is T and the set of dates in our market is
t = 0, 1, · · · , T.
Also we assume the market consist of

• the money market account:

B0 = 1, Bt = (1 + r)t

were we assumed a constant interest rate r is paid on the money market account.
r is the risk free rate (compounded over the same period).

• a stock
St+1 = uSt with probability p

St+1 = dSt with probability 1 − p

with 0 < d < u (on average stock value increases).

• a derivative contract specified the maturity date T , and the payoff function
f(t, St).

Assumptions:

• No market frictions, i.e. no transaction costs, no bid-ask spreads, no margin
requirements, no restrictions on short sell, no taxes.

• No counterpart risk. Same lending and borrowing rates.

• Markets are liquids, i.e. traders can buy or sell any amount of a security without
affecting it price.

• Markets are complete.

• Prices have adjusted so that there are no arbitrage opportunities.



Giulia Iori, Financial Derivatives 16

One step model: T = 1

S1 = uS0 = Su with probability p

S1 = dS0 = Sd with probability 1 − p

We want to price the derivative by using a no arbitrage argument. The investor will
buy a derivative from a trader, who will then take the proceeds of this sale and invest
in the stock and money market so that the randomness in his stock and derivative
positions cancel. Let x be the number (possibly fractional, possibly negative) of units
in the money market account that the trader buys, and y the number of units in the
stock S. How does the trader choose the values of x and y?

• Consider a portfolio composed of x unit of cash and y stock. Its initial value is

π0 = xB0 + yS0

where B0 = 1. The value of the portfolio at the end of the first period is

π1 = x(1 + r) + yS1

or
π1 = x(1 + r) + yuS0 with probability p

π1 = x(1 + r) + ydS0 with probability 1 − p

• Consider a second portfolio composed by one option contract f on the same
stock.

The value of the option at the end of the first period is

f1 = fu with probability p

f1 = fd with probability 1 − p

We want to choose x, y so that the value of the two portfolios coincide at the
end of the period,

x(1 + r) + yuS0 = fu

x(1 + r) + ydS0 = fd

Because the bond and stock portfolio exactly duplicates the payoff function of
the derivative, we call it a replicating strategy. The existence of a replicating
strategy means that the derivative can be constructed from the underlying
assets and hence an investor need never buy the derivative. In this case we
say that the market is complete. In the real world, however, a derivative has
lower transaction and maintenance costs and that is why investors will purchase
them.
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x(1 + r) + yuS0 = fu

x(1 + r) + ydS0 = fd

Subtracting the two equations above we obtain

yS0(u− d) = fu − fd

or

y =
fu − fd

S0(u− d)

and

x(1 + r) = fu − u
fu − fd

(u− d)

Also, since the purchase of the portfolio is entirely funded by the money received
from the sale of the derivative, we have f0 = x+ yS0 or

f0 = x+
fu − fd

S0(u− d)
S0.

Multiplying both sides by (1 + r)

f0(1 + r) = x(1 + r) + fu
1 + r

u− d
− fd

1 + r

u− d

Replacing x(1 + r) from above we obtain

f0(1 + r) = fu − u
fu − fd

(u− d)
+ fu

1 + r

u− d
− fd

1 + r

u− d
=

= fu
1 + r − d

u− d
+ fd

u− (1 + r)

u− d

This formula has an interesting interpretation. Define

p∗ =
1 + r − d

u− d

then

1 − p∗ = 1 − 1 + r − d

u− d
=
u− (1 + r)

u− d

Hence

f0 =
1

1 + r
[fup

∗ + fd(1 − p∗)]

p∗ can be interpreted as a probability measure. The total probability is one. To be
a probability we need to impose that each event has positive probability, i.e.

1 + r − d

u− d
> 0
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u− (1 + r)

u− d
> 0

From where
d < 1 + r < u

p∗ is called the risk neutral measure. This can be seen observing that under p∗

the growth rate of the asset is r.

Proof:
E∗[S1] = p∗S0u+ (1 − p∗)S0u =

1 + r − d

u− d
S0u+

u− (1 + r)

u− d
S0d =

S0
u+ ru− du+ ud− d− rd

u− d
= S0(1 + r)

Hence

f0 =
1

1 + r
E∗[f1]

The value of the derivatives can be expressed as the present value of
the expected future payoff, where the expectation is calculated in a risk
neutral world.

The price of a call European option is then

C0 =
1

1 + r
E∗[(ST −K)+] =

1

1 + r
[(uS0 −K)+p∗ + (dS0 −K)+(1 − p∗)]

The price of a put European option is then

P0 =
1

1 + r
E∗[(K − ST )+] =

1

1 + r
[(K − uS0)

+p∗ + (K − dS0)
+(1 − p∗)]

Multi-period binomial model: T = N

A very useful special model is obtained, by letting the branches recombine to form a
lattice of prices, and hence is called a ‘lattice model’ or ‘recombining tree’. At time t
= n the number of different states is only n + 1 which grows much more slowly than
the 2n nodes of the ‘basic’ tree.

Define

Zt =
St+1

St
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Zt take only two values u and d. Zs are independent and identically distributed
Bernoulli random variables, and

St = S0

t∏
τ=1

Z(τ).

The price of a European Call is:

C0 =
1

(1 + r)T
E∗[(ST −K)+] =

1

(1 + r)T
E∗[(S0

T∏
i=1

Zi −K)+] =

1

(1 + r)T

T∑
j=0

(
T

j

)
p∗j(1 − p∗)T−j[S0u

jdT−j −K]+

In practice the pricing is done by going backward on the tree.

Examples:
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Continuous time pricing

We will model asset prices as Itô’s process x(t) satisfiyng

dx(t) = a(t)dt+ b(t)dW (t)

a(t) is called the drift and b(t) is called the volatility. They can be stochastic. In the
special case

dx(t) = a(t, x(t))dt+ b(t, x(T ))dW (t)

x(t) is called a diffusion process and the equation above is called a stochastic differ-
ential equation or SDE.
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Stochastic process

A stochastic process is a sequence of r.v. X = (Xt(ω), t ∈ T, ω ∈ Ω) defined on
some probability space Ω. T can be a finite set, or countably infinite set (discrete-
time process) or an interval (a, b) or (a,∞) (continuous-time process). The index t is
usually refereed to as time. A stochastic process Xt(ω) is a function of two variables:

• at fixed time t, Xt(ω), ω ∈ Ω it is a random variable

• for a given random outcome ω, Xt(ω), t ∈ T it is a function of time, called a
realization or a trajectory, or sample path of the process X.

Wiener process or Brownian motion

A stochastic process W = (W (t) : t ≥ 0) is a standard Brownian motion on some
probability space (Ω, P,F) if

• W (0) = 0

• W has independent increments: W (t+u)−W (t) is independent of (W (s) : s ≤
t) for u ≥ 0.

• W has stationary increments: the law of W (t+ u) −W (t) depends only on u.

• W has Gaussian increments: W (t+ u) −W (t) ∼ N(0, u).

As the step size ∆t in the random walk tends to 0 (and the number of steps increased
comparatively) the random walk converges to Brownian motion in an appropriate
sense.

Properties of Wiener processes:

• W has continuous sample paths.

• Sample path of Brownian motion are nowhere differentiable.

• Sample path are of unbounded variation. This implies that the process covers
an infinite distance as it evolves over any time interval, no matter how short
the interval is.

• Wiener processes are Markov (or memoryless):

A process X is said to be Markov if for each t, each A ∈ σ(X(s) : s > t) (the
future) and B ∈ σ(X(s) : s < t) (the past),

P (A|X(t), B) = P (A,X(t)).
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Moments of s.B.M

If X ∼ N(µ, σ) its moment generating function is

M(t) = E[etX ] = eµt+1/2σ2t2 .

We know that the n-moment is given by

mn
X =

dM(t)

dtn
|t=0.

Given that dW (t) = W (t+ dt) −W (t) ∼ N(0, dt) it is easy to show that

E[dW (t)] = E[W (t+ dt) −W (t)] = E[W (dt)] = 0

E[dW 2(t)] = E[W 2(dt)] = var[W (dt)] = dt

E[dW 4(t)] = E[W 4(dt)] = 3dt2

var[dW 2(t)] = 3dt2 − dt2 = 2dt2

Note that W (0) = 0 and
W (t) = W (t) −W (0)

represents the increment from the initial position. Hence it also holds

E[W (t)] = 0

E[W 2(t)] = t

E[W 4(t)] = 3t2

var[W 2(t)] = 3t2 − t2 = 2t2

Itô’s Lemma:

Consider an Itô’s process x(t) following

dx(t) = a(t)dt+ b(t)dW (t)

Take a smooth function F (t, x(t)). Itô’s lemma says that

dF (t, x(t)) = (Ft + a(t)Fx +
1

2
b2(t)Fxx)dt+ b(t)FxdW (t)

where

Ft =
∂F (t, x)

∂t
Fx =

∂F (t, x)

∂x
Fxx =

∂2F (t, x)

∂x2

So F follows an Itô process with drift

Ft + aFx +
1

2
b2Fxx
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and volatility
bFx

In integral form (which is the only thing which has a well defined meaning)

F (t, x(t)) = F (0, x(0)) +
∫ t

0
(Ft + a(s)Fx +

1

2
b2(s)Fxx)ds+

∫ t

0
b(s)FxdW (t)

Non rigorous proof:

Expand F (t, x(t)) in a Taylor series to the first order in dx and dt:

dF ∼ Ftdt+ Fxdx+
1

2
Fxxdx

2 + · · ·

Now dx2(t) = [a(t)dt+ b(t)dW (t)]2. But we have seen that

E[dW 2(t)] = E[W 2(dt)] = var[W (dt)] = dt

var[dW 2(t)] = 3dt2 − dt2 = 2dt2

hence the variance of dW 2(t) is negligible compared to its mean for dt small. In the
limit dt→ 0 we can approximate dW 2(t) with its mean i.e.

lim
dt→0

dW 2(t) ∼ dt

.

Hence, to the first order in dt

dx2(t) = [a(t)dt+ b(t)dW (t)]2 = b2(t)dt

Replacing (and removing for simplicity the explicit dependence from t)

dF = Ftdt+ Fxdx+
1

2
Fxxdx

2 =

Ftdt+ Fx[adt+ bdW ] +
1

2
Fxxb

2dt

and

dF = (Ft + aFx +
1

2
b2Fxx)dt+ bFxdW

dF = (Ft + aFx +
1

2
b2Fxx)dt+ bFxdW

A special case:
dx(t) = µx(t)dt+ σx(t)dW (t)

i.e. a(t) = µx(t) and b(t) = σx(t) then

dF = (Ft + µxFx +
1

2
σ2x2Fxx)dt+ σxFxdW
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Example:
F (t) = ln x(t)

Ft = 0

Fx =
1

x

Fxx = − 1

x2

d lnx = (µ− 1

2
σ2)dt+ σdW

and

ln(x(t)) = ln(x(0)) +
∫ t

0
(µ− 1

2
σ2)du+

∫ t

0
σdW (u)

with solution
x(t) = x(0)e(µ−

1
2
σ2)t+σW (t)

Hence the unique solution of

dx(t) = µx(t)dt+ σx(t)dW (t)

with initial condition x(0) is

x(t) = x(0)e(µ−
1
2
σ2)t+σW (t)
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The Black-Scholes equation.

The Black-Scholes-Merton option pricing model (BSM) is a continuous time model
for the pricing of a European option on an asset which pays no dividends. The
model was developed by Fisher Black and Myron Scholes in 1973 and formalized and
extended by Robert Merton in the same year. In the model it is assumed that the
stock price follows a geometric Brownian motion,

dS(t) = µS(t)dt+ σS(t)dW (t) (1)

where µ is a constant drift coefficient, σ is a constant and positive volatility coefficient,
and S0 ∈ R+ is the initial stock price. Wt is a one-dimensional Brownian motion
defined on a filtered probability space (Ω, P,F).

We will assume that trading takes place continuously in time, unrestricted borrowing
or lending of funds is possible at the same constant rate and the market is frictionless
(no transaction costs, no taxes, no short selling constraints).

Using Itô formula we can integrate the previous equation and obtain:

S(t) = S(0)e(µ−
1
2
σ2)t+σW (t)

A risk-free security, called saving account or money market account, is also available
in the market whose price process is given by

dB(t) = rB(t)dt

or
B(t) = B(0)ert

where by convention B(0) = 1. This security is called the market account.

The derivation of the Black and Scholes equation for the option price relies on the
observation that the option payoff can be replicated by holding a continuously re-
balanced position in the underlying stock and cash. If the replicating strategy is
self-financing, and if the market is arbitrage-free then the arbitrage price of the op-
tion is given by the value process of the replicating portfolio.

Consider a derivative with maturity date T and payoff h = f(S(T ), T )

At time t = 0 construct a portfolio consisting of a(0) units of stocks and b(0) units
of cash,

Π(0) = a(0)S(0) + b(0)B(0).

Suppose that a replicating strategy exists such that

a(T )S(T ) + b(T )B(T ) = h.

We also impose that the portfolio is self-financing, i.e. we do not add or take cash
away from the portfolio at any time. The strategy (a(t), b(t)) is self-financing if

dΠ = a(t)dS(t) + b(t)dB(t)
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i.e. the change in value of the portfolio only depends on the change of the asset
prices.

Then

dΠ(t) = a(t)dS(t) + b(t)dB(t) = a(t)[µS(t)dt+ σS(t)dW (t)] + b(t)B(t)rdt

But if the two portfolios are the same at maturity and self-financing then, by no-
arbitrage, at any time t ≤ T , it must also holds

Π(t) = f(S(t), t)

and also
dΠ(t) = df(S(t), t)

For the derivative, using Itô’s lemma we get

df(S(t), t) = [ft(S(t), t) + µS(t)fS(S(t), t) +
1

2
σ2S2(t)fSS(S(t), t)]dt+

σS(t)fS(S(t), t)dW (t)

Imposing
a(t)[µS(t)dt+ σS(t)dW (t)] + b(t)B(t)rdt =

[ft(S(t), t) + µStfS(S(t), t) +
1

2
σ2S2fSS(S(t), t)]dt+ σSfS(S(t), t)dW (t)

and equating terms in dW we find

a(t) = fS(S(t), t)

while equating terms in dt we find

[ft(S(t), t) + µS(t)fS(S(t), t) +
1

2
σ2S2fSS(S(t), t)] = rb(t)B(t) + a(t)µS(t) =

r[−a(t)S(t) + f(S(t), t)] + a(t)µS(t) =

r[−fS(S(t), t)S(t) + f(S(t), t)] + fS(S(t), t)µS(t)

where we used
b(t)B(t) = −a(t)S(t) + f(S(t), t)

Finally, taking all time dependences away we obtain

ft + rSfS +
1

2
σ2S2fSS = rf

which is the Black and Scholes equation. The solution of the Black and Sholes
equation gives for a call and a put

C(0) = S(0)N(d1) +KB−1(T )N(d2)

P (0) = KB−1(T )N(−d2) − S(0)N(−d1)

with

d1 =
ln(S(0)/K) + (r + 1/2σ2)T

σ
√
T

and

d2 =
ln(S(0)/K) + (r − 1/2σ2)T

σ
√
T
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Feynman-Kac Theorem

We anticipate that the solution to the partial differential equation

Ft + rSFS +
1

2
σ2S2FSS − rF = 0

with final condition F (T, S(T )) admits the representation

F (0, S(0)) = e−rTE[F (T, S(T ))]

where
dS(t) = rS(t)dt+ σS(t)dW (t)

Hence Feynman-Kac theorem this provides a link between the portfolio
replication approach and the risk-neutral valuation approach, according to
which we can price a derivative by discounting it’s expected future payoff
in the risk-neutral world.

The Greeks

In the formulas below T is time to maturity and should be replaced with T − t if the
current time is different from t = 0.

• for a call

∆ =
∂C

∂S
= N(d1) > 0

V ega =
∂C

∂σ
= S

√
Tn(d1) > 0

Θ =
∂C

∂T
= − Sσ

2
√
T
n(d1) −Kre−rTN(d2)

usually negative

ρ =
∂C

∂r
= TKe−rTN(d2) > 0

Γ =
∂2C

∂S2
=

n(d1)

Sσ
√
T
> 0

• for a put

∆ =
∂C

∂S
= N(d1) − 1 < 0

V ega =
∂C

∂σ
= S

√
Tn(d1) > 0

Θ =
∂C

∂T
= − Sσ

2
√
T
n(d1) +Kre−rTN(−d2)
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usually negative

ρ =
∂C

∂r
= −TKe−rTN(−d2) < 0

Γ =
∂2C

∂S2
=

n(d1)

Sσ
√
T
> 0

Example: Delta for a Call

To prove formula we use identity

n

(
α√
s
− β

√
s

)
= e2αβn

(
α√
s

+ β
√
s

)

with α = log(S(t)/K)/σ, β = (r − 1/2σ2)/σ and s = T − t.

C(t) = S(t)N(d1) +KB−1(T − t)N(d2)

N(d1,2) =
∫ d1,2

−∞
n(x) dx

n(x) =
1√
2π

e−x2/2

d1,2 =
ln(S(0)/K) + (r ± 1/2σ2)(T − t)

σ
√
T − t

∆ =
∂C

∂S
= N(d1) + S(t)

∂N(d1)

∂S
+KB(T − t)

∂N(d2)

∂S

Using Leibniz’s rule for differentiating an integral

d

dz

∫ b(z)

a(z)
f(x, z) dx =

∫ b(z)

a(z)

∂f(x, z)

∂z
dx+ f(b(z), z)

db(z)

dz
− f(a(z), z)

db(z)

dz

Let’s do it at t = 0

∆ = N(d1) + S(0)n(d1)
∂d1

∂S(0)
−Ke−rTn(d2)

∂d2

∂S(0)

∂d1,2

∂S(0)
=

1

S(0)σ
√
T

∆ = N(d1) +
1

σ
√
T

[
n(d1) − K

S(0)
e−rTn(d2)

]

n(d2) =
1√
2π

e−d2
2/2 =

1√
2π

e−(d1−σ
√

T )2/2 =

1√
2π

e−d2
1−σ2T/2+d1σ

√
T = n(d1) e

−σ2T/2+d1σ
√

T
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∆ = N(d1) + n(d1)
1

σ
√
T

[
1 − K

S(0)
e−rT e−σ2T/2+d1σ

√
T

]

but [
1 − K

S(0)
e−rT e−σ2T/2+d1σ

√
T

]
=
[
1 − e−rT+ln(K/S(0))−σ2T/2+d1σ

√
T
]

=

[
1 − e−(rT+σ2T/2)−ln(S(0)/K)+ln(S(0)/K)+(r+1/2σ2)(T−t)

]
= 0

and
∆ = N(d1)

From Black-Scholes PDE

ft + rSfS +
1

2
σ2S2fSS = rf

we obtain

rf =
1

2
S2σ2Γ + rS∆ − Θ

Hedging a Portfolio of derivatives

The variation of a portfolio Π(t, S(t)) of derivatives contract is given by

dΠ = Πtdt+ ΠSdS +
1

2
ΠSSdS

2

Define
∆Π = ΠS

ΓΠ = ΠSS

ΘΠ = Πt

If we construct the portfolio so that it’s Delta nutral i.e. ∆Π = 0 we find

dΠ = ΘΠdt+
1

2
ΓΠdS

2. (∗)

Also from B&S equation

rΠ =
1

2
S2σ2ΓΠ + rS∆Π + ΘΠ

which gives, if ∆Π = 0,
1

2
S2σ2ΓΠ = rΠ − ΘΠ.

Hence, if Θ is large and positive, Γ tends to be large and negative (the term with r
is usually trascurable). Hence the root of eq (*) are both real.

Exercise

Plot dΠ as a function of dS and discuss how to opimally Gamma-hedge the portfolio
in the different cases of positive or negative Theta.
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More on Stochastic process

Partition:

A partition {Fi}K
i=1 of a set A is a family of mutually disjoint subsets of A whose

union is A.

Example

Consider a two step the binomial model. At time 0 it is impossible to tell any
of the elements of the sample space Ω apart, so the members of the set F0 =
{UU ;UD;DU ;DD} all appear the same. At time 1 it is possible to divide the sample
space up into two distinguishable ‘partitions’ F u

1 = {UU ;UD} and F d
1 {DU ;DD}

depending on whether the initial movement in the market was up or down.

Finally at time 2, there are four different market states, that we can differ- entiate
between

F uu
2 = {U,U} F ud

2 = {U,D} F du
2 = {D,U} F dd

2 = {D,D}
Each of these collection of sets divides up or ‘partitions’ the sample space at the
relevant time. From our example we see that associated with the random movements
of the market there is a natural sequence of partitions of the sample space in terms
of F0, F1, F2. We call such a sequence a filtration.

Filtration: A filtration F is a family {Fi}K
i=1 of partitions of Ω. An additional

constraint that we require is that the partitions at later times respect the earlier
partitions. That is, if i < k, then every partition at the earlier time is equal to the
union of some set of partitions at the later time. In our example we have F0 = F u

1 ∪F d
1 .

We call the probability system (Ω,Σ,F , P ) a filtered probability space. The filtration
gives some sort of time ordering to the probability space.

In general we will think of the filtration Ft as the information available up to time t.
We also assume that we never forget, thus if s < t

Fs ⊂ Ft

The information we are concerned with will typically be the information on the values
of some stochastic process X(t), i.e. the filtration generated by the process X(t).

If we want to be more formal we would say that a filtration F is an increasing family
of σ-algebra Ft where Ft is the σ-algebra of all events that have occurred or not by
time t.

The natural filtration of a stochastic process X is defined by

FX
t = σ(∪u∈[0,t]σ(Xu))

Note that the union of σ-algebra is not necessarily a σ-algebra, this is why we need
to take the σ-algebra of the union.
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Example

Remember that the σ-algebra of the event iΣ s a set of subsets of the sample space
Ω, satisfying the following conditions:

• Ω ∈ Σ

• if A,B ∈ Σ, then A ∪ B ∈ Σ

• if A ∈ Σ, then Ω − A ∈ Σ

Also remember that the smallest σ-algebra containing a set A is {Ω, φ, A,AC}.
Take Ω = {1, 2, 3, 4} and

F = {φ,Ω, {1}, {2, 3, 4}}

G = {{φ,Ω, {4}, {1, 2, 3}}
Then

G ∪ F = {{φ,Ω, {1}, {4}, {1, 2, 3}, {2, 3, 4}}
is not a σ-algebra. In fact the set

{1} ∪ {4} /∈ G ∪ F
but

σ(G ∪ F) = {{φ,Ω, {1}, {4}, {1, 2, 3}, {2, 3, 4}, {2, 3}, {1, 4}}
is a σ-algebra. It is in fact the smallest σ-algebra containing G ∪ F .

Conditional Expectation

The conditional expectation
E[X|Ft]

denotes the expectation conditional to the information available at time t.

Properties

• Iterated conditional expectations property or tower property

If X is a r.v. and F1 ⊆ F2 then

E[E[X|F2]|F1] = E[E[X|F1]|F2] = E[X|F1]

• Conditional mean formula

E[E[X|F ]] = E[X]
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• If X is independent of F then

E[X|F ] = E[X]

• If X and Y are two r.v. and X ∈ F then

E[XY |F ] = XE[Y |F ]

• A r.v. X is said to be measurable with respect the σ-algebra F if for any real
number x the subset {ω ∈ Ω : X(ω) = x} ⊂ F . We usually use an abbreviated
notation X ∈ F . It means that the value of X is known given F , i.e.

E[X|F ] = X

• A stochastic process on a filtered probability space (Ω,Σ, P,F) is a sequence of
r.v. X = {X(t); t ≥ 0}.

• If X is such that for each t, X(t) is a F(t)-measurable r.v., i.e. E[X(t)|F(t)] =
X(t), then we say that X is adapted to the filtration F = {F(t); t > 0}.

• A stochastic process X is said to be predictable with respect to the filtration F
if each r.v. X(t) is measurable respect to Ft−1, i.e. E[X(t)|Ft−1] = X(t) (this
obviously implies E[X(t)|Ft] = X(t) given that Ft−1 ⊆ Ft).

Martingales

Given a filtered probability space and an adapted stochastic process Z = {Z(t) : t >
0} such that E[|Z(t)|] <∞ for all t (integrability condition), we call it a

• martingale if E[Z(t+ s)|F(t)] = Z(t) for each s > 0

• super-martingale if E[Z(t+ s)|F(t)] ≤ Z(t) for each s > 0

• sub-martingale if E[Z(t+ s)|F(t)] ≥ Z(t) for each s > 0

It also holds that E[Z(t)] = E[E[Z(t)|F(0)]] = E[Z(0)] for each t > 0, i.e. a
martingale is constant on average and model a fair game (while a supermartingale is
decreasing on average and models an unfavorable game, a submartingale is increasing
on average and models a favorable game).

Martingale Properties of Wiener processes:

• Wiener processes are martingales:

E[W (t)|F(s)] = E[W (s) + (W (t) −W (s))|F(s)] = W (s)
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• W 2(t) − t is a martingale.

E[W 2(t) − t|F(s)] = E[(W (s) +W (t) −W (s))2|F(s)] − t =

W 2(s) + 2W (s)E[W (t) −W (s)|F(s)] + E[(W (t) −W (s))2|F(s)] − t =

W 2(s) + 0 + (t− s) − t = W 2(s) − s

which is the martingale condition.

• eθW (t)− 1
2
θ2t is a martingale.

E[eθW (t)− 1
2
θ2t|F(s)] = e−

1
2
θ2tE[eθ(W (t)−W (s)+W (s))|F(s)] =

e−
1
2
θ2teθW (s)E[eθ(W (t)−W (s))|F(s)] =

e−
1
2
θ2teθW (s)E[eθ(W (t)−Ws)] = e−

1
2
θ2teθW (s)e

1
2
θ2(t−s)2 = eθW (s)− 1

2
θ2s

which is the martingale condition.

Equivalent measures

Given two measures P and Q defined on the same probability space (Ω,F) we say
that P is absolutely continuous with respect to Q if P (A) = 0 whenever Q(A) = 0,
for A ∈ F . If also P (A) = 0 whenever Q(A) = 0, for A ∈ F , i.e. P and Q have the
same null sets, then we say that the two measure are equivalent and write P ∼ Q.

Definition:

A probability measure P ∗ on (Ω,F) equivalent to P is called a martingale measure
for a process S if S follows a P ∗-martingale with respect to the filtration F , i.e.

E∗[S(t+ s)|F(t)] = S(t)

for each s > 0.
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Fundamental theorems of Asset Pricing

• We say that a market is viable if it does not admit arbitrage strategies.

No-Arbitrage Theorem:

A market is viable if and only if there exists a probability measure P ∗ equivalent
to P under which discounted prices are martingale, i.e.

S̃(t) = E∗[S̃(t+ s)|F(t)] for all s > 0

One side of the proof, i.e. that if P ∗ exists than a market is viable is easy. The
other side is difficult.

We do not give any of the two proofs here.

• Completeness Theorem:

A market is said to be complete if all contingent claims are attainable.

A market is complete if and only if there exists a unique probability measure
P ∗ equivalent to P under which discounted prices are martingales.

• Fundamental Theorem of Asset Pricing

In an arbitrage free, complete market there exists a unique equivalent martin-
gale measure P ∗, equivalent to P , under which discounted prices are martin-
gales.

• Risk-Neutral pricing Formula

In an arbitrage free, complete markets arbitrage prices of contingent claims are
their discounted expected values under the risk-neutral measure P ∗.

This comes from the fact that in a risk-free complete market the price of a
contingent claim, h, is given by the value process of any replicating strategy
Vφ(t). A replicating strategy exists if the market is complete, i.e.

Vφ(T ) = h

But we know that if P ∗ is an equivalent martingale measure and φ any self-
financing strategy than the value process Vφ(t) is a P ∗-martingale with respect
to the filtration F . We also know that a self-financing strategy remains self-
financing after a numeraire change.

Hence

Vφ(t) = B(t)Ṽφ(t) = B(t)E∗[Ṽφ(T )|F(t)] = B(t)E∗[h/B(t)h|F(t)]

and
Vφ(0) = E∗[B−1(t)h]

as stated.

As the equivalent martingale measure is unique than also prices of contingent
claims are uniquely defined in complete markets.
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Radon-Nikodym theorem

Proposition

Let W (t) be a d-dimensional s.B.m. defined on a probability space (Ω, P,F). If F
is the Brownian filtration for any probability measure Q equivalent to P on (Ω,F)
there exists a d-dimensional adapted process θ such that

dQ

dP
|F(t) = η(t) = exp

(∫ t

0
θ(u)dW (u)− 1

2

∫ t

0
|θ(u)|2du

)

Given sufficient integrability on the process θ (Novikov’s condition) η(t) is a martin-
gale.

If θ is constant and unidimensional

η(t) = eθW (t)− 1
2
θ2t

and it is easy to prove that η(t) is a P martingale (we have already proved this
earlier).

Note that η(t) is a follows
dη(t) = θη(t)dW (t)

and
EP [η(t)] = EP [η(0)] = 1

Bayes Formula

Let’s P and Q be two equivalent probability measures defined on a common proba-
bility space (Ω,F). Define

η =
dQ

dP

Let’s ψ be a r.v. integrable with respect to Q and G ⊂ F . Then

EQ[ψ|G] =
EP [ψη|G]

EP [η|G]

Note that, given EP [η] = 1, Bayes formula reduces in the unconditional to the obvious
case

EP [ηψ] = EQ[ψ]
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Girsanov Theorem

If Q and P are two equivalent measures s.t. the Radon-Nikodym derivative of Q
respect to P equals

η(t) =
dQ

dP
= exp

(∫ T

0
θ(u)dW (u) − 1

2

∫ T

0
|θ(u)|2du

)

and W P (t) is a standard Brownian motion on the space (Ω, P,F), then the process

W̄Q(t) = W P (t) −
∫ t

0
θ(u)du

follows a standard Brownian motion on the space (Ω, Q,F).

If θ is constant it becomes

W̄Q(t) = W P (t) − θt

Proof:

Use moment generating function:

EQ[eαW P (t)] = EP [η(t)eαW P (t)] = EP [eθW P (t)− 1
2
θ2teαW P (t)] = e−

1
2
θ2tEP [e(θ+α)W P (t)] =

e−
1
2
θ2te

1
2
(θ+α)2t = eθαt+ 1

2
α2t

This shows that under Q, W P (t) ∼ N(θt, t), i.e. it takes a drift θt. Thus to have a
s.B.m under Q we need to subtract this drift. The s.B.m. under Q is

WQ(t) = W P (t) − θt

In this case the change of measure correspond to a change of drift. In finance −θ is
called market price of risk (respect to P ). The risk-neutral world is a world where
the market price of risk is zero, while in the real world the market price of risk is −θ.
Note that the volatility of the Brownian motion does not change when we change
measure, it is only the drift that changes.
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Stochastic Integral

The integral cannot be defined in the usual sense, i.e. pathways (i.e. trajectory by
trajectory) because the W-trajectories are of locally unbounded variation. But it is
possible to give a global L2 definition of the integral.

Consider a function X(s,Ws) s.t.

∫ t

0
E[X2(s,Ws)]ds <∞]

i.e. X is in L2. Take the interval (0, t) and subdivide it in n subintervals. Define
uk = kt

n
. The stochastic integral is defined as

It(X(s,Ws)) =
∫ t

0
X(s,Ws)dW (s) = lim

n→∞

n−1∑
k=0

X(uk)[W (uk+1) −W (uk)]

Note that we have taken the forward increments of the Wiener process (this is the
Itô convention).

The quantity above is a random variable and the procedure of taking this limit is
tricky.

Properties

• Under some regularity assumption for the function X the stochastic integral is
a martingale, i.e.

E[It(X)|Fs] = Is(X)

and
E[It(X)] = E[I0(X)] = 0

This means

E[
∫ t

0
X(u,Wu)dW (u)|Fs] =

∫ s

0
X(u,Wu)dW (u)

and

E[
∫ t

0
X(u,Wu)dW (u)] = E[

∫ 0

0
X(u,Wu)dW (u)] = 0

and

E[
∫ s

t
X(u,Wu)dW (u)|Ft] =

∫ t

t
X(u,Wu)dW (u) = 0

• Itô isometry

E[I2
t (X)] =

∫ t

0
E[X2(s,Ws)]ds

• If X(t) is a deterministic function It(X) is a normal random variable with zero
mean and variance

∫ t
0 X

2(s)]ds.
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Example Let’s calculate

var[IT (T −t)] = E[(
∫ T

0
(T −t)dW (t))2]−(E[

∫ T

0
(T −t)dW (t)])2 = E[

∫ T

0
(T −t)2dt] =

∫ T

0
(T 2 − 2tT + t2)dt = T 3 − 2T 3

2
+
T 3

3
=
T 3

3

Ito’s Lemma and stochastic integral

Consider a process following

dX(t) = a(t)dt+ b(t)dW (t)

Take a smooth function F (t, X(t)) of it. Itô’s lemma says that

dF = (Ft + aFX +
1

2
b2FXX)dt+ bFXdW

Example 1:

Take X(t) = W (t), i.e. a=0, b=1, and F = tWt and use Itô’s Lemma to calculate
dF .

Ft = Wt, FW = t, FWW = 0

and
dF = d(tWt) = tdW +Wtdt

Let’s calculate

IT (t) =
∫ T

0
tdWt

we have seen that
d(tWt) = tdW +Wtdt

hence ∫ T

0
tdW =

∫ T

0
d(tWt) −

∫ T

0
Wtdt = TWT −

∫ T

0
Wtdt.

Hence the arithmetic average of W (t) defined as

AW (t) =
1

t

∫ t

0
Wsds =

1

t

∫ t

0
(t− s)dW =

1

t
It(t− s)

and has mean zero and variance 1
t2

t3

3
= t

3
,

In fact AW (T ) ∼ N(0, t
3
)

Example 2:
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Take X(t) = W (t) and F (t, X(t)) = W 2(t). Use Itô’s Lemma to calculate dF = dW 2.

Ft = 0, FW = 2W, FWW = 2

dF = dW 2
t = 2WtdWt +

1

2
2 dt = 2WtdWt + dt

Let’s calculate

IT (Wt) =
∫ T

0
WtdWt

We know that WtdWt = 1
2
(dW 2

t − dt)

Hence, ∫ T

0
WtdWt =

1

2

∫ T

0
dW 2

t − 1

2

∫ T

0
dt =

1

2
W 2

T − 1

2
T
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Risk-neutral pricing approach

Binomial Tree

Assume time horizon is T and set of dates in our market is t = 0, 1, · · · , T. Also
assume the money market account process is:

Bt = (1 + r)t

and
St+1 = uSt with probability p

St+1 = dSt with probability 1 − p

with 0 < d < u.

Define

Zt =
St+1

St

Zt take only two values u and d. They are independent and identically distributed
random variables.

First we need to find the risk neutral measure, i.e. a measure P ∗ such that

E∗[S̃t+1|Ft] = S̃t

where St = BtS̃t.

This implies

E∗[S̃t+1/S̃t|Ft] = E∗[Zt+1Bt/Bt+1|Ft] = E∗[Zt+1/(1 + r)|Ft] = 1

or
1 + r = E∗[Zt+1|Ft] = E∗[Zt+1] = up∗ + d(1 − p∗)

from where we find

p∗ =
1 + r − d

u− d

We have already seen that in the risk-neutral world the growth rate of the asset is
the risk free rate

E∗[S∆t] = S0(1 + r)

Nonetheless with the standard choice

u = 1/d = eσ
√

∆t

one finds that

var[S∆t] = p∗u2 + (1 − p∗)d2 − [p∗u+ (1 − p∗)d]2 = σ2∆t

which says that the variance in the real world is the same as in the risk neutral world.
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Black and Scholes Model

In the model it is assumed that the stock price follows a geometric Brownian motion,

dSt = µStdt+ σStdWt (2)

where µ is a constant drift coefficient, σ is a constant and positive volatility coefficient,
and S0 ∈ R+ is the initial stock price. Wt is a one-dimensional Brownian motion
defined on a filtered probability space (Ω, P,F).

NB: In this section we use the convention of denoting time dependence as
St, Bt,Wt etc. instead of S(t), B(t),W (t).

We will assume that trading takes place continuously in time, unrestricted borrowing
or lending of funds is possible at the same constant rate and the market is frictionless
(no transaction costs, no taxes, no short selling constraints).

Using Itô formula we can integrate the previous equation and obtain:

St = S0e
(µ− 1

2
σ2)t+σWt

A risk-free security is also available in the market whose price process is given by

dBt = rBtdt

or
Bt = B0e

rt

where by convention B0 = 1. This security is called the money market account.

The derivation makes use of the martingale approach and does not explicitly shows
how to construct the replication portfolio. It starts from the observation (no arbitrage
theorem) that a market is arbitrage free if and only if there exists a probability
measure P ∗ equivalent to P under which discounted asset prices are martingale.

We need first to find the equivalent martingale measure.

We want to find a constant θ such that the discounted price

S̃t = St/Bt = Ste
−rt

follows a martingale respect to the measure P ∗ i.e.

S̃t = S̃0e
− 1

2
σ2t+σW ∗

t

where P ∗ is defined by

ηT =
dP ∗

dP
= eθWT− 1

2
θ2T

Lemma: The unique martingale measure P ∗ for the discounted price process is given
by the Radon-Nikodym derivative

dP ∗

dP
= eθWT − 1

2
θ2T
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with

θ =
r − µ

σ

Proof

Let’s use Girsanov Theorem:

Under P
S̃t = S̃0e

(µ−r− 1
2
σ2)t+σWt

Under P ∗

W ∗
t = Wt − θt

hence
S̃t = S̃0e

(µ−r− 1
2
σ2)t+σ(W ∗

t +θt) = S̃0e
(µ−r+σθ)t− 1

2
σ2t+σW ∗

t

if we choose θ s.t.

µ− r + σθ = 0 → θ =
r − µ

σ

then
S̃t = S̃0e

− 1
2
σ2t+σW ∗

t

which is a martingale.

Also
dS̃t = S̃tσW

∗
t .

This also implies that under P ∗

dSt = rStdt+ σStdW
∗
t

In fact:
dSt = µStdt+ σStdWt = µStdt+ σSt(dW

∗
t + θdt) =

µStdt+ σSt

(
dW ∗

t +
r − µ

σ
dt
)

= rStdt+ σStdWt.

Define the market price of risk λ = −θ. We can rewrite the equation for St as

dSt = (µ− λσ)Stdt+ σStdW
∗
t

This notation is normally used in incomplete markets, when the value of λ is not
known, as we will see later.

We can now price a derivative using the risk-neutral pricing methodology.

Let’s take a simple vanilla call option whose payoff is

hT = (ST −K)+.

The option value is given by the risk-neutral formula

Ct = BtE
∗[(ST −K)+B−1

T |Ft].
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where B0 = 1 and Bt = ert. Under P ∗

dSt

St
= rdt+ σdW ∗

t .

At t = 0 notation simplifies as

C0 = E∗[B−1
T (ST −K)+] = E∗[B−1

T (ST −K)I{ST >K}] =

E∗[(STB
−1
T I{ST >K}] − e−rTKE∗[I{ST >K}] = J1 − J2.

Note that in general

E[ID] =
∫
Ω
IDdP =

∫
D
dP = P (D).

Let’s calculate J2 first.

J2 = e−rTKE∗[I{ST >K}] = e−rTKP ∗{ST > K} =

e−rTKP ∗{S0e
(r− 1

2
σ2)T+σW ∗

T > K} =

e−rTKP ∗{(r − 1

2
σ2)T + σW ∗

T > log(K/S0)} =

e−rTKP ∗{σW ∗
T > − log(S0/K) − (r − 1

2
σ2)T} =

rewrite WT = ε
√
T with ε ∼ N(0, 1)

J2 = e−rTKP ∗
{
ε > − log(S0/K) + (r − 1

2
σ2)T

σ
√
T

}

But because of the symmetry of the normal density,

P ∗(ε > −d) = P ∗(ε < d)

thus

J2 = e−rTKP ∗
{
ε <

log(S0/K) + (r − 1
2
σ2)T

σ
√
T

}
= e−rTKN(d2)

where

d2 =
log(S0/K) + (r − 1

2
σ2)T

σ
√
T

and N(·) is the cumulative normal distribution.

Now let’s calculate J1

J1 = E∗[ST e
−rT I{ST >K}] = S0E

∗[e−
1
2
σ2T+σW ∗

T I{ST >K}].

Let’s introduce a new measure Q defined by

η =
dQ

dP ∗ = e−
1
2
σ2T+σW ∗

T
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η is a martingale s.t. E∗[η] = 1 so it is a valid change of measure. Now we can use
formula

EP [ψtηt] = EQ[ψt]

and get
J1 = S0E

∗[ηI{ST >K}] = S0E
Q[I{ST >K}] = S0Q{ST > K} =

S0Q{S0e
− 1

2
σ2T+σW ∗

T > Ke−rT}

Now let’s use Girsanov. Under Q the s.B.m. is

W̄t = W ∗
t − σt

Hence we can replace in equation above

W ∗
t = W̄t + σt

and obtain
J1 = S0Q{e 1

2
σ2T+σW̄T > Ke−rT} =

S0Q{σW̄T > log(K/S0) − rT − 1

2
σ2T} = S0Q{−σW̄T < log(S0/K) + (r +

1

2
σ2)T}

Take ξ = −W̄T√
T
∼ N(0, 1) and we get

J1 = S0Q

{
ξ <

log(S0/K) + (r + 1
2
σ2)T

σ
√
T

}
= S0N(d1)

where

d1 =
log(S0/K) + (r + 1

2
σ2)T

σ
√
T

Putting the pieces together we obtain

C0 = S0N(d1) −Ke−rTN(d2)

The value of the put can be found using put-call parity

Pt = Ct − St +Ker(T−t)

Exercise: Show the formula above holds.
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Feynman-Kac Theorem

Define X(s) to be the solution, for t ≤ s ≤ T , of the stochastic differential equation

dX(s) = µ̃(X(s), s)ds+ σ̃(X(s), s)dW (s)

with initial condition
X(t) = x

Define

A = µ̃(t, x)
∂

∂x
+

1

2
σ̃2(t, x)

∂2

∂2x

Assume the function F (t, x) is a solution, for 0 ≤ t ≤ T , of the problem

∂F

∂t
(t, x) + AF (t, x) = 0 (∗)

with boundary condition F (T, x) = h(x)

If ∫ T

t
E[σ̃(s,X(s))Fx(s,X(s))]ds <∞

then F admits the representation

F (0, x) = E[h(X(T )]

Proof:

Using Itô’s formula

F (T,X(T )) = F (0, X(0)) +
∫ T

t

[
∂F

∂t
(s,X(s)) + AF (s,X(s))

]
ds+

∫ T

t
σ̃(s,X(s))

∂F

∂x
(s,X(s))dW (s).

Under the above assumptions the stochastic integral is a martingale with constant
expectation (which is zero). Hence replacing assumption (*) and taking expectation
on both sides

E[F (T,X(T ))] = F (0, X(0))

or
F (0, x) = E[h(X(T ))].

Analogously the solution to the partial differential equation

Ft + µ̃Fx +
1

2
σ̃2Fxx − rF = 0

with final condition F (T, x) = h(x) admits the representation
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F (0, x) = e−rTE[h(X(T ))].

Proof: Take
G(t, X(t)) = e−rtF (t, X(t))

G(0, X(0)) = F (0, X(0))

Gt = −re−rtF + e−rtFt

Gx = e−rtFx

Gxx = e−rtFxx

and

dG = e−rt[−rF + Ft + µ̃Fx +
1

2
σ̃2Fxx)]dt+ σ̃e−rTFxdW

If

−rF + Ft + µ̃Fx +
1

2
σ̃2Fxx = 0

G(T,X(T )) = G(0, X(0)) + e−rT
∫ T

0
σ(X(u))Fx(u,X(u))dW (u)

Taking expectation
E[G(T,X(T ))] = G(0, X(0))

Replacing G(t, X(t)) = e−rtF (t, X(t))

F (0, X(0)) = e−rTE[F (T,X(T ))] = e−rTE[h(X(T )].

Remember the Black and Scholes equation is

ft + rSfx +
1

2
σ2S2fxx − rf = 0

If we identify F above with the price of a derivative and X with the price of a stock
and replace

µ̃(S(t), t) = rS(t)

σ̃(S(t), t) = σS(t)

this theorem provides the link between risk neutral pricing and the Black-Scholes
partial differential equation:

We can price a derivative by discounting it’s expected future payoff

f(0) = e−rTE∗[h]

in a world where the stock price X(t) follows the SDE

dX(t) = rX(t)dt+ σX(t)dW (t)

i.e. in the risk-neutral world
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Spot and forward interest rates

Term Structure of Interest rates

In financial markets the price for credit is referred to as the interest rate. It is de-
termined by demand and supply of credit. It is an inter-temporal price. i.e. the
price today for money that is to be returned at some future date. Fisher (1930) de-
velop a theory on how interest rates can be derived from the consumption and saving
decisions of individuals. Most people prefer to consume now relative to postpone
gratification to a future time. As a reward for being patient people ask for an extra
amount of future consumption. make any payment in between.

Different rates of interest are quoted for different lengths of time r(t, T ). The term
structure of interest rates is the name given to the pattern of interest rates available
on instruments of similar credit risk but with different terms to maturity.

Forward rates

The forward rate is the interest rate, implied by zero rates, that you could earn (pay)
for an investment (loan) made at a given time in the future till another given time in
the future. This is a deterministic rate, agreed in advance by the lender and borrower.

Forward rates are defined by the no arbitrage condition

(1 + r(t, tn))n = (1 + r(t, tn−1))
n−1(1 + f(t, tn−1, tn)),

from where

f(t, tn−1, tn) =
(1 + r(t, tn))

n

(1 + r(t, tn−1))n−1
− 1

Hence for example
f(t, t, t1) = r(t, t1)

f(t, t1, t2) =
(1 + r(t, t2))

2

(1 + r(t, t1))
− 1

With continuous compounding:

Ier(t,t2)(t2−t) = Ier(t,t1)(t1−t)+f(t,t1 ,t2)(t2−t1)

Hence

f(t, t1, t2) =
r(t, t2)(t2 − t) − r(t, t1)(t1 − t)

t2 − t1
=

= r(t, t2) + (t1 − t)
r(t, t2) − r(t, t1)

t2 − t1
.

So if r(t, t2) > r(t, t1) then f(t, t1, t2) > r(t, t2) and if r(t, t2) < r(t, t1) then f(t, t1, t2) <
r(t, t2).
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In the limit t2 → t1

f(t, t1) = f(t, t1, t1) = r(t, t1) + (t1 − t)
∂r(t, t1)

∂t

This is the instantaneous forward rate applicable to a very short period starting at
t1.

Bonds

These are fixed income securities which obligate the issuer (borrower) to make a
pre-specified set of payments to the purchaser (lender).

Term to maturity date on which the debt will be redeemed by borrower.

Par value or face value: amount the issuer agrees to redeem at the maturity date.

Coupon: is the periodic interest payment made to the bond-holder during the life
of the bond. Usually paid semiannually.

Floating rate security: describes security in which the coupon rate is reset peri-
odically.

Zero coupon bond: make no periodic interest payments. Only return the face
amount at maturity N .

Coupon bond: make periodic interest payments and return face amount at matu-
rity.

Bonds evaluation

How do we evaluate the price of the bond? This is the amount you are willing
to pay today to receive the face value of the bond, plus the coupons, at futures
times. The price of the bond is the present value of this stream of future cash flows.
Assume a bond last m years and pays coupons semi-annually. If we use continuously
compounded rates we would obtain

B(0, m) =
2m∑
i=1

Cie
−rc(0,ti)ti +Me−rc(0,m)m

Coupon bonds can be thought of as a collection of zero coupon bonds:

B(0, m) =
2m∑
t=1

Ctp(0, t) +Mp(0,M)

Example: zero coupon bond

m = 10 years
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face value: M = 1000$

P (0, m) =
M

(1 + r(0, m))m

Example: coupon bond

m = 10 years

Face value: M = 1000$

Coupon rate: 8% of face value in semiannual coupon installments. Assume semian-
nually compounded rates

C = rc/2 ∗M = 0.04 ∗ 1000 = 40$.

B(0, m) =
20∑
t=1

40

(1 + rs(0, t/2)/2)t
+

1000

(1 + rs(0, m)/2)2m

Yield to Maturity:

This is the discount rate at which the present value of all future payments would
equal the present price of a bond. Also called Internal Rate of Return. If maturity
is m and coupons are paid semiannually

P (0, m) =
2m∑
t=1

Ce−y t
2 +Me−ym

I have assumed a continuously compounded yield. The yield to maturity is unique
to a given bond at that time.

For a zero-coupon bond yield coincides with spot rate

ya = r(0, m) =

(
M

P (0, m)

)1/m

− 1

I have assumed an annually compounded yield.

Bootstrapping

This is the procedure to extract spot rates from bond prices. If we want risk free rates
the issuer need to be credit worthy. Usually government bonds (also called treasury
bonds) are used for this purpose.

How do we extract rates form coupon bonds?

If bonds were all zero coupon bonds this process would be very easy

r(0, m) =

(
M

P (0, m)

)1/m

− 1



Giulia Iori, Financial Derivatives 50

Nonetheless most long maturity bonds are coupon bonds.

Exercise

Say we want the spot rates for year one, two and three. Assume a zero coupon bond
is traded with maturity one year P (0, 1) while two coupon bonds are traded, paying
annual coupons c, with maturity two years B(0, 2) and three years B(0, 3).

We do this for continuously compounded rates.

P (0, 1) = Me−r(0,1)

r(0, 1) = − log
P (0, 1)

M

B(0, 2) = ce−r(0,1) + (c+M)e−r(0,2)2

r(0, 2) = −1

2
log

[
B(0, 2) − ce−r(0,1)

c+M

]

B(0, 3) = ce−r(0,1) + ce−r(0,2)2 + (c+M)e−r(0,3)3

r(0, 3) = −1

3
log

[
B(0, 3) − ce−r(0,1) − ce−r(0,2)2

c+M

]

Forward rates, spot rates and zero coupon bond prices

We can define forward rates in terms of zero coupon bonds that deliver one dollar at
maturity T, i.e. p(T, T ) = 1, and

p(t, T ) = e−r(t,T )(T−t)

via the relationship

er(t,t2)(t2−t) = er(t,t1)(t1−t)+f(t,t1 ,t2)(t2−t1)

or

ef(t,t1,t2)(t2−t1) =
er(t,t2)(t2−t)

er(t,t1)(t1−t)
=
e−r(t,t1)(t1−t)

e−r(t,t2)(t2−t)
=
p(t, t1)

p(t, t2)

where we assumed continuous compounding. Then

f(t, t1, t2) = − log p(t, t2) − log p(t, t1)

(t2 − t1)

The instantaneous forward rate (t2 → t1)

f(t, t1) = −∂ log p(t, t1)

∂t1

The future short (or spot) rate (t = t1)

r(t1, t2) = − log p(t1, t2)

(t2 − t1)
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The current short (or spot) rate (t1 = t)

r(t, t2) = − log p(t, t2)

(t2 − t)

The instantaneous short rate (or spot rate) is defined by

r(t) = f(t, t)

If rates are stochastic the bank account evolves as

B(T ) = B(t)e
∫ T

t
r(s)ds

and the zero coupon price

p(t, T ) = e−
∫ T

t
f(t,s)ds

Furthermore the risk-neutral formula tells us that

p(t, T ) = B(t, T )EQ[p(T, T )/B(T, T )|F(t)] = EQ[1B(t, T )/B(T, T )|F(t)] = EQ[e−
∫ T

t
r(s)ds|F(t)]

where r(t) is the instantaneous spot rate and in this contest we call the risk neutral
measure Q (instead of P ∗).

Short rate models

We have seen that we can express the price of zero-coupon bonds either in term of
spot interest rates, in term of forward rates, or in term of the instantaneous spot
rate:

p(t, T ) = e−r(t,T )(T−t) = e−
∫ T

t
f(t,s)ds = EQ[e−

∫ T

t
r(s)ds|F(t)]

Thus we can choose to either model the dynamics of each bond, or the dynamics of
forward rates, or the dynamics of the instantaneous short rate.

If we choose to model the instantaneous short rate

dr(t) = µ(r(t), t)dt+ σ(r(t), t)dW (t)

we can recover bonds price using risk-neutral evaluation formulas

p(t, T ) = EQ[e−
∫ T

t
r(s)ds|Ft]

and the payoff of a generic contingent claim with payoff Φ(r(T ), T ) is given by

Φ(r(t), t) = EQ[e−
∫ T

t
r(s)dsΦ(r(T ), T )|Ft]

Instantaneous forward rates then can be obtained by

f(t, T ) = −∂ log p(t, T )

∂T
=
EQ[r(T )e−

∫ T

t
r(s)ds|Ft]

EQ[e−
∫ T

t
r(s)ds|Ft]
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Proof:

f(t, T ) = −∂ log p(t, T )

∂T
= − ∂

∂T
log(EQ[e−

∫ T

t
r(s)ds)|Ft] = − 1

EQ[e−
∫ T

t
r(s)ds|Ft]

∂

∂T
EQ[e−

∫ T

t
r(s)ds|Ft]

We use Fubini theorem to take the derivative inside the expectation:

f(t, T ) = − 1

EQ[e−
∫ T

t
r(s)ds|Ft]

EQ

[
∂

∂T
e−
∫ T

t
r(s)ds|Ft

]
=

− 1

EQ[e−
∫ T

t
r(s)ds|Ft]

EQ

[
e−
∫ T

t
r(s)ds ∂

∂T

(
−
∫ T

t
r(s)ds

)
|Ft

]

We now use Liebnitz rule of differentiation of an integral to find

f(t, T ) =
1

EQ[e−
∫ T

t
r(s)ds|Ft]

EQ
[
e−
∫ T

t
r(s)dsr(T )|Ft

]
=
EQ[r(T )e−

∫ T

t
r(s)ds|Ft]

EQ[e−
∫ T

t
r(s)ds|Ft]

Model Calibration

Under the risk neutral measure Q the short rate dynamics becomes

dr(t) = (µ(r(t), t) − λ(t)σ(t, S(t))dt+ σ(r(t), t)dWQ(t) =

dr(t) = m(r(t), t)dt+ σ(r(t), t)dWQ(t)

where λ is the market price of risk and we defined

m(r(t), t) = µ(r(t), t) − λ(t)σ(t, S(t)

Problem: Bond market models are incomplete.

This is because interest rates are not traded and it is not possible to replicate the
argument of Black and Scholes by constructing an hedging portfolio that replicate the
payoff of the contingent clam (here the bond is the contingent claim). Nonetheless we
need to guarantee that the market is arbitrage free. We can only work with interest
rate models that admit an equivalent martingale measure but we cannot guarantee
that this measure is unique. We are in the situation where there are several equivalent
martingale measures, or several possible choices of the market price of risk process
λ(t), and for each choice we end up with a different no arbitrage price.

But then which measure (or which λ) do we choose?

The one chosen by the market! This is done by inverting the term structure i.e. by
matching the theoretical prices of bonds predicted by the model (which will depend
on λ) with the actual bond prices in the market. Then we can use the ”calibrated”
value of λ to price more complex structure, for example interest rate derivatives.
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Affine Models

For calibration to be easy to implement we can only work with some relatively simple
short rate models, in particular we want models that allow to write the bond price
in the form

p(t, T ) = eA(t,T )−B(t,T )r(t)

where A and B are deterministic functions. These models are said to posses an
affine term structure. Affine here refers to the fact that the term structure is a linear
function of a small set of common factors, in this case

r(t, T ) = B(t, T )r(t) − A(t, T )

If
p(t, T ) = eA(t,T )−B(t,T )r(t)

then, using Ito’s formula

dp(t, T ) = ptdt+ prdr +
1

2
prrd < r >=

(
pt +mpr +

1

2
σ2prr

)
dt+ σprdW

Q(t) =

p(t, T )
[
At(t, T ) − Bt(t, T )r(t) − B(t, T )m(r(t), t) +

1

2
B(t, T )σ2(r(t), t)

]
dt+p(t, T )B(t, T )σ(r(t), t)dWQ(t)

But under the risk-neutral measure it also has to hold that

dp(t, T ) = p(t, T )r(t)dt+ p(t, T )σP (t, T, r(t))dWQ(t)

It is by imposing that

At(t, T ) − Bt(t, T )r(t) − B(t, T )m(t, r(t)) +
1

2
B(t, T )σ2(t, r(t)) = r(t)

that we can find the possible functional forms for m(t, r(t)) and σ(t, r(t)). The kind
of models that have an affine term structure are of the form

dr(t) = m(r(t), t)dt+ σ(r(t), t)dWQ(t)

with
m(t, r(t)) = α(t)r(t) + β(t)

σ(t, r(t)) =
√
γ(t)r(t) + δ(t)

Also the volatility of the bond price is given by

σP (t, T, r(t)) = B(t, T )σ(r(t), t)

Finally the forward at dynamic can be found from

f(t, T ) = − ∂

∂T
log p(t, T ) = − ∂

∂T
[A(t, T ) −B(t, T )r(t)]
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Short rate models

The most well known affine model (there are many more non affine) are

• Vasicek
dr(t) = c(µ− r(t))dt+ σdWQ(t)

• CIR
dr(t) = a(b− r(t))dt+ σ

√
r(t)dWQ(t)

• Ho and Lee
dr(t) = µ(t)dt+ σdWQ(t)

• Hull and White

dr(t) = (b(t) − a(t)r(t))dt+ σ(t)dWQ(t)

Vasicek Model

Let the interest rate r(t) follow under the risk-measure Q the process

dr(t) = c(µ− r(t))dt+ σdWQ(t),

where c, µ are constant, σ is constant and positive, and W (t) is a standard Brownian
motion. The initial value of r is r(0).

The process is mean reverting because the drift term changes sign above or below
the threshold level µ pushing the process back to this level with a speed that is
proportional to c.

Remember that Itô’s lemma states that given an Itô’s process X(t) following

dX(t) = a(t)dt+ b(t)dW (t),

and a smooth function F (t, X(t)), then

dF (t, X(t)) = (Ft + a(t)FX +
1

2
b2(t)FXX)dt+ b(t)FXdW (t),

where

Ft =
∂F (t, X)

∂t
, FX =

∂F (t, X)

∂X
, FXX =

∂2F (t, X)

∂X2
.

We can define Y (t) = ectr(t) and use Itô’s lemma to derive the SDE for Y (t).

The derivatives are Yt = cectr(t), Yr = ect, Yrr = 0.
Hence

dY (t) = [cectr(t) + (cµ− cr(t))ect]dt+ σe−ctdWQ(t) = cµectdt+ σectdWQ(t).



Giulia Iori, Financial Derivatives 55

Integrating

Y (t) = Y (0) + cµ
∫ t

0
ecsds+ σ

∫ t

0
ecsdWQ(s)

and replacing back Y (t) = ectr(t)

ectr(t) = r(0) + µ(ect − 1) + σ
∫ t

0
ecsdWQ(s)

or

r(t) = e−ctr(0) + µ(1 − e−ct) + σe−ct
∫ t

0
ecsdWQ(s).

The stochastic integral is a martingale with zero mean which implies

E[r(t)] = r(0)e−ct + µ(1 − e−ct)

Also
var(r(t)) = E[r2(t)] − E[r(t)]2

where

E[r2(t)] = E
[
e−ctr(0) + µ(1 − e−ct) + σe−ct

∫ t

0
ecsdWQ(s)

]2
=

[r(0)e−ct + µ(1 − e−ct)]2 + E[(σe−ct
∫ t

0
ecsdWQ(s))2]+

2[r(0)e−ct + µ(1 − e−ct)]E[σe−ct
∫ t

0
ecsdWQ(s)]

But E[σe−ct
∫ t
0 e

csdWQ(s)] = 0, because the stochastic integral is a zero-mean mar-
tingale. Hence

E[r2(t)] = E[r(t)]2 + E[(σe−ct
∫ t

0
ecsdWQ(s))2]

Now remember the Itô’s isometry property of stochastic integrals:

E[I2
t (X)] =

∫ t

0
E[X2(s,Ws)]ds

Then

E[r2(t)] −E[r(t)]2 = σ2e−2ct
∫ t

0
e2csds = σ2e−2ct e

2ct − 1

2c
=
σ2

2c
(1 − e−2ct).

and var(r(t)) = σ2

2c
(1 − e−2ct).

The long term mean of this process is µ and the long term variance is σ2

2c
.

From this expression is now possible to find closed form solution for bond prices,
forward rates and bond options (see Bjork to see formulas).
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Bond prices

p(0, T ) = EQ[e−
∫ T

0
r(t)dt]

Let’s define X(T ) =
∫ T
0 r(t)dt and calculate it:

X(T ) =
∫ T

0
r(t)dt =

∫ T

0

[
e−ctr(0) + µ(1 − e−ct) + σe−ct

∫ t

0
ecsdWQ(s)

]
dt =

µT + (r(0) − µ)
1 − e−cT

c
+ σ

∫ T

0

∫ t

0
e−c(t−s)dWQ(s)dt =

µT + (r(0) − µ)
1 − e−cT

c
+ σ

∫ T

0

(∫ t

0
e−c(t−s)dt

)
dWQ(s) =

µT + (r(0) − µ)
1 − e−cT

c
+ σ

∫ T

0

1 − e−c(T−s)

c
dWQ(s)

X(T ) is a normal random variable. Following the previous calculation its mean and
variance are

E[X(T )] = µT + (r(0) − µ)
1 − e−cT

c

var[X(T )] =
σ2

c2

∫ T

0
(1 − e−c(T−s))2ds =

σ2

c2

∫ T

0
(1 + e−2c(T−s) − 2e−c(T−s))ds =

σ2

c2

(
T +

1 − e−2cT

2c
− 2(1 − e−cT )

c

)
=

σ2

2c3

(
2cT − e−2cT − 3 + 4e−cT

)

Then using moment generating function of normal random variables we find

p(0, T ) = EQ[e−
∫ T

0
r(t)dt] = e(−E[X]+ 1

2
var[X]) =

exp

{
−µT − (r(0) − µ)

1 − e−cT

c
+
σ2

4c3

(
2cT − e−2cT − 3 + 4e−cT

)}
= eA(0,T )−B(0,T )r(0)

with

A(0, T ) = −µT + µ
1 − e−cT

c
+
σ2

4c3

(
2cT − e−2cT − 3 + 4e−cT

)

B(0, T ) =
1 − e−cT

c

At a generic time we would find

p(t, T ) = eA(t,T )−B(t,T )r(t)

with

A(t, T ) = −µ(T − t) + µ
1 − e−c(T−t)

c
+
σ2

4c3

(
2c(T − t) − e−2c(T−t) − 3 + 4e−c(T−t)

)
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B(t, T ) =
1 − e−c(T−t)

c

The instantaneous forward prices are

f(t, T ) = − ∂

∂T
[A(t, T )−B(t, T )r(t)] = r(t)e−c(T−t)+µ(1−e−c(T−t))− σ2

2c2
[1+e−2c(T−t)−2e−c(T−t)] =

r(t)e−c(T−t) + µ(1 − e−c(T−t)) − σ2

2c2
(1 − e−c(T−t))2

The volatility of the bond prices are

σp(t, T, r(t)) =
σ

c
[1 − e−c(T−t)]

and the term structure of interest rate is

r(t, T ) =
1

T − t
[r(t)B(t, T ) − A(t, T )] =

1

T − t

[
µ(T − t) + (r(t) − µ)

1 − e−c(T−t)

c
+
σ2

4c3

(
2c(T − t) − e−2c(T−t) − 3 + 4e−c(T−t)

)]

Two ways of calibrating the model

• use historical data of instantaneous spot rates to estimate the parameters c, µ, σ,
then calculate bond prices p(t, T ). Normally the prices calculated this way never
match the observed ones pobs(t, T ).

• use the current bond prices pobs(t, T ), to estimate the parameters. This works
better but given we normally have more bonds than parameters still we cannot
fit very accurately. Furthermore the calibration has to be redone daily because
the bond the term structure changes and we end up with parameters that
fluctuate over time, while the assumption of the model is that the parameter
are fixed and not stochastic.
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Term structure models

Short rate models are relatively easy and closed form analytical formulas can be
obtained for bond prices and interest rates derivatives. Nonetheless it is difficult to
obtain a realistic term structure for the forward rates.

Heath Jarrow and Morton (HJM) suggested to model the entire forward curve by
assuming for every maturity T

df(t, T ) = α(t, T )dt+ σ(t, T )dWQ(t)

where f(0, T ) is given the current forward rates. Bond prices are then given by

P (t, T ) = e−
∫ T

t
f(t,s)ds

the instantaneous spot rate is obtained by taking lim t→ T

r(T ) = f(T, T ) = f(0, T ) + /intT0 α(t, T )dt+ σ(t, T )dWQ(t)

HJM do not suggest any specific model but a framework for modeling bond markets.
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Forward neutral measure and Zero-coupon bonds

as numeraire

Historically the money market account has been chosen as a numeraire but the zero
coupon bond would be the natural choice if one looks at the price of an asset which
only gives a single payoff at a well defined future time T . The value of the zero
coupon bond which pays one dollar at time T , i.e. P (T, T ) = 1, can be treated as
the value of any other contingent claim. The risk-neutral valuation formula gives:

P (t, T ) = B(t)EQ[P (T, T )B−1(T )|Ft]

and P (t, T )/B(t) is a Q-martingale.

Then we can use the change of numeraire theorem above and take P (t, T ) as the
numeraire. The new equivalent martingale measure respect to which security prices
expressed in units of the zero-coupon bonds are martingales is

dQT

dQ
=
P (T, T )B(0)

P (0, T )B(T )
=

1

P (0, T )B(T )

Security prices can then be expressed as

Z(t) = P (t, T )EQT [Z(T )/P (T, T )|Ft] = P (t, T )EQT [Z(T )|Ft]

QT is called the forward-neutral martingale measure. The relative price process of a
security Z(t) t with respect to P (t, T ), Z(t)/P (t, T ), is called the forward price FZ(t)
of the security Z. FZ(t) is a QT -martingale so

FZ(t) = Z(t)/P (t, T ) = EQT [Z(T )/P (T, T )|Ft] = EQT [Z(T )|Ft]

The forward price of a security which pays no dividend up to time T is equal to
the expectation of the value at time T of this security under the forward neutral
martingale measure.

The value of a contingent claim is given by

C(0) = B(0)EQ[h/B(T )] = P (0, T )EQT [h]

Note that if r is constant then

P (t, T ) = e−r(T−t)

and

η =
dQT

dQ
= 1

Hence θ = 0. This means that in this case the Bownian motion has the same drift
under the two measures Q and QT .
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Exotic Derivatives:

Binary:

• Cash or Nothing:

CT = XI{ST >K}

PT = XI{ST <K}

• Asset or Nothing:

CT = ST I{ST >K}

PT = ST I{ST <K}

Gap Options:

CT = (ST −X)I{ST >K} = BACT − BCCT

PT = (X − ST )I{ST <K} = BCPT − BAPT

Supershare Options:

Payoff:

hT =
ST

K1
I{K1<ST <K2} for K1 < K2

Chooser Options:

hT = (ST −K)+IA + (K − ST )+IAC

where A is the event

A = {C(ST0, T − T0, K) > P (ST0, T − T0, K)}

and AC is the complement of A.

Power Options

CT = (Sα
T −K)+

PT = (K − Sα
T )+

Powered Options
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CT = [(ST −K)+]α

CT = [(K − ST )+]α

Option depending on several underlying

Exchange Options

hT = (XT − YT )+

Options on the best/worst of two assets

Cmax(T ) = max(S1(T ), S2(T )) = S2(T ) + [S1(T ) − S2(T )]+

Cmin(T ) = min(S1(T ), S2(T )) = S1(T ) − [S1(T ) − S2(T )]+

So they can be expressed in terms of exchange options.

Spread Options

CT = [(S1
T − S2

T ) −K]+

Basket Options

CT = [IT −K]+

where

It =
n∑

i=1

wiS
i
t

Foreign exchange options

Option struck in foreign currency

C1
T = QT (Sf

T −Kf )+

Option struck in domestic currency

C2
T = (Sf

TQT −Kd)+

Quanto Options
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C3
T = Q̄(Sf

T −Kf)+

Path dependent Options

Asian Options

Asian options have a payoff which depends on the average value of the underlying
asset over the maturity of the options.

We have two cases

• hT = (ST − S̄T )+

• hT = (S̄T −K)+

The average can be defined as arithmetic or geometric and in continuous or discrete
time:

• Arithmetic Average

discrete time:

AD =
1

N

N∑
i=1

Sti

continuous time:

AC =
1

T

∫ T

0
Stdt

• Geometric Average

discrete time:

GD = (
N∏

i=1

Sti)
1/N

continuous time:

GC = e
1
T

∫ T

0
lnStdt

Lookback Options

CT = (ST −mS
T )

PT = (MS
T − ST )

where
mS

T = min{St; 0 ≤ t ≤ T}
and

MS
T = max{St; 0 ≤ t ≤ T}
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Barrier Options

cuo
T = (ST −K)+I{MS

T
≤H}

cui
T = (ST −K)+I{MS

T
≥H}

cuo
T + cui

T = (ST −K)+(I{MS
T ≤H} + I{MS

T ≥H}) = cT

from where
cuo
T = cT − cui

T

cdo
T = (ST −K)+I{mS

T
≤H}

cdi
T = (ST −K)+I{mS

T
≥H}

cdo
T + cdi

T = (ST −K)+(I{mS
T ≤H} + I{mS

T ≥H}) = cT

from where
cdo
T = cT − cdi

T
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Energy Derivatives

Domestic oil and petroleum prices were deregulated in the 1980s, and natural gas
prices were partially deregulated. Before price deregulation, the market for domestic
oil and gas derivatives was limited. Under price regulation, the U.S. Department of
Energy (DOE), the Federal Energy Regulatory Commission (FERC), and the State
public utility commissions (PUCs) directly or indirectly controlled the prices of do-
mestic crude oil, petroleum products, wellhead natural gas, pipeline transmission,
and retail gas service. Government was also deeply involved in deciding the merits of
pipeline investment and siting. The immediate effect of price controls was to stabilize
price.

Unfortunately, price certainty was paid for with shortages in some areas and surplus
elsewhere and by complex cross-subsidies from areas where prices would have been
lower to areas where prices would have been higher, with accompanying efficiency
costs. Currently, the prices of crude oil, natural gas, and all petroleum products are
free from Federal regulation. The FERC continues to impose price ceilings on pipeline
services and has approval authority for new pipeline construction. Most States con-
tinue to regulate prices for small users of natural gas (residences and commercial
enterprises), but large usersparticularly, power plants, which accounted for about 21
percent of the Nations natural gas consumption in 2001, and petrochemical plantsare
generally free to make their best deals.

Most of the energy futures and options on futures are traded on the New York Mer-
cantile Exchange (NYMEX). However, the trading volume of electricity futures is
less than electricity forwards traded in the over-the-counter (OTC) markets. A large
variety of energy derivatives are traded among market participants in the OTC mar-
kets, including forward contracts, swaps, plain vanilla options, and exotic (i.e., non-
standard) options like spark spread options, swing options and swaptions.

The light, sweet crude oil futures contract is the most actively traded commodity in
the world. Since oil is an inherently non-standard commodity, the various exchanges
have chosen several reference grades (such as WTI) to form the basis of the futures
and options market. Light, sweet crude oil futures contracts traded on NYMEX
are written on units of 1,000 barrels of oil for delivery in Cushing, Oklahoma. These
contracts may be either futures contracts of various maturities, calendar spread, crack
spread, or average price options.

Calendar spreads are a risk management device that allows the holder to purchase (or
sell) oil based on the price difference between 2 delivery dates. Crack spread options
are written on the price difference between two related commodities. The crack
spread options traded on NYMEX for WTI light, sweet crude oil are written on the
price differentials of crude oil futures and heating oil futures and crude oil futures
and gasoline futures. Average price options (or APO’s) are Asian type options where
the holder is allowed to buy or sell oil based on the average futures price for a given
period of time.

While the crude oil market may be the most actively traded commodity, the growth
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rate of the U.S. natural gas market has far exceeded that of oil. The NYMEX natural
gas futures contract has seen the largest percentage trade volume gains of any product
launched in the exchange’s history. Currently, natural gas composes nearly one-fourth
of the total U.S. energy consumption with expected gas consumption tripling to 13
trillion cubic feet by 2020.

Structurally, the natural gas sector is very different from crude oil. As opposed to
having a small number of firms which have high levels of vertical integration (i.e.
firms that wholly own several steps in the production, refining, and transportation
processes), the North American natural gas sector is very disjoint; with different firms
controlling drilling, refining and pipeline distribution.

Natural gas futures contracts are traded on the NYMEX in units of 10,000 million
Btu’s (British thermal energy units) for delivery at the Henry Hub in Louisiana.
These contracts trade with maturity dates ranging from 1 to 72 months. Additionally,
NYMEX offers vanilla calls and puts, calendar spread and spark spread options. Due
to the increased reliance of electricity suppliers on natural gas, the spark spread
options allows one to manage the risk associated with the spread between natural
gas futures and electricity futures prices.

Swaps:

OTC financially settled where on each swap settlement date oneside pays a fixed
amount and the other side pays the average price the commodity forward had over a
predetermined set of averaging dates. There is usually one net payment.

Example: Cal-07 swap on WTI front contract during each US business day, monthly
settled. If U is a set of business days, F (t, T ) the forward price at time t for a forward
with expiry T , and tu denote the swap settlement dates (end of each month here),
and D(t, tu) the corresponding discount factor, then the swap price is given by

Rs(t) =

∑
u wuD(t, tu)F (t, Tu)∑

u wuD(t, tu)

Exotic swaps: Participating swaps, Basis swaps which involve two or more under-
lying assets (cracks, calendar spread, refinery margins, heat-rate), Total or Excess
Return swaps on Commodity indices, Swaps on customised indices and publications
(e.g. achieved export or import prices), Swaps paid in different currencies than the
underlying commodity pricing, Swaps with inflation linked payments.

Options

European Options: Black-Scholes pricing.

American options: trade on futures above. At expiry they settle into futures. They
are usually priced with on a binomial or trinomial tree.

Average Price Options (Asians, APOs) on the front nearby monthly forward: for
a given averaging period consider a set U of averaging (usually business) days ti ,
i = 1, ..., n, and F (t, T ) denote the forward price at time t for a contract maturing at
time T . For each fixing date, let Ti be the expiration date of the front contract for
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the date i. Then a call option has a payoff:

AAPO = (A(T ) −K)+ A(T ) =
1

n

n∑
i=1

F (ti, Ti)

There are both analytical (Turnbull-Wakeman, Curran and Rogers-Shi, Geman-Yor),
as well as numerical methods (Monte Carlo and Tree) for pricing APOs on one un-
derlying contract as well as numerical methods.

However, the above APO is on a option on a basket of underlying forward contracts.
For example an annually settled APO involves 12 futures/forwards, all of which are
correlated.

An appropriate pricing model needs to take this correlation into account.

Swaptions:

These are options on a swap as defined previously. Again this is an option on a basket
of underlying forward contracts.

Spread Options:

In the petroleum industry, refinery managers are more concerned about the difference
between their input and output prices than about the level of prices. Refiners profits
are tied directly to the spread, or difference, between the price of crude oil and the
prices of refined products. Because refiners can reliably predict their costs other
than crude oil, the spread is their major uncertainty. NYMEX in 1994 launched the
crack spread contract. One type of crack spread contract bundles the purchase of
three crude oil futures (30,000 barrels) with the sale a month later of two unleaded
gasoline futures (20,000 barrels) and one heating oil future (10,000 barrels). The
3-2-1 ratio approximates the real-world ratio of refinery output2 barrels of unleaded
gasoline and 1 barrel of heating oil from 3 barrels of crude oil.

Calendar Spread Options Storage facilities play an important role in the crude oil
and refining supply chain. Heating oil dealers build inventories during the summer
and fall for winter delivery. For most non-energy commodities, the cost of storage
is one of the key determinants of the differential between current and future prices.
Although storage plays a smaller role in price determination in some energy markets
(most notably, for electricity), it can be important for heating oil and natural gas.
If the price differential between winter months and shoulder months substantially
exceeds storage expenses, traders can buy and store gas and sell gas futures. Such
arbitrage tends to narrow the price differential.

NYMEX offers calendar spread options on crude oil, heating oil, and unleaded gaso-
line. Buying a call on the calendar spread options contract will represent a long
position (purchase) in the prompt months of the futures contract and a short posi-
tion (sale) in the further months of the contract.

Thus, the storage facility can buy a call on a calendar spread that will allow it to
lock in a storage profit or to arbitrage a spread that is larger than its cost of storage.

Spark Spread options (options on the spread between Power and Gas)
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Dark spread options (options on the spread between Power and Coal)

CSP = (S1(T ) − S2(T ) −K)+

Barrier option, Outside barrier options on basket of refined products with
the barrier (usually more than one) based on crude prices.

Swing options

Swing options are volumetric options. Typical of gas, but also seen in Power markets.
Assume an exercise period [0, T ] and a strike k (GBp/them or USD/mmBTU). On
each day in the [0, T ] period the option holder has the right to recall a quantity q(t)
such that:

Vmin ≤ q(t) ≤ Vmax A ≤ ∑
k∈[0,T ]

q(t) ≤ B

where A, B represent the allowed min and max volumes during the entire duration of
the trade. If the buyer (option holder) takes more or less volume then he/she pays a
penalty. This is why it is also called take-or-pay options. The number of swing rights
can be less than or equal to the total number of days in the period N.

Electricity Derivatives

Forward and Futures

Electricity forward contracts represent the obligation to buy or sell a fixed amount
of electricity at a pre-specified contract price, known as the forward price, at certain
time in the future (called maturity or expiration time). In other words, electricity
forwards are custom tailored supply contracts between a buyer and a seller, where
the buyer is obligated to take power the seller is obligated to supply.

Generators such as independent power producers (IPPs) are the natural sellers (or,
shortside) of electricity forwards while LSEs such as utility companies often appear as
the buyers (or, long-side). The maturity of an electricity forward contract ranges from
hours to years although contracts with maturity beyond two years are not liquidly
traded.

Some electricity forwards are purely financial contracts, which are settled through
financial payments based on certain market price index at maturity, while the rest
are physical contracts as they are settled through physical delivery of underlying
electricity.

The payoff of a forward contract promising to deliver one unit of electricity at price
K at a future time T is:

ST −K

where ST is the electricity spot price at time T .

Although the payoff function appears to be same as for any financial forwards, elec-
tricity forwards differ from other financial and commodity forward contracts in that
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the underlying electricity is a different commodity at different times. The settlement
price ST is usually calculated based on the average price of electricity over the delivery
period at the maturity time T .

First traded on the NYMEX in March 1996, electricity futures contracts have the
same payoff structure as electricity forwards. However, electricity futures contracts,
like other financial futures contracts, are highly standardized in contract specifica-
tions, trading locations, transaction requirements, and settlement procedures. The
most notable difference between the specifications of electricity futures and those of
forwards is the quantity of power to be delivered. Usually settled in cash. The de-
livery quantity specified in electricity futures contracts is often significantly smaller
than that in forward contracts

Swaps

Electricity swaps are financial contracts that enable their holders to pay a fixed price
for underlying electricity, regardless of the floating electricity price, or vise versa, over
the contracted time period. Electricity swaps are widely used in providing short- to
medium-term price certainty up to a couple of years. Electricity locational basis
swaps are also commonly used to lock in a fixed price at a geographic location that
is different from the delivery point of a futures contract. That is, a holder of an
electricity locational basis swap agrees to either pay or receive the difference between
a specified futures contract price and another locational spot price of interest for a
fixed constant cash flow at the time of the transaction. These swaps are effective
financial instruments for hedging the basis risk on the price difference between power
prices at two different physical locations.

Plain call and put options

Electricity call and put options offer their purchasers the right, but not the obligation,
to buy or sell a fixed amount of underlying electricity at a pre-specified strike price
by the option expiration time. They have similar payoff structures as those of regular
call and put options on financial securities and other commodities.

The underlying of electricity call and put options can be exchange-traded electricity
futures or physical electricity delivered at major power transmission inter-ties, like
the ones located at California-Oregon Border and Palo Verde in the Western U.S.
power grid. The majority of the transactions for electricity call and put options
occur in the OTC markets.

Spark spread options

An important class of non-standard electricity options is the spark spread option (or,
spark spread). Spark spreads are cross-commodity options paying out the difference
between the price of electricity sold by generators and the price of the fuels used
to generate it. The amount of fuel that a generation asset requires to produce one
unit of electricity depends on the asset’s fuel efficiency or heat rate (Btu/kWh). The
holder of a European- spark spread call option written on fuel G at a fixed heat rate
KH has the right, but not the obligation, to pay at the option’s maturity KH times
the fuel price at maturity time T and receive the price of one unit of electricity. Thus,
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the payoff at maturity time T is

[ST −KHGT ]+

where ST and GT are the electricity and fuel prices at time T, respectively.

Swing options

Electricity swing options are adopted from their well-known counterparts in the nat-
ural gas industry. Also known as flexible nomination options, swing options have
the following defining features. First, these options may be exercised daily or up to
a limited number of days during the period in which exercise is allowed. Second,
when exercising a swing option, the daily quantity may vary (or, swing) between a
minimum daily volume and a maximum volume.

However, the total quantity taken during a time period such as a week or a month
needs to be within certain minimum and maximum volume levels. Third, the strike
price of a swing option may be either fixed throughout its life or set at the beginning
of each time period based on some pre-specified formula. Last, if the minimum-take
quantity of any contract period is missed by the buyer, then a lump sum penalty or a
payment making up the sellers revenue shortfall needs to be paid (i.e., take-or-pay).
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Pricing energy derivatives

Option valuation is held by binomial trees, MonteCarlo methods, risk-neutral prcing

Commodities (and hence price processes) are different from financial assets in that:

• Electricity is non-storable, and agricultural products are fungible.

• Operational constraints and market structure does not allow to capture arbi-
trage efficiently

• Seasonality (Heating oil, Natural Gas, even intraday power prices)

• Liquidity constraints: occasional squeezes, outages, or even geopolitical fac-
tors affect directly commodity prices. These affect in turn our assumptions of
commodity price processes (lognormal returns, jumps, etc).

• Even though financial instruments are linked to the underlying physical assets,
this can give a distorted picture: the size of the financial contracts trading in
NYMEX today is 1000 times larger than the physical transactions per day.

Forward price

F (t, T ) = S(t)e(r+u−y)(T−t)

where u is storage costs rate and y is the convenience yield. If y was deterministic
forward prices could be modeled as martingales.

This remarkable relationship allows to interpret the convenience yield as a continuous
dividend payment made to the owner of the commodity. Hence, under the additional
assumption that the price of the underlying commodity is driven by a geometric
Brownian motion, Mertons (1973) formula for options on dividend-paying stocks,
with dividedn yield q, provides the price of a plain vanilla call option written on a
commodity with price S, namely

C(t) = S(t)e−q(T−t)N(d1) −Ke−r(T−t)N(d2)
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Pricing power options

In the case of Asian options which represent the majority of options written on oil
(since most indices on oil are defined as arithmetic averages over a given period), it
is well known that the valuation problem becomes much more difficult and several
approximations for the call price have been offered in the literature. Geman-Yor
(1993) were able, using stochastic time changes and Bessel processes, to provide the
Laplace transform of the exact price of the Asian option. Eydeland-Geman (1995)
inverted this Laplace transform and showed the superiority of this approach over
Monte Carlo simulations, in particular in terms of hedging accuracy. These results
were established under the general assumptions of dividend payments for stocks or
convenience yield for commodities.

Pricing electricity derivatives

Since the value of electricity derivatives are based on the underlying electricity prices,
modeling electricity price is the most critical component in pricing electricity deriva-
tives. Due to the unique physical and operational characteristics of electricity pro-
duction and transmission processes, electricity price exhibits different behaviors than
other financial prices which can be often described by Geometric Brownian Motion.
There has been a growing literature addressing mainly two competing approaches to
the problem of modeling electricity price processes:

(a) ”Fundamental approach” that relies on simulation of system and market operation
to arrive at market prices; and

(b) ”Technical approach” that attempts to model directly the stochastic behavior of
market prices from historical data and statistical analysis.

While the first approach provides more realistic system and transmission network
modeling under specific scenarios, it is computationally prohibitive due to the large
number of scenarios that must be considered. Therefore, we shall focus our atten-
tions on the second approach and review the corresponding methodologies for pricing
electricity derivatives.

Approaches to characterize market prices include discrete-time time series models
such as GARCH and its variants, Markov regime-switching models, continuous-time
diffusion models such as mean-reversion, jump-diffusion, and other diffusion models.
There are also models proposed for direct modeling of electricity forward curves.

a) According to the definition, convenience yield is the difference between two quan-
tities: the positive return from owning the commodity for delivery and the cost of
storage. Because of the impossibility of storing power, these two quantities cannot
be specified.

b) The non-storability of electricity leads to the breakdown of the relationship which
prevails at equilibrium between spot and future prices on stocks, equity indices, cur-
rencies, etc. The no arbitrage argument used to establish this relation is not valid in
the case of power, since it requires that the underlying instrument be bought at time
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t and held until the expiration of the futures contract.

c) There is another important consequence of non-storability: using the spot price
evolution models for pricing power options is not very helpful, since hedges involving
the underlying asset, i.e., the famous delta hedging, cannot be implemented, as they
require buying and holding power for a certain period of time.

In the classical Black-Scholes-Merton world, the key quantity in the option valuation
is the spot price of the underlying asset, since it provides, in particular, the hedging
portfolio. Hence, the first and important step is to model the spot price dynamics. In
the case of electricity, the main problems that one faces while modeling spot dynamics
are the difficult issues of matching fat tails of marginal and conditional distributions
and the spikes in spot prices. There are a number of techniques addressing these
issues; below, we describe two models that appear most relevant.

i) A diffusion process with stochastic volatility, namely

dSt = µ1(t, St)dt+ σtStdW
1
t

dΣ = µ2(t,Σt)dt+ y(t,Σt)dW
2
t

where Σt = σ2
t , W

1
t ,W

2
t are two Brownian motions, with a correlation coefficient ρ(t)

, and the terms µ1(t, St) and µ2(t,Σt) may account for some mean reversion either in
the spot prices or in the spot price volatility.

Stochastic volatility is certainly necessary if we want a diffusion representation to be
compatible with the extreme spikes as well as the fat tails displayed by distribution
of realized power prices. However, stochastic volatility puts us in a situation of
incomplete markets since we only have one instrument, the spot power (or rather
its surrogate) to hedge the option. Hence the risk-neutral valuation techniques are
problematic even if widely used.

ii) Because of extreme temperatures, and hence, an extreme power demand, the
dynamics of electricity spot prices can be advantageously represented by a jump-
diffusion process (see Geman 1994). The simplest jump process one can add to the
diffusion component is represented by a Poisson process Nt with a random magnitude,
and we thus obtain the Merton (1976) model

dSt = µSTdt+ σStdWt + UStdNt

where Nt is a Poisson process whose intensity λ characterizes the frequency of occur-
rence of the jumps, while U is a real-valued random variable, for instance normal,
which represents the direction and magnitude of the jump. With one tradable risky
asset to hedge the sources of randomness represented by Wt , Nt and its random mul-
tiplier U , we face an extreme situation of market incompleteness. Again, risk-neutral
valuation techniques becomes problematic even if widely used.
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Pricing Asian Options

Asian options have a payoff which depends on the average value of the underlying
asset over the maturity of the options. We have two cases

• hT = (ST − S̄T )+

• hT = (S̄T −K)+

The average can be defined as arithmetic or geometric and in continuous or discrete
time:

• Arithmetic Average

discrete time:

AD
T =

1

N

N∑
i=1

Sti

continuous time:

AC
T =

1

T

∫ T

0
Stdt

• Geometric Average

discrete time:

GD
T = (

N∏
i=1

Sti)
1/N

continuous time:

GC
T = e

1
T

∫ T

0
lnStdt

Let’s do the geometric case with continuous sampling.

Fix strike
St = S0e

(r−1/2σ2)t+σW ∗
t = S0e

νt+σW ∗
t

where ν = r − 1/2σ2. Hence

GC
T = e

1
T

∫ T

0
ln Stdt = S0e

1
T

∫ T

0
νtdt+ σ

T

∫ T

0
W ∗

t dt =

S0e
1
T

ν T2

2
+ σ

T

∫ T

0
W ∗

t dt = S0e
νT
2

+ σ
T

∫ T

0
W ∗

t dt

But using integration by part formula∫ T

0
W ∗

t dt = TW ∗
T −

∫ T

0
tdW ∗ =

∫ T

0
(T − t)dW ∗

t = IT (T − t)

Define

IT (X) =
∫ T

0
XsdWs

The stochastic integral I is a martingale if E[
∫ T
0 X2

t dt] <∞ and
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•
E[IT (X)|Fs] = Is(X)

and
E[IT (X)] = E[I0(X)] = 0

• Itô Isometry:

E[I2
T (X)] = E[

∫ T

0
X2(s)ds]

if Xs is a deterministic function.

But then:

var[IT (T − t)] = E[I2
T (T − t)] = E[

∫ t

0
(T − t)2dt] = E[

∫ T

0
(T 2 − 2Tt+ t2)dt] =

T 3 − 2T 3

2
+
T 3

3
=
T 3

3

Hence ∫ t

0
Wsds ∼ N

(
0,
t3

3

)

and the geometric average of a log-normal process St is a lognormal process and

ln
GC

T

GC
0

∼ N
(
νT

2
,
σ

T
varIT (T − t)

)

ln
GC

t

GC
0

∼ N
(
ν
t

2
, σ2 t

3

)

GC
t = GC

0 e
νt
2

+ σ√
3
W G

t = GC
0 e

(r−q−σ2

6
)t+ σ√

3
W G

t

Imposing

r − q − σ2

6
=

1

2
(r − 1/2σ2)

we find

q = r − 1

2
(r − 1/2σ2) − σ2

6
=

1

2
(r +

σ2

6
)

Then to price a continuous geometric average, fix-strike Asian Option we can apply
the standard Black-Scholes formula and just replace the right dividend and volatility.

C(0) = S(0)e−qTN(d1) −Ke−rTN(d2)

with

d1 =
ln(S(0)/K) + (r − q + 1/2σ2

G)T

σG

√
T

=
ln(S(0)/K) + (r − 1/2σ2)T/2

σ
√
T/3

and

d2 =
ln(S(0)/K) + (r − 1/2σ2

G)T

σG

√
T

=
ln(S(0)/K) + (r − 1/2σ2)T/2 + σ2T/3

σ
√
T/3
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Multi dimensional Brownian motion

In the following sections we will analyze option contract depending on more then
one underlying asset. To avoid perfect correlation between the assets, the underlying
noise process should be modeled by means of a multidimensional Brownian motion.
Let’s the price processes for two assets Xt and Yt be given, under the risk neutral
measure P ∗, by

dXt = Xt(µXdt+ σXdW
X
t )

dYt = Yt(µY dt+ σY dW
Y
t )

such that
E[dWX

t dW
X
t ] = dt

E[dW Y
t dW

Y
t ] = dt

E[dWX
t dW

Y
y ] = ρdt

and

E[
dX

X

dX

X
] = σ2

Xdt

E[
dY

Y

dY

Y
] = σ2

Y dt

E[
dX

X

dY

Y
] = σXσY ρdt

We want to rewrite X and Y is terms of a two-dimensional Brownian motion

W̄ = (W1,W2)

with
E[dW 1dW 1] = dt

E[dW 2dW 2] = dt

E[dW 1dW 2] = 0

So
dXt = Xt(µXdt+ σ11dW

1
t + σ12dW

2
t )

dYt = Yt(µY dt+ σ21dW
1
t + σ22dW

2
t )

In this case

E[
dX

X

dX

X
] = E[(σ11dW

1
t + σ12dW

2
t )(σ11dW

1
t + σ12dW

2
t )] =

σ2
11E[(dW 1

t )2] + σ2
12E[(dW 2

t )2] = (σ2
11 + σ2

12)dt

from where
σ2

11 + σ2
12 = σ2

X



Giulia Iori, Financial Derivatives 76

E[
dY

Y

dY

Y
] = E[(σ21dW

1
t + σ22dW

2
t )(σ21dW

1
t + σ22dW

2
t )] =

σ2
21E[(dW 1

t )2] + σ2
22E[(dW 2

t )2] = (σ2
21 + σ2

22)dt

from where
σ2

21 + σ2
22 = σ2

Y

E[
dX

X
,
dY

Y
] = E[(σ11dW

1
t + σ12dW

2
t )(σ21dW

1
t + σ22dW

2
t )] =

σ11σ21E[(dW 1
t )2] + σ12σ22E[(dW 2

t )2] = (σ11σ21 + σ12σ22)dt

from where
(σ11σ21 + σ12σ22) = ρσXσY

We need to solve the set of three equations in four variables.

One simple choice is
σ12 = 0 σ11 = σX

Then we get

σ21 = ρσY σ22 = σY

√
1 − ρ2

We can then write
dXt = Xt(µXdt+ σ̄X · dW̄t)

dYt = Yt(µY dt+ σ̄Y · dW̄t)

where σ̄X = (σX , 0), σ̄Y = (σY ρ, σY

√
1 − ρ2) and W̄t is a bi-dimensional Brownian

motion.

Let’s find the risk neutral measure. We have to find the vector of market price of risk
θ = (θ1, θ2)

r − µX = θ1σX

r − µY = ρσY θ1 + σY

√
1 − ρ2θ2

which gives

θ1 =
r − µX

σX

θ2 =
(r − µY )σX + (µX − r)σY ρ

σXσY

√
1 − ρ2

and from Girsanov
W ∗1

t = W 1
t − θ1t

W ∗2
t = W 2

t − θ2t

We can extend this formalism to d-dimentional brownian motions.

dSt

St
= µdt+ σ · dWt
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where µ ∈ R is a constant drift and σ ∈ Rd denotes a constant volatility vector and
W is a d-dimensional Brownian motion:

σ · dWt =
d∑

i=1

σidW
i
t

|σ|2 =
d∑

i=1

σ2
i

Then
St = S0e

(µ−1/2|σ|2)t+σ·Wt

In this case one finds that the vector of market price of risk is given by solution of
the equation

µ− r + σ · θ = 0

The solution of this equation is in general not unique unless the number of traded
assets, including the domestic saving account, equal d + 1. For any solution of this
equation a martingale measure can be defined by

dP ∗

dP
= eθ·WT− 1

2
|θ|2T

and, using Girsanov,
W ∗

t = Wt − θt

where W ∗
t follows a d-dimensional Brownian under P ∗ and

St = S0e
(r−1/2|σ|2)t+σ·W ∗

t
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Exchange Options and Spread Options

The payoff of this contract is:

h = (YT −XT − S)+

Let the price processes for two assets Xt and Yt be given, under the risk neutral
measure P ∗, by

dXt = Xt(rdt+ σ̄X · dW̄ ∗
t )

dYt = Yt(rdt+ σ̄Y · dW̄ ∗
t )

where σ̄X = (σX , 0), σY = (σY ρ, σY

√
1 − ρ2) and W̄t is a bi-dimensional Brownian

motion.

The case S = 0 is much easier and we focus on this.

Solving we find
Xt = X0e

(r−1/2|σ̄X |2)t+σ̄X ·W̄ ∗
t

Yt = Y0e
(r−1/2|σ̄Y |2)t+σ̄Y ·W̄ ∗

t

Hence
Yt

Xt
=
Y0

X0
e−1/2(|σ̄Y |2−|σ̄X |2)t+(σ̄Y −σ̄X)·W̄ ∗

t

Let’s call σ̄Y/X = (σ̄Y − σ̄X) = (ρσY − σX , σY

√
1 − ρ2).

Yt

Xt
=
Y0

X0
e−1/2(|σ̄Y |2−|σ̄X |2)t+σ̄Y/X ·W̄ ∗

t

Note that
|σ̄X |2 = σ2

X

|σ̄Y |2 = σ2
Y

|σ̄Y/X |2 = σ2
X + σ2

Y − 2ρσXσY

Define β(t) = ert and choose X as a numeraire. This defines the equivalent measure
Q as

dQ

dP ∗ =
XTβ(0)

X0β(T )
= e−1/2|σ̄X |2+σ̄X ·W̄ ∗

t

This shows that the market price of risk θ̄ = σ̄X = (σX , 0)

Under Q
W̄t = W̄ ∗

t − θ̄t = (W ∗
1 − σXt,W

∗
2 )

is a standard Brownian motion.

Hence under Q
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Yt

Xt

=
Y0

X0

e−1/2(|σ̄Y |2−|σ̄X |2)t+(ρσY −σX)(W1t+σX t)+
√

1−ρ2σY W2t =

Y0

X0

e−1/2(|σ̄Y |2+|σ̄X |2−2ρσXσY )t+(ρσY −σX )W1t+
√

1−ρ2σY W2t =

Y0

X0

e−1/2 (σ2
Y +σ2

X−2ρσXσY )t + σ̄Y/X ·W̄t =
Y0

X0

e−1/2 |σY/X |2t + σ̄Y/X ·W̄t

Notice that Yt

Xt
is now a martingale under Q.

Let’s now calculate the price of an exchange option whose payoff is

CT = (YT −XT )+.

Define β(t) = exp(rt). Choosing X as a numeraire the price of the option can be
written as

C0 = β(0)EP ∗[(YT −XT )+/β(T )] = X0EQ[(YT −XT )+/XT ] =

X0EQ[(YT/XT − 1)I{YT >XT }] = X0EQ[YT/XT I{YT >XT }] −X0Q{YT > XT} =

X0EQ[Y0/X0e
−1/2|σ̄Y/X |2T+σ̄Y/X ·W̄T I{YT >XT }] −X0Q{YT > XT}

To calculate first integral we have to change measure to Q̂ defined by:

dQ̂

dQ
= ηT = e−1/2|σ̄Y/X |2T+σ̄Y/X ·W̄T

Under Q̂
ˆ̄W t = W̄t − σ̄Y/Xt

is a standard Brownian motion.

We eventually obtain

C0 = Y0Q̂{YT/XT > 1} −X0Q{YT/XT > 1} =

Y0Q̂{Y0/X0e
1/2|σ̄2

Y/X
|T+σ̄Y/X · ˆ̄WT > 1} −X0Q{Y0/X0e

−1/2|σ̄2
Y/X

|T+σ̄Y/X ·W̄T > 1} =

Y0Q̂{1/2|σ̄2
Y/X |T+σ̄Y/X · ˆ̄W T > ln(X0/Y0)}−X0Q{−1/2|σ̄2

Y/X |T+σ̄Y/X ·W̄T > ln(X0/Y0)} =

= Y0N(d1) −X0N(d2)

with

d1 =
ln(Y0/X0) + 1/2|σ̄Y/X |2T

|σY/X |
√
T

d2 =
ln(Y0/X0) − 1/2|σ̄Y/X|2T

|σY/X |
√
T
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Notice that, as expected, this is just the Black-Scholes formula, with r = 0, strike
K = 1, and volatility σ̄Y/X .

With dividends the formula becomes

C0 = Y0e
−qY TN(d1) −X0e

−qXTN(d2)

with

d1 =
ln(Y0/X0) + (qX − qY + 1/2|σ̄Y/X |2)T

|σY/X |
√
T

d2 =
ln(Y0/X0) + (qX − qY − 1/2|σ̄Y/X |2)T

|σY/X |
√
T
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Modeling Forward Rates

When building an energy model, there are two main approaches for arriving at forward
prices. One can either model the spot prices and work out the forward prices from
the spot; or one can model the forward curve dynamics and derive spot prices from
the forward curve. This distinction is equivalent to the distinction between interest
rate short models and Heath-Jarrow-Morton models. The following sections will look
at various mean reverting models under these two main approaches.

The single factor Schwartz model

In his 1997 paper “Stochastic Behavior of Commodity Prices: Implications for Val-
uation and Hedging”, Eduardo Schwartz considers different approaches for modeling
the commodity spot price. First, he considers a single factor model based on a
standard, mean reverting Ornstein-Uhlenbeck process. The second model takes a
standard asset price process and introduces a mean reverting convenience yield. Fi-
nally, Schwartz takes the two factor process and introduces stochastic interest rates.
What makes these models appealing are their analytical tractability. Unfortunately
the convenience yield is not transparent, leading to a disparity between the model
and the market. Another large drawback of this approach is the inability to fit market
observable forward data to the model.

The single factor spot price model is built on a probability space, (Ω,F ,QT ), equipped
with the natural filtration, {Ft}, of the standard one-dimensional Brownian motion z.
Throughout this model, interest rates are assumed to follow a deterministic process
which allows futures and forwards to be treated equivalently.

The single factor model considered argues that the spot price dynamics follow an
Ornstein-Uhlenbeck mean reverting, time homogeneous diffusion of the form,

dS(t)

S(t)
= α(µ− lnS)dt+ σdz(t). (3)

Writing this equation in terms of the natural log, X(t) = lnS(t), and applying Itô’s
Lemma yields the dynamics of the log process

dX(t) = α(µ̂−X(t))dt+ σdz(t), (4)

where

µ̂ = µ− σ2

2α
.

The remainder of this model will be expressed in the equivalent risk-neutral measure
Q∗

T . The dynamics of equation (4) are now expressed as

dX(t) = α(µ̄−X(t))dt+ σdz∗(t), (5)

where
µ̄ = µ̂− σλ.
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Notice that equation (5) is simply the Vasicek model.

Repeating the calculations we have already done we can write

X(t) = e−αtX0 + µ̄(1 − e−αt) + e−αt
∫ t

0
σeαsdz∗(s). (6)

The mean is given by
E∗[X(t)] = e−αtX0 + µ̄(1 − eαt) (7)

and the variance is given by

var[X(t)] =
σ2

2α
(1 − e−2αt). (8)

We can also compute the moment generating function of X(t) and find

Gθ = E∗
[
eθX(t)

]
= exp

(
θ(e−αtX0 + µ̄(1 − eαt)) +

1

2α
θ2σ2(1 − e−2αt)

)
. (9)

That shows that Xt is a normal random variable.

In terms of the spot price, the process in equation (6) is expressed as

S(t) = exp
(
e−αtX0 + µ̄(1 − e−αt) +

∫ t

0
e−αsσdz∗(s)

)
. (10)

Since we have assumed constant interest rates, it is straight forward to see that
F (t, T ), the forward price at time t ∈ [0, T ] on the commodity S(t) and maturity
date T , is the expectation of the spot commodity under the risk neutral measure Q∗

T .

F (t, T ) = E∗[S(T )|Ft] t ∈ [0, T ] (11)

F (t, T ) = exp[e−α(T−t) lnS + (1 − e−α(T−t))µ̄+
σ2

4α
(1 − e−2α(T−t))]. (12)

This is represented in log form by

lnF (t, T ) = e−α(T−t) lnS + (1 − e−α(T−t))µ̄+
σ2

4α
(1 − e−2α(T−t)). (13)

This last equation may be used to model the forward curve and test the estimations
against market data.

Plotting equation (13) with various mean reversion parameters reveals a potential
shortcoming in the single factor Schwartz model. While this model is tractable, the
lack of transparency in the market spot price process (referring to the actual spot,
not the front month) creates some calibration difficulties. When attempting to fit the
single factor Schwartz model to the market futures curve of WTI crude oil the model
does not give a very realistic looking curve. It instead serves as a rough approximation
of reality. In order to achieve a more realistic curve, different modeling approaches
have been suggested.
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The two factor model

The simplistic nature of the single factor model creates an unrealistic volatility struc-
ture. The negative exponential form implies that contracts with a long maturity will
have zero (in the limiting sense) volatility. John Maynard Keynes would point out
that this might not pose a problem since, “In the long run, we’re all dead”. However,
the volatilities also decay at an unrealistically fast rate. These deficiencies lead to the
introduction of a stochastic convenience yield that is correlated with the commodity
price.
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Forward curve models

A one factor model

The biggest disadvantage of spot price models is the fact that the spot is difficult
to observe. Energies ia mainly purchased on the basis of a futures contract. It is
also very difficult to fit the market observed futures curves to the endogenous futures
price functions derived from spot models. These deficiencies lead to another group
of models which investigate the dynamics of the entire futures curve. The spot price
may then be interpreted as the futures curve price level at 0 maturity 1.

Empirical evidence suggests that the volatility of the forward price dynamics can be
approximated by a negative exponential form. A good approximation for the overall
volatility function can usually be found using the general function

σ(α, t, T ) = σ1e
−α(T−t) + σ2. (14)

Unfortunately, this will lead to a non-Markovian pricing framework. In order to
obtain a more tractable model, the negative exponential,

σ(α, t, T ) = σe−α(T−t), (15)

suggested by the single factor Schwartz model will be used. One sees that equation
(15) is a definite sacrifice. The market data implies that long-term contracts will
have a non-zero, constant volatility. By contrast, equation (15) decays to zero in
the long-run (seen by examining the limit). This gives the impression that longer
maturity contracts are more stable than they actually are.

The expected drift of a forward rate is zero (remember forward rate behaves like asset
that pay a dividend equal to the risk-free rate).

The observations discussed above lead to the following stochastic differential equation
(SDE): 2

dF (t, T )

F (t, T )
= σe−α(T−t)dz∗(t) (16)

The mean reversion rate, α, describes how fast the spot volatility will decline to its
long-term level (seen by taking the limit as maturity, T , tends toward infinity). This
framework is called a “one factor model” since the only input needed to work out the
forward curve is the single factor:

σe−α(T−t).

The log forward dynamics may be expressed as

d(lnF (t, T )) = −1

2
σ2e−2α(T−t)dt+ σe−α(T−t)dz∗(t). (17)

1Throughout this section, the term futures and forward will be treated equivalently.
2Notice that the dynamics are defined in the risk-neutral measure Q∗

T .
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Integrating equation (17) yields

lnF (t, T ) = X0 − 1

2

∫ t

0
σ2e−2α(T−u)du+

∫ t

0
σe−α(T−u)dz∗(u). (18)

Which leads to the forward price as a function of the single factor volatility

F (t, T ) = F (0, T )e(−
1
2

∫ t

0
σ2e−2α(T−u)du+

∫ t

0
σe−α(T−u)dz∗(u)), (19)

where X0 is a constant such that F (0, T ) = eX0 . It can easily be verified that the
forward price, F (t, T ), in this framework is indeed an {F t, Q∗

T}-martingale. However,
this will not necessarily be the case for any given volatility function, σ(t, T ).

By taking the limit as maturity approaches the present we arrive at the spot price,

S(t) = F (t, t) = F (0, t)e(−
1
2

∫ t

0
σ2e−2α(t−u)du+

∫ t

0
σe−α(t−u)dz∗(u)). (20)

and

lnS(t) = lnF (0, t) − 1

2

∫ t

0
σ2e−2α(t−u)du+

∫ t

0
σe−α(t−u)dz∗(u), (21)

The dynamics of the spot price S(t) are now calculated using Itô’s Lemma;

d(lnS(t)) =
{
∂lnF (0, t)

∂t
−
∫ t

0
σe−α(t−u) ∂(σe

−α(t−u))

∂t
du+

∫ t

0

∂(σe−α(t−u))

∂t
dz∗(u)

}
dt+ σdz∗(t)

=
{
∂lnF (0, t)

∂t
+ α

[∫ t

0
σ2e−2α(t−u)du−

∫ t

0
σe−α(t−u)dz∗(u)

]}
dt+ σdz∗(t). (22)

From equation (21) we note that

∫ t

0
σe−α(t−u)dz∗(u) = lnS(t) − lnF (0, t) +

1

2

∫ t

0
σ2e−2α(t−u)du (23)

Equations (22) and (23) combine for the desired result.

d(lnS(t)) = {∂ lnF (0, t)

∂t
+ α[

∫ t

0
σ2e−2α(t−u) − (lnS(t) − lnF (0, t)+

1

2

∫ t

0
σ2e−2α(t−u)du)]}dt+ σdz∗(t) (24)

dS(t)

S(t)
=
{
∂lnF (0, t)

∂t
+ α[lnF (0, t) − lnS(t)] +

σ2

4
(1 − e−2αt)

}
dt+ σdz∗(t) (25)
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From here it is straight forward to see how the one factor model is an extension of the
Schwartz single factor model (which in hind sight should be described beforehand).
Recall that the Schwartz single factor model is given by

dS(t)

S(t)
= α(µ̂(t) − lnS(t))dt+ σdz∗(t) (26)

The drift term in the Schwartz model, µ̂, in equation (3) is simply set as

µ̂(t) =
1

α

∂lnF (0, t)

∂t
+ lnF (0, t) +

1

α

σ2

4
(1 − e−2αt) (27)

So far, the spot and forward curve prices and dynamics have all been derived from
the forward return dynamics. As a final step, the forward curve evolution is fitted to
the spot price so that the forward curve is consistent with the observed market data.
This is seen by observing that equation (23) may be expressed as∫ t

0
σe−α(t−u)dz∗(u) = ln

(
S(t)

F (0, T )

)
+
σ2

4α
(1 − e−2αt),

and that the spot price S(t) (in equation (20)) may be expressed as

F (t, T ) = S(t)e{−
1
2

∫ t

0
σ2e−α(T−t)du+

∫ t

0
σe−α(T−t)dz∗(u)}.

From equation (23) one notes that∫ t

0
σe−α(T−u)dz∗(u) = e−α(T−t)

[
ln

(
S(t)

F (0, t)

)
+
σ2

4α
(1 − e−2αt)

]
.

Combining these two equations, one arrives at a function for the forward price

F (t, T ) = F (0, T )

(
S(t)

F (0, t)

)exp(−α(T−t))

·

exp

(
−σ2

4α
e−αt(e2αt − 1)(e−αT − e−αt)

)
. (28)

The result shows that the forward prices can be obtained from the spot price (ap-
proximated by the current price of the front month contract), the volatility estimate,
and mean reversion rate estimate.

These curves fit the market data much better than the single factor Schwartz curves
found before.

The multi-factor forward curve model

The multi-factor forward curve model can be viewed as a generalization of the one
factor model described in the previous section. The dynamics of the forward curve
are defined by the SDE

dF (t, T )

F (t, T )
=

n∑
i=1

σi(t, T )dzi(t). (29)
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In this setup, F (t, T ) is the forward price at time t with maturity date T and σi(t, T )
is the volatility function associated with the Brownian motion z∗i (t). Furthermore,
the n Brownian motions are assumed independent (i.e. dz∗i (t)dz

∗
j (t) = 0 for i �= j)

and interest rates are assumed to be deterministic so that futures and forward prices
are the same.

As in the One Factor model, equation (29) is written in terms of the natural log
and integrated to give F (t, T ). From equation (29), the dynamics of lnF (t, T ) are
expressed as

d(lnF (t, T )) =
n∑

i=1

{
−1

2
σ2

i (u, T )du+ σi(u, T )dz∗i (u)
}

Integrating both sides of this equation yields:

lnF (t, T ) − lnF (0, T ) =
n∑

i=1

{
−1

2

∫ t

0
σ2

i (u, T )du+
∫ t

0
σi(u, T )dz∗i (u)

}
.

Finally, the exponential is taken to arrive at the desired result,

F (t, T ) = F (0, T )exp

[
n∑

i=1

{
−1

2

∫ t

0
σ2

i (u, T )du+
∫ t

0
σi(u, T )dz∗i (u)

}]
. (30)

As in the One Factor model, the spot price is expressed by setting the maturity T to
t

S(t) = F (0, t)exp

[
n∑

i=1

{
−1

2

∫ t

0
σ2

i (u, t)du+
∫ t

0
σi(u, t)dz

∗
i (u)

}]
(31)

From equation (31) the natural logarithm of the spot price is computed,

lnS(t) = lnF (0, t) − 1

2

n∑
i=1

∫ t

0
σ2

i (u, t)du+
n∑

i=1

∫ t

0
σi(u, t)dz

∗
i (u). (32)

Since the explicit form of the functions σi(t, T ) have not been given, it is further
assumed that they satisfy the Itô isometry such that

E∗
[(∫ t

0
σi(u, T )dz∗i (u)

)2
]
<∞ ∀ t. (33)

Where the volatility functions are square integrable martingales and hence, their
expectations are 0. In this way equation (32) has mean

E∗[lnS(t)] = lnF (0, t) − 1

2

n∑
i=1

∫ t

0
σ2

i (u, t)du, (34)

and variance
V ar(lnS(t)) = E∗[(lnS(t))2] − E[lnS(t)]2
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= E∗



{

lnF (0, t) − 1

2

n∑
i=1

∫ t

0
σ2

i (u, t)du+
n∑

i=1

∫ t

0
σi(u, t)dz

∗
i (u)

}2



−
(

lnF (0, t) − 1

2

n∑
i=1

∫ t

0
σ2

i (u, t)du

)2

(35)

= E∗


( n∑

i=1

∫ t

0
σi(u, t)dz

∗
i (u)

)2

 .

where we used the fact that the zi(t) are independent. Using Ito’s isometry one sees
that this yields

V ar(S(t)) =
n∑

i=1

∫ t

0
σ2

i (u, t)du. (36)

The dynamics od Sare finally given by

dS(t)

S(t)
=

[
∂F (0, t)

∂t
−

n∑
i=1

∫ t

0
σi(u, t)

∂σi(u, t)

∂t
+

n∑
i=1

∫ t

0

∂σi(u, t)

∂t
dz∗i (u)

]
dt

+

[
n∑

i=1

σi(t, t)dz
∗
i (t)

]
(37)

Unlike the One Factor model in section (), the solution of the forward price SDE
cannot necessarily be found as in equation (28). The choice of the volatility functions,
σi(t, T ), completely determine the tractability of the multi-factor model. This choice
allows one to also find equivalent models for the Schwartz single factor and two factor
frameworks (Clewlow and Strickland 1999).
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Weather Derivatives

Weather derivatives are usually structured as swaps, futures, and call/put options
based on different underlying weather indices. Some commonly used indices are
heating and cooling degree-days rain and snowfall. The degree-days indices are most
often used. We start with some basic definitions and terminology.

Given a specific weather station, let T i
max and T i

min denote the maximal and minimal
temperatures (in degrees Celsius) measured on day i. We define the temperature for
day i as

Ti =
Tmax + Tmin

2

The heating degree-days, HDDi and the cooling degree-days, CDDi, generated on
that day are defined as

HDDi = max{18 − Ti, 0}
and

CDDi = max{Ti − 18, 0}
respectively.

It has become industry standard in the US to set this reference level at 65 Fahrenheit
(18 C). The names heating and cooling degree days originate from the US energy
sector. The reason is that if the temperature is below 18C people tend to use more
energy to heat their homes, whereas if the temperature is above 18C people start
turning their air conditioners on, for cooling.

Most temperature based weather derivatives are based on the accumulation of HDDs
or CDDs during a ceratin period, usually one calender month or a winter/summer
period. Typically the HDD season includes winter months from November to March
and the CDD season is from May to September. April and October are often referred
to as the shoulder months.

The CME offers trading with futures based on the CME Degree Day Index, which
is the cumulative sum of daily HDDs or CDDs during a calendar month, as well as
options on these futures. The CME Degree Day Index is currently specified for eleven
US cities.

The notional value of one contract is $100 times the Degree Day Index. The futures
are cash-settled

A CME HDD or CDD call option is a contract which gives the owner the right, but
not the obligation, to buy one HDD/CDD futures contract at a specific price, usually
called the strike or exercise price. The HDD/CDD put option analogously gives the
owner the right, but not the obligation, to sell one HDD/CDD futures contract. On
the CME the options on futures are European style, which means that they can only
be exercised at the expiration date.

Outside the CME there are a number of different contracts traded on the OTC
market. One common type of contract is the option. There are two types of options,
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calls and puts. The buyer of a HDD call, for example, pays the seller a premium
at the beginning of the contract. In return, if the number of HDDs for the contract
period is greater than the predetermined strike level the buyer will recieve a payout.
The size of the payout is determined by the strike and the tick size. The tick size is
the amount of money that the holder of the call receives for each degree-day above
the strike level for the period. Often the option has a cap on the maximum payout
unlike, for example, traditional options on stocks.

A generic weather option can be formulated by specifying the following parameters:

• The contract type (call or put)

• The contract period (e.g. January 2001)

• The underlying index (HDD or CDD)

• An official weather station from which the temperature data are obtained

• The strike level

• The tick size

• The maximum payout (if there is any)

To find a formula for the payout of an option, let K denote the strike level and α the
tick size. Let the contract period consist of n days. Then the number of HDDs and
CDDs for that period are

Hn =
n∑

i=1

HDDi

Cn =
n∑

i=1

CDDi

respectively.

The payout of an uncapped HDD call is

X = αmax(Hn −K, 0)

The payouts for similar contracts like HDD puts and CDD calls/puts are defined in
the same way.

Swaps are contracts in which two parties exchange risks during a predetermined
period of time. In most swaps, payments are made between the two parties, with
one side paying a fixed price and the other side paying a variable price. In one type
of weather swap that is often used, there is only one date when the cash-flows are
swapped, as opposed to interest rate swaps, which usually have several swap dates.
The swaps with only one period can therefore be thought of as forward contracts.
Often the contract periods are single calendar months or a period such as January-
March.
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In the case of a standard HDD swap, the parties agree on a given strike of HDDs for
the period, and the amount swapped is, for example, 10000 euro/HDD away from the
strike. Usually there is also a maximum payout corresponding to 200 degree days.

The main difference between derivatives and insurance contracts is that the holder
of an insurance contract has to prove that he has suffered a financial loss due to
weather in order to be compensated. If he is not able to show this, the insurance
company will not pay him any money. Payouts of weather derivatives are based only
on the actual outcome of the weather, regardless of how it affects the holder of the
derivative. One does not need to have any weather sensitive production, for example,
to buy and benefit from a weather derivative. As any derivatives, these contracts can
be bought for mere speculation.

Insurance contracts are usually designed to protect the holder from extreme weather
events such as earthquakes and typhoons, and they do not work well with the un-
certainties in normal weather. Weather derivatives, on the other hand, can be con-
structed to have payouts in any weather condition.

A customer may wish to buy a strip of CDD or HDD contracts spanning the entire
cooling season of April through October. Each contract has a specified strike for
each month. Each option is listed with a price for each range of strikes. In the OTC
market, it is common for options to be written on a multimonth period with a single
strike over the entire period. The strike is set relative to the normal climatological
values. The normal value is a matter of debate. The market currently seems to be
converging on the average over the past 10-15 years. Clearly there are many cases in
which the 15- year average may not be ideal (global warming may be an issue).

Pricing weather options requires an historical temperature database and application
of statistical methods for fitting distribution functions to data. Historical data is
available from the National Oceanic and Atmospheric Administration (NOAA). The
Midwestern Climate Center (MCC) has an online subscriber database that provides
monthly-total CDDs and HDDs for all U.S. cities and provides a useful resource for
those participating in the market. Note that the standard used to calculate CDDs
and HDDs is different in the weather market than what is used by the atmospheric
community such as the National Weather Service (NWS) and NOAA. NWS rounds
the average daily temperature to the nearest degree for each day, whereas the weather
market does not round temperature and keeps one decimal place in the daily CDDs
or HDDs.

Compared with ordinary financial derivatives, temperature derivatives are very unique
in terms of valuation. To start with, the underlying is a meteorological variable rather
than a traded asset. The conventional risk-neutral valuation by no-arbitrage does not
apply (in fact in practice this method is used!). In addition, being a meteorological
variable, temperature follows a predictable trend, especially over a longer horizon.
This is in sharp contrast with most of the financial variables. The predictability does
not suggest arbitrage opportunities, though. Instead, it implies that any reasonable
pricing model must incorporate this feature. The unique nature of the temperature
variable brings about two key issues: accurate modeling of the underlying and the
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assessment of the market price of risk.

Similar to stochastic interest rate and stochastic volatility, temperature as a non-
tradeable variable will also carry a market price for its risk. This market price of
risk will in turn filter into the fair value of a temperature derivative. The academic
literature only begins to make progress in valuing this new class of derivative securities
(see, e.g., Cao and Wei [2003]). From the modeling perspective, the existing valuation
methods can be loosely classified into three categories: 1) insurance or actuarial
valuation, 2) historical burn analysis, and 3) valuation based on dynamic models.

Insurance or Actuarial Method As is well known, this methodology is widely
used by companies specializing in property, automobile, health and life insurance,
to name a few. Statistical analysis based on historical data is the backbone of this
method. A probabilistic assessment is attached to the insured event and a fair pre-
mium is calculated accordingly. In the case of weather derivatives, this method is
less applicable for most contracts since the underlying variables (e.g., temperature,
wind and humidity) tend to follow a recurrent, predictable pattern. Nonetheless, if
the contract is written on rare weather events such as extreme heat or coldness, then
the actuarial method will be very useful. In fact, one may even argue that this is
the only appropriate method in this case. For instance, using a diffusion process to
model the temperature will be misguided if the main interest is in extreme events.

Historical Burn Analysis

This method is perhaps the simplest in terms of implementation, and as a result, is
the most probable to cause large pricing errors. In a nutshell, the method of historical
burn analysis evaluates the contract against historical data and takes the average of
realized payoffs as the fair value estimate. For instance, suppose a call option is
written on a citys CDDs for the month of July, and suppose we have 20 years of daily
temperatures. To apply the historical burn analysis method, for each July of the
past 20 years, we calculate the option payoff using the realized CDDs. The average
of the 20 payoffs is the estimate for the call option value. Thus this methods key
assumption is that, the past always reflects the future on average. To be more precise,
the method assumes that the distribution of the past payoffs accurately depicts the
future payoffs distribution.

If we have only 20 payoff observations in the above example, which can hardly capture
the complete characteristics of the true distribution. It is tempting to argue that one
should use as long a time series as possible to enhance accuracy. But this is a one-
sided argument. Surely, using more data will cover more temperature variations.
However, a derivative securitys payoff depends on the future temperature behavior,
which may be quite different from history. This is especially so if the maturity of the
derivative security is short. The commonly accepted sample length in the industry
appears to be between 20 and 30 years. Furthermore, one could combine the burn
analysis with temperature forecasts to arrive at a more representative price estimate.

Valuation Based on Dynamic Models of Temperature Behavior

In contrast to previous methods, a dynamic model directly simulates the future be-
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havior of temperature. This is achieved by postulating a stochastic process for the
temperature, which could be continuous or discrete. The continuous process usually
takes the following mean-reversion form,

dY (t) = β[θ(t) − Y (t)]dt+ σ(t)dz(t)

where Y (t) is the current temperature, θ(t) is the deterministic long-run level of the
temperature, β is the speed at which the instantaneous temperature reverts to the
long-run level θ(t), σ(t) is the volatility which is season-dependent, and z(t) is a
Wiener process which models the temperatures random innovations. The functional
forms for θ(t) and σ(t) can be specified based on careful statistical analyses.

Once the process in is estimated, one can then value any contingent claim by taking
expectation of the discounted future payoff, i.e.,

X = e−r(T−t)E[g(t, Yt)]

where X is the current value of the contingent claim, r is the riskfree interest rate,
T is the maturity of the claim, and g(t, Yt) is the payoff at time.

Given the complex form of θ(t) and σ(t) and the path-dependent nature of most
payoffs, the formula usually does not have closed-form solutions. Monte Carlo sim-
ulations must be used. There is a main drawbacks of this continuous setup, that is
it allows no place for the market price of risk. Instead, a risk-neutral valuation is
imposed without any theoretical justification.

Modelling temperature

The goal is to find a stochastic process describing the temperature movements. When
we later on want to price weather derivatives based on temperature it will be of great
use to have an idea of how the temperature process behaves.

The mean temperature clearly show a strong seasonal variation in the temperature.
It should be possible to model the seasonal dependence with, for example, some
sine-function. This function would have the form

sin(ωt+ φ)

Moreover, a closer look at the data series reveals a positive trend in the data. It is
weak but it does exist. The mean temperature actually increases each year. There
can be many reasons to this. One is the fact that we may have a global warming
trend all over the world. Another is the so called urban heating effect, which means
that temperatures tend to rise in areas nearby a big city, since the city is growing and
warming its surroundings. We will assume, as a first approximation, that the warming
trend is linear. Summing up, a deterministic model for the mean temperature at time
t,

Tm
t = A+Bt+ Csin(ωt+ φ)

Unfortunately temperatures are not deterministic. Thus, to obtain a more realistic
model we now have to add some sort of noise to the deterministic model. One choice
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is a standard Wiener process. The daily temperature differences are well fitted by a
normal distribution, though the probability of getting small differences in the daily
mean temperature will be slightly underestimated. A closer look at the data series
reveals that the volatility of the temperature varies across the different months of
the year, but is nearly constant within each month. Especially during the winter the
volatility is much higher than during the rest of the year. Therefore, we make the
assumption that σt t is a piecewise constant function, with a constant value during
each month.

We also know that the temperature cannot, for example, rise day after day for a long
time. This means that our model should not allow the temperature to deviate from
its mean value for more than short periods of time. In other words, the stochastic
process describing the temperature we are looking for should have a mean-reverting
property. Putting all the assumptions together, we model temperature by a stochastic
process solution of the following SDE

dTt = a(Tm
t − Tt)dt+ σtdWt

where a determines the speed of the mean-reversion. The solution of such an equation
is usually called an Ornstein-Uhlenbeck process.

The problem with Eq.(3.4) is that it is actually not reverting to Tm
t in the long run.

To obtain a process that really reverts to the mean we have to add the term

dTm
t

dt
= B + ωCcos(ωt+ φ)

to the drift term so that

dTt =

[
dTm

t

dt
+ a(Tm

t − Tt)

]
dt+ σtdWt

Starting at T = x the solution of this model gives

Tt = (x− Tm
s )e−a(t−s) + Tm

t +
∫ t

s
e−a(t−u)σudWu

Tm
t = A+Bt+ Csin(ωt+ φ)

Pricing weather derivatives

The market for weather derivatives is a typical example of an incomplete market,
because the underlying variable, the temperature, is not tradable. Therefore we
have to consider the market price of risk lambda, in order to obtain unique prices
for such contracts. Since there is not yet a real market from which we can obtain
prices, we assume for simplicity that the market price of risk is constant. Note that
estimating λ is a major problem in weather derivatives. Furthermore, we assume
that we are given a risk free asset with constant interest rate r and a contract that
for each degree Celsius pays one unit of currency. Thus, under a martingale measure
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Q, characterized by the market price of risk λ, our price process also denoted by Tt

satisfies the following dynamics:

dTt =

[
dTm

t

dt
+ a(Tm

t − Tt) − λσt

]
dt+ σtdWt

Since the price of a derivative is expressed as a discounted expected value under
martingale measure Q, we start by computing the expected value and the variance
of Tt under the measure Q. Indeed, as a Girsanov transformation only changes the
drift term, the variance of Tt is the same under both measures. Therefore,

V ar[Tt|Fs] =
∫ t

s
e−2a(t−u)σu

udWu

Moreover
EP [Tt|Fs] = (Ts − Tm

s )e−a(t−s) + Tm
t

and thus

EQ[Tt|Fs] = (Ts − Tm
s )e−a(t−s) + Tm

t −
∫ t

s
λe−a(t−u)σudWu

Tt = (x− Tm
s )e−a(t−s) + Tm

t +
∫ t

s
λe−a(t−s)σudWu

Integrating we find

EQ[Tt|Fs] = (Ts − Tm
s )e−a(t−s) + Tm

t − λσi

a
(1 − e−a(t−s))

V ar[Tt|Fs] =
σ2

i

2a
(1 − e−2a(t−s))

For later use, we need to compute the covariance of the temperature between two
different days. For 0 ≤ s ≤ t ≤ u,

Cov[Tt, Tu|Fs] = e−a(u−t)V ar[Tt|Ft]

Suppose now that t1 and tn denote the first and last day of a month and start the
process at some time s from the month before [t1, tn]. To compute the expected value
and variance of Tt in this case, we split the integrals and into two integrals where σ
is constant in each one of them, and equal to σi and σj respectively.

EQ[Tt|Fs] = (Ts − Tm
s )e−a(t−s) + Tm

t −
∫ t1

s
λe−a(t−u)σidWu +

∫ t

t1
λe−a(t−u)σjdWu

We then get

EQ[Tt|Fs] = (Ts − Tm
s )e−a(t−s) + Tm

t − λ(σi − σj)

a
e−a(t−t1) +

λσi

a
e−a(t−s) − λσj

a

and the variance is

V ar[Tt|Fs] =
(σ2

i − σ2
j )

2a
e−2a(t−t1) − σ2

i

2a
e−2a(t−s) +

σ2
j

2a
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Pricing a heating degree day option

Recall from that the payout of the HDD call option is of the form

X = αmax(Hn −K, 0)

where, for simplicity we take α = 1 unit of currency/HDD and

Hn =
n∑

i=1

max(18 − Tti , 0)

The contract (4.10) is a type of an arithmetic average Asian option. In the case of a
log-normally distributed underlying process, no exact analytic formula for the price
of such an option is known. Here we have an underlying process which is normally
distributed, but the maximum function complicates the task to find a pricing formula.
Suppose that we want to find the price of a contract whose payout depends on the
accumulation of HDDs during some period in the winter, for example the month of
January in some cold country. In this case the probability that max(18 − Tti , 0) = 0
should be extremely small on a winter day. Therefore, for such a contract we may
write

Hn = 18n−
n∑

i=1

Tti

The distribution of this is easier to determine. We know that Tti all samples from an
Ornstein-Uhlenbeck process, which is a Gaussian process. Since the sum in Hn is a
linear combination of these elements, Hn is also Gaussian.

It only remains to compute the first and second moments of Hn.

EQ[Hn|Ft] = EQ[18n−
n∑

i=1

Tti |Ft = 18n−
n∑

i=1

EQ[Tti |Ft]

and

V ar[Hn|Ft] =
n∑

i=1

V ar[Tti |Ft] + 2
∑
j �=i

n∑
i=1

Cov[Tti , Ttj |Ft]

Now, suppose that we have made the calculations above, and found that

EQ[Hn|Ft] = µn

and
V ar[Hn|Ft] = σ2

n

Thus
Hn ∼ N(µn, σ

2
n)

Then the price at t ≤ t1 of the claim is

c(t) = e−r(tn−t)EQ[(Hn −K)+|Ft] = e−r(tn−t)

[
(µn −K)N(−αn) +

σn√
2π
e−α2

n/2

]
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where αn = (K − µn)/σn)

Similarly for the put whose payoff is (K −Hn)+ we would find

p(t) = e−r(tn−t)

[
(µn −K)N(αn) −N

(
−µn

σn

)
+

σn√
2π

(e−α2
n/2 − e−

1
2
µ2

n/σ2
n)

]

The formulas above hold primarily for contracts during winter months, which typi-
cally is the period November-March. During the summer we cannot use these for-
mulas without restrictions because the mean temperatures are very close to, or even
higher than, 18o C. For such contracts we could use the method of Monte Carlo sim-
ulations. The reference level 18C originates from the US market, but it seems to be
used also in Europe. Perhaps it could be more interesting to base the derivatives on
some reference level which is closer to the expected mean temperature for the period.

Maximum payouts In practice many options often have a cap on the maximum
payout. The reason is to reduce the risks that extreme weather conditions would
cause. An option with a maximum payout could be constructed from two options
without maximum payouts. If we enter a long position in one option and a short
position in another option with a higher strike value, we get a payout function that
would look capped.

In-period valuation

Often one would like to find the price of the option inside the contract period. Suppose
we want to find the the price at a time ti s.t. t1 ≤ ti ≤ tn. We could then rewrite
the variable Hn as Hn = Hi +Hj where Hi is known at ti and Hj is stochastic. The
payout of the HDD call option can then be rewritten as

X = (Hn −K)+ = (Hi +Hj −K)+ = (Hj − K̃)+

where K̃ = K−Hi An in-period option can thus be valued as an out-of-period option
with transformed strike as above.



Giulia Iori, Financial Derivatives 98

Appendix A: Review of probability concepts

Set

A set can be thought of as a well-defined collection of objects considered as a whole.
The objects of a set are called elements or members. The elements of a set can be
anything: numbers, people, letters of the alphabet, other sets, and so on. Sets are
conventionally denoted with capital letters, A, B, C, etc. Two sets A and B are said
to be equal, written A = B, if they have the same members.

A set can also have zero members. Such a set is called the empty set (or the null set)
and is denoted by the symbol φ.

If every member of the set A is also a member of the set B, then A is said to be a
subset of B, written A ⊂ B, also pronounced A is contained in B.

Union Let A and B be any two sets. The set which consists of all the points which
are in A or B or both is defined the union and is written A ∪B.

Intersection Let A and B be any two sets. The set which consists of all the points
which are both in A and B is defined the intersection and is written A ∩B or AB.

Let A1, A2, · · ·An ⊂ U :

Disjoint if Ai ∩ Aj = φ for any i, j.

A set U is called open if, intuitively speaking, you can ”wiggle” or ”change” any
point x in U by a small amount in any direction and still be inside U. In other words,
if x is surrounded only by elements of U; it can’t be on the edge of U.

As a typical example, consider the open interval (0,1) consisting of all real numbers
x with 0 < x < 1. If you ”wiggle” such an x a little bit (but not too much), then the
wiggled version will still be a number between 0 and 1. Therefore, the interval (0,1)
is open. However, the interval (0,1] consisting of all numbers x with 0 < x ≤ 1 is not
open; if you take x = 1 and wiggle a tiny bit in the positive direction, you will be
outside of (0,1].

A closed set is a set whose complement is open.

If A ⊂ U then the complement of A in U, denoted by AC , or Ā is:

AC = U − A

a Σ-algebra (or Σ-field) over a set X is a family of subsets of X that is closed under
countable set operations; Σ-algebras are mainly used in order to define measures on
X.
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0.1 Function

A function is a relation, such that each element of a set (the domain) is associated
with a unique element of another (possibly the same) set (the codomain).
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Probability Systems

We need to acquire an understanding of the different parts of a probability system
and how they fit together. In order to make some sense of it all, we shall find it useful
to think of a probability system as a physical experiment with a random outcome.
To be more concrete, we shall use a specific example to guide us through the various
definitions and what they signify.

Suppose that we toss a coin three times and record the results in order. This is a
very simple experiment, but note that we should not necessarily assume that the coin
toss is fair, with an equally likely outcome for heads or tails. There can, in principle,
be many different probabilities associated with the same physical experiment. This
will have an impact on how we price derivatives.

Sample Space

The basic entity in a probability system is the sample space, usually denoted Ω, which
is a set containing all the possible outcomes of the experiment. If we denote heads
by H and tails by T , then there are 8 different possible outcomes of the coin-tossing
experiment, and they define the sample space as follows:

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

Definition:

The sample space Ω = {ωi}N
i=1 is the set of all possible outcomes of the experiment.

Note that we are assuming that the sample space is finite. This is applicable to the
discrete time formalism that we will develop in the binomial model but will have to
be modified for the continuous time formalism.

Event Space

We are eventually going to want to talk about the probability of a specific event
occurring. Is the sample space, simply as given, adequate to allow us to discuss such
a concept? Unfortunately not.

This is because we want to ask more than just,

What is the probability that the outcome of the coin toss is a specific element of the
sample space.

We also want to ask,

What is the probability that such-and-such specific events occur.

In order to be able to answer this, we need the concept of the set of all the events
that we are interested in. This is called the event space, usually denoted Σ.
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What conditions should an event space satisfy? The most basic event is Ω itself, that
is, the event that one of the possible outcomes occurs. This event has probability
one, that is, it always happens. It would thus make sense to require the event space
to contain Ω.

Likewise, we shall assume that the null event Φ, which occurs with probability zero,
is also in the event space.

Next, suppose that the events A = {HTT, THH} and B = {HTH,HHH,HTT} are
elements of Σ. It is natural to be interested in the event that either A or B occurs.
This is the union of the events, A∪B = {HTT, THH,HTH,HHH}. We would like
Σ to be closed under the union of two of its elements.

Finally, if the event C = {HHH,HTH,HTT} is an element of Σ, then the prob-
ability of it occurring is one minus the probability that the complementary event
Ω − C = {HHT, TTT, TTH, THT, THH} occurs. Hence if an event is in Ω, we
would also like its complement to be in Ω. We can summarise the definition of the
event space as follows.

Definition: The event space Σ is a set of subsets of the sample space Ω, satisfying
the following conditions:

1. Ω ∈ Σ

2. if A,B ∈ Σ, then A ∪B ∈ Σ

3. if A ∈ Σ, then Ω − A ∈ Σ

Note that for our purposes, we can take Σ to be the power set (the set of all subsets)
of Ω. The power set of our example system is perhaps just slightly too large to
comfortably write out. It contains 28 = 256 elements.

The system consisting of the sample space and the event space (Ω,Σ) might appro-
priately be called a possibility system, as opposed to a probability system because
all that it tells us are the possible outcomes of our experiment. It contains no infor-
mation about how probable each event is. The so-called probability measure is an
additional ingredient, that must be specified in addition to the pair (Ω,Σ).

0.2 Probability Measure

Now suppose that we want to assign a probability to each event in Σ. We can do
this by means of a probability measure P : Σ → [0, 1]. For any event A ∈ Σ , P[A]
is the probability that the event A occurs. For example, if the coin is fair, then the
probability of any event XY Z occurring (where X, Y , Z can be either H or T) is
clearly 1/8.

Now, what conditions should we place on a probability measure? We have already
constrained its values to lie between zero and one. Since the event Ω always occurs,
its probability is one. Finally, if we have two disjoint sets, then the probability of
their union occurring should be equal to the sum of the probabilities of the disjoint
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sets. For example,

P [{HHH, TTT}] = Prob[{HHH}] + Prob[{TTT}] =
1

4

Definition: A probability measure P is a function P → [0, 1] satisfying

1. P [A] > 0 for every A ∈ Σ

2. P [Ω] = 1

3. if A,B ∈ Ω and A ∩ B = Φ, then P [A ∪ B] = P [A] + P [B].

Taken together, the sample space, event space and probability measure form a so-
called probability system, denoted P = (Ω,Σ, P ).

We can in principle consider various probability measures on the same sample and
event spaces (Ω,Σ). This turns out to be very useful in financial analysis.

In our coin tossing example, we have already considered the probability measure P
that we obtain if the coin that we are tossing is fair. However, we could also define a
probability measure Q : Σ → [0, 1] that is based on an unfair coin. Suppose that for
the unfair coin we get heads with probability 1/3, and tails with probability 2/3.

Then the probability measure is defined by the probabilities

Q({HHH}) = 1/27

Q({HHT}) = Q({HTH}) = Q({THH}) = 2/27

Q({HTT}) = Q({TTH}) = Q({THT}) = 4/27

Q({TTT}) = 8/27.

Both measures are, in principle, valid to consider, so that when we are talking about
probabilities related to the coin tossing, we must specify whether we are in the prob-
ability system P = (Ω,Σ, P ) or in the probability system Q = (Ω,Σ, Q) or possibly
in some other system based on another weighting of the coins.

Random Variables

A random variable is a real-valued function X defined on the sample space Ω. Thus
X : Ω → R assignes to each element ωi of Ω an element of R, that is, a real number.
Even though the function is itself deterministic, that is, if we give X a definite input
then we get a definite output, its argument ωi is the random outcome of our physical
experiment and hence X(ωi) is also random. For example, X could be the function
that counts the numbers of heads,

X({HHH}) = 3

X({HHT}) = X({HTH}) = X({THH}) = 2

X({HTT}) = X({TTH}) = X({THT}) = 1
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X({TTT}) = 0.

Any function X is defined independently of any probability measure. Thus we could
change probability measures from P to Q, and the values of X would be unaffected.
However, what would be affected by a change of probability measure is the probability
that X would take on some given value. In particular the expectation of X, which
is the probability weighted sum over the sample space of the possible values of the
random variable, will depend on the probability measure that we are using. This is
obvious from the formula for the expectation,

EP [X] =
n∑

i=1

P ({ωi})X(ωi)

which clearly depends in a crucial way on the probability measure. The notation
EP [X] is used to denote the expectation of the random variable X with respect to
the probability system P .

Going back to our example, suppose that we are in the fair-coin probability system P.
Then the expectation of the random variable X that returns the number of heads is
EP [X] = 1.5 while in the unfair weighted-coin system Q, the expectation is EQ[X] =
1

Recap

Definition : Probability Space A probability space is the triplet (Ω,Σ, P [·]) where
Ω is a sample space, Σ is the σ-algebra of events and P [·] is a probability function
with domain Σ.

Definition : Probability Function A probability function is a function with do-
main Σ (the σ-algebra of events) and counterdomain the interval [0, 1] which satisfy
the following axioms:

• P [A] ≥ 0 for every A in Σ

• P [Ω] = 1

• If A1, A2, ... is a sequence of mutually exclusive events in Σ than

P [
∞⋃
i=1

Ai] =
∞∑
i=1

P [Ai]

Properties of P [·]
Theorem: P [φ] = 0

Theorem: If A is an event in Σ, than P [Ā] = 1 − P [A]

Theorem 4: If A1 and A2 are events in Σ, than P [A1] = P [A1 ∩ A2] + P [A1 ∩ Ā2]

Theorem (Law of Addition): If A1 and A2 are events in Σ, than
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P [A1 ∪ A2] = P [A1] + P [A2] − P [A1 ∩ A2]

More generally for n events A1, A2, · · · , An

P [A1 ∪ · · · ∪An] =
∑n

j=1 P [Aj] −∑∑
i<j P [Ai ∩Aj] +

∑∑∑
i<j<k P [Ai ∩Aj ∩Ak] +

· · ·+ (−1)n+1P [A1 ∩A2 · · · ∩An]

If the events are mutually exclusive than P [A1 ∪ · · · ∪ An] =
∑n

j=1 P [Aj]

Theorem: If A1 and A2 are events is Σ and A1 ⊂ A2, than P [A1] ≤ P [A2]
Conditional Probability and Independence

Let A and B be two events in Σ of the given probability space (Ω,Σ, P [·]).
The conditional probability of event A given B, denoted P [A|B], is defined as

P [A|B] =
P [A ∩ B]

P [B]

if P [B] > 0 and is undefined is P [B] = 0.

In the following P (AB) is sometimes used as a short notation for P (A ∩B).

Properties:

Assume B ∈ Σ and P [B] > 0

Theorem: P [φ|B] = 0

Theorem: If A1, A2, · · · , An are mutually exclusive than P [A1 ∪ · · · ∪ An|B] =∑n
i=1 P [Ai|B]

Theorem : If A is an event in Σ, than P [Ā|B] = 1 − P [A|B]

Theorem: If A1 and A2 are events in Σ, than P [A1|B] = P [A1A2|B] + P [A1Ā2|B]

Theorem: If A1 and A2 are events in Σ, than P [A1 ∪A2|B] = P [A1|B] +P [A2|B]−
P [A1A2|B]

Theorem: If A1 and A2 are events is Σ and A1 ⊂ A2, than P [A1|B] ≤ P [A2|B]

Theorem: If A1, A2, · · ·An are events in Σ than P [A1 ∪ · · · ∪An|B] ≤ ∑n
j=1 P [Ai|B]

Theorem (Law of total probability): For a given probability space (Ω,Σ, P [·]),
if B1, B2, · · ·Bn is a collection of exhaustive and mutually disjoint events in Σ and
P [Bk] > 0 for k = 1, 2, · · ·n, than for every A in Σ P [A] =

∑n
j=1 P [A|Bj]P [Bj]

Corollary: P [A] = P [A|B]P [B] + P [A|B̄]P [B̄]

Theorem 16 (Bayes Formula): For a given probability space (Ω,Σ, P [·]), if
B1, B2, · · ·Bn is a collection of exhaustive and mutually disjoint events in Σ and
P [Bk] > 0 for
k = 1, 2, · · ·n, than for every A in Σ s.t. P [A] > 0

P [Bk|A] = P [A|Bk]P [Bk]∑n

j=1
P [A|Bj ]P [Bj]
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Corollary: P [B|A] = P [A|B]P [B]
P [A]

Theorem (Law of Multiplication): For a given probability space (Ω,Σ, P [·]), let
A1, A2, · · ·An be events in Σ for which P [A1 · · ·An] > 0, than

P [A1A2 · · ·An] = P [A1]P [A2|A1]P [A3|A1A2] · · · P [An|A1 · · ·An−1]

Corollary: P [AB] = P [A|B]P [B]

Definition: Independent Events For a given probability space (Ω,Σ, P [·]), let
A and B be two events in Σ. Events A and B are independent (or statistically
independent or stocastically independent) if and only if any of the following conditions
is satisfied:

• P [A|B] = P [A] if P [B] > 0

• P [B|A] = P [B] if P [A] > 0

• P [AB] = P [A]P [B]

Definition: Independence of several events For a given probability space (Ω,Σ, P [·]),
let A1, A2 · · ·An be n events in Σ. Events A1, A2 · · ·An are defined to be independent
if and only if

• P [AiAj] = P [Ai]P [Aj ] for i �= j

• P [AiAjAk] = P [Ai]P [Aj]P [Ak] for i �= j, k �= j, i �= k.

...

• P [∩n
i=1Ai] =

∏n
i=1 P [Ai]

Random Variables and Distribution

Definition: Random Variable. For a given probability space (Ω,Σ, P [·]), a ran-
dom variable denoted by X(·) is a function with domain Ω and counterdomain the
real line. The function X(·) makes some real number correspond to each outcome of
the experiment.

Example Consider the experiment of tossing a coin. Ω = {tail, head}. We can define
a random variable X so that X(ω) = 1 if ω = head and X(ω) = 0 if ω = tail.

Definition: distribution function. The distribution function a random variable
X, denoted FX(·), is that function with domain the real line and counterdomain the
interval [0, 1] which satisfies FX(x) = P [X ≤ x] = P [ω : X(ω) ≤ x] for every real
number x.

Properties

• FX(−∞) = 0 and FX(+∞) = 1

• FX(·) is a monotone non decreasing function, i.e. FX(a) ≤ FX(b) if a < b
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• FX(·) is continuous from the right, i.e. lim0<h→0 FX(x+ h) = FX(x)

Definition: Discrete Random Variable A random variable will be defined dis-
crete if the range of X is countable. If a random variable is discrete than the cumu-
lative distribution function will be defined to be discrete.

Definition: Discrete Density Function If X is a discrete random variable with
values x1, x2, ...xn, ... the function fX(x) = P [X = xj ] if x = xj , j = 1, ...n, ... and
zero eitherwise is defined the discrete density function of X.

Definition: Continuous Random Variable A random variable will be called
continuous if there exists a function fX(·) such that FX(x) =

∫ x
−∞ fX(u)du for every

real number x.

Definition: Probability Density Function If X is a continuous random variable
the function fX(·) in FX(x) =

∫ x
−∞ fX(u)du is called the probability density function

(or continuous density function).

Any function f(·) with domain the real line and counterdomain [0,∞) is defined to
be a probability density function iif:

• f(x) ≥ 0 for all x

• ∫∞
−∞ f(x)dx = 1

Expectations and moments

Definitions: Mean Let X be a random variable, the mean of X denoted by µX or
E[X] is defined by:

• E[X] =
∑

j xjfX(xj) id X is discrete with values x1, x2, · · ·xj , · · ·.
• E[X] =

∫∞
−∞ xfX(x)dx if X is continuous.

Definitions: Variance Let X be a random variable, the variance of X denoted as
σ2

X or var[X] is defined by

• var[X] =
∑

j(xj − µ)2fX(xj) id X is discrete with values x1, x2, · · ·xj , · · ·.
• var[X] =

∫∞
−∞(x− µX)2fX(x)dx if X is continuous.

Theorem var[X] = E[(X − E[X]2)] = E[X2] − (E[X])2

Definitions: Standard Deviation Let X be a random variable, the standard de-

viation of X, denoted by σX is defined as
√
var[X]

Definitions: Moments Let X be a random variable, the rth moments of X here
denoted as µr is defined by µr

X = E[Xr]

Definitions: Central Moments Let X be a random variable, the rth central mo-
ments of X here denoted as νr

X is defined by νr
X = E[(X − µX)r]
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Hence the mean is the first moment and the variance the second central moment.

ν3
X is called skewness; symmetrical distribution have ν3

X = 0.

µ3
X/σ

3 is called coefficient of skeweness.

ν4
X is called kurtosis and measure the flatness of a density near its center.

ν4
X/σ

4 − 3 is called coefficient of kurtosis. A Normal density has a coefficient of
kurtosis equal to zero.

Definitions: Moment generating function Let X be a random variable with
density fX(·). The moment generating function is defined as

m(t) = E[etX ] =
∫ ∞

−∞
etxfX(x)dx

If a moment generating function exists than

dr

dtr
m(t) =

∫ ∞

−∞
xretxfX(x)dx

Letting t→ 0 we have
dr

dtr
m(0) = E[Xr] = µr

X

A density function determines a set of moments (when they exist). But in general a
sequence of moments does not determine a unique distribution function. However it
can be proved that if a moment generating function exists than it uniquely determines
the distribution function.

Definitions: Expected Value of a function of a random variable Let X be a
random variable and g(·) a function with domain and counterdomain the real line.
The expected value of g(·) denoted E[g(X)], is defined

• E[g(X)] =
∑

j g(xj)fX(xj) id X is discrete with values x1, x2, · · ·xj , · · ·.
• E[g(X)] =

∫∞
−∞ g(x)fX(x)dx if X is continuous.

Chebyshev Inequality

Suppose E(X2) is finite, than

P [|X − µX | ≥ rσX ] = P [(X − µX)2 ≥ r2σ2
X ] ≤ 1

r2

The proof is not difficult. Let g(X) be a nonnegative function of the random variable
X with domain the real line; than for any k

P [g(X) ≥ k] ≤ E[g(X)]

k

Proof:

E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx =
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∫
x:g(x)≥k

g(x)fX(x)dx+
∫

x:g(x)≤k
g(x)fX(x)dx

≥
∫

x:g(x)≤k
g(x)fX(x)dx ≥

∫
x:g(x)≤k

kfX(x)dx

= kP [g(X) ≥ k]

Now let g(X) = (x− µX)2 and k = r2σ2
X and the Chebyshev inequality follows.

Remark:

P [|X − µX | ≤ rσX ] ≥ 1 − 1

r2

so that

P [µX − rσx < X < µX + rσx] ≥ 1 − 1

r2

that is, the probability that X falls within rσX units of µX is greater than or equal
to 1 − 1

r2 . For r = 2 one gets:

P [µX − 2σx < X < µX + 2σx] ≥ 3

4

or, for any random variable with finite variance at least three-fourth of the mass
of X falls within two standard deviation from its mean. The Chebyshev inequality
gives a bound, which does not depend on the distribution of X, for the probability of
particular events in terms of a random variable and its mean and variance.

Jensen Inequality Let X be a random variable with mean E[x] and let g(X) be a
convex function; than E[g(X)] ≥ g([E[X]). For example g(x) = x2 is convex; hence
E[X2] ≥ (E[X])2, which guaranties that the variance of X is non-negative.
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Important distributions

0.3 Discrete Distributions

• Binomial

• Poisson

0.4 Continuous Distributions

• Uniform

• Normal

• Exponential

• Gamma

Uniform distribution

x ∼ U(a, b)

Density

fX(x) =
1

b− a
I{x∈(a,b)}

Normal distribution

x ∼ N(µ, σ2)

Density

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2



Giulia Iori, Financial Derivatives 110

Discrete random variables

• Bernulli distribution

fX(x) = px(1 − p)(1−x)I{0,1}(x)

where 0 ≤ p ≤ 1

• Binomal distribution

fX(x) =

(
n

x

)
px(1 − p)(n−x)I{0,1,2,···,n}(x)

where 0 ≤ p ≤ 1 and n is a positive integer. The binomial coefficient
(

n
x

)
=

n!
(n−x)!x!

• Poisson

fX(x) =
e−λλ−x

x!
I{0,1,2,···}(x)

where λ > 0

Show that

• Bernulli distribution

E[x] = p var[X] = pq, mx(t) = pet + q

where q = 1-p

• Binomal distribution

E[x] = np var[X] = npq, mx(t) = (pet + q)n

• Poisson

E[x] = λ var[X] = λ, mx(t) = eλ(et−1)
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Uniform random variables

fX(x) =
1

b− a
I{a,x,b}

Show that

E[x] =
a+ b

2
var[X] =

(b− a)2

12
, mx(t) =

etb − eta

t(b− a)
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Normal random variables

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Let’s show that

I =
∫ ∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx = 1

Change variable y = (x−µ)
σ

I =
∫ ∞

−∞

1√
2π
e−

y2

2 dy

We do not know how to calculate I but we can calculate I2

I2 =
∫ ∞

−∞

1√
2π
e−

y2

2 dy
∫ ∞

−∞

1√
2π
e−

z2

2 dz

I2 =
1

2π

∫ ∞

−∞

∫ ∞

−∞
e

−(y2+z2)
2 dydz

In polar coordinate y = rcosθ, z = rsinθ, dydz = rdθdr

I2 =
1

2π

∫ ∞

0

∫ 2π

0
e

−r2

2 rdθdr =

1

2π
2π
∫ ∞

0
e

−r2

2 rdr =

−
∫ ∞

0
de

−r2

2 = 1

Hence I2 = 1 and also I = 1.

Exercise 1: Say X is N(µ, σ2). Derive the moment generating function of X.

mX(t) = E[etX ] = etµE[et(X−µ)] =

etµ
∫ ∞

−∞

1√
2πσ2

ex−µe−
1

2σ2 (x−µ)2dx =

etµ 1√
2πσ2

∫ ∞

−∞
e−

1
2σ2 [(x−µ)2−2σ2t(x−µ)]dx =

etµ 1√
2πσ2

∫ ∞

−∞
e−

1
2σ2 [(x−µ−σ2t)2−σ4t2]dx =

etµ+ 1
2
σ2t2 1√

2πσ2

∫ ∞

−∞
e−

1
2σ2 [(x−µ−σ2t)2]dx = etµ+ 1

2
σ2t2

From the moment generating function we can derive

mX(t) = etµ+ 1
2
σ2t2
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we can derive

E[X] = m′
X(0) = µ

var[X] = m′′
X(0) = E[X2] − E[X]2 = σ2

Exercise 2: Say X is N(µ, σ2), where

fX(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]

Derive the p.d.f. of W = eX .

Solution: We find the probability distribution function of W by first calculating its
(cumulative) distribution function, that is,

FW (w) = P (W ≤ w) = P (eX ≤ w).

Since the exponential function is an increasing function, we can take its inverse on
both sides of the last inequality to obtain

FW (w) = P (X ≤ logw) =
∫ log w

−∞

1√
2πσ

exp

[
−(x− µ)2

2σ2

]
dx, 0 < w.

Using Leibniz’s rule for differentiating an integral

d

dz

∫ b(z)

a(z)
f(x, z) dx =

∫ b(z)

a(z)

∂f(x, z)

∂z
dx+ f(b(z), z)

db(z)

dz
− f(a(z), z)

da(z)

dz

Therefore, the p.d.f for W is

fW (w) =
dFW

dw
(w) =

1√
2πσw

exp

[
−(logw − µ)2

2σ2

]
, 0 < w.

This distribution is called a lognormal distribution, for obvious reasons.

Exercise 3: Say logW ∼ N(µ, σ2). Show that

E[W ] = eµ+ 1
2
σ2

and
var[W ] = e2µ+2σ2 − e2µ+σ2

Solution:

Take X ∼ N(µ, σ). Then W = eX . Use

E[W ] = E[eX ] = mX(1)
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and
varW = E[e2X ] −E[eX ]2 = mX(2) −mX(1)2

Exercise 4: Let X ∼ N(0, 1). Derive the density function of Z = X2, its moment
generating function of and the first two moments.

Solution:

If X have a standard normal distribution N(0, 1) the distribution of their squares
Z = X2 is:

FZ(z) = P (X2 ≤ z) = P (−√
z ≤ X ≤ √

z)

=
∫ √

z

−
√

z

1√
2π
e−x2/2dx

= 2
∫ √

z

0

1√
2π
e−x2/2dx.

Using Leibniz’s rule for differentiating an integral

d

dz

∫ b(z)

a(z)
f(x, z) dx =

∫ b(z)

a(z)

∂f(x, z)

∂z
dx+ f(b(z), z)

db(z)

dz
− f(a(z), z)

db(z)

dz

the p.d.f for Z is

fZ(z) =
dFZ

dz
=

1

z
√

2π
e−z/2.

This is the χ2-distribution with parameter 1, or χ2(1).

The moment generating function is

mZ(t) = E[etZ ] =
∫ ∞

−∞

1√
2π
etx2

e−
1
2
x2

dx =
∫ ∞

−∞

1√
2π
e−

1
2
x2(1−2t)dx

Change variable y = x(1 − 2t)
1
2 and

mZ(t) = (1 − 2t)−
1
2

∫ ∞

−∞

1√
2π
e−

1
2
y2

dy = (1 − 2t)−
1
2

Hence E[Z] = m′
Z(0) = 1 and var[Z] = m′′

Z(0) = 2.

Exercise 5:

Let X1 and X2 be independent with normal distributions N(µ1, σ
2
1) and N(µ2, σ

2
2).

Find the p.d.f. of Y = X1 −X2.

Solution: The moment generating function for Y is

mY (t) = E(et(X1−X2))

= E(etX1e−tX2)

= E(etX1)E(e−tX2)

= mX1
(t)m−X2

(t),
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since X1 and X2 are independent. Using the fact that X1 and X2 are normally
distributed, we have that

mX1
(t) = exp

(
µ1t+

1

2
σ2

1t
2
)

and

m−X2
(t) = mX2

(−t) = exp
(
−µ2t+

1

2
σ2

2t
2
)
.

Therefore

mY (t) = exp
(
µ1t+

1

2
σ2

1t
2
)

exp
(
−µ2t+

1

2
σ2

2t
2
)

= exp

(
(µ1 − µ2)t+

(σ2
1 + σ2

2)t
2

2

)
.

We recognise this as being the moment generating function of a normally distributed
random variable with mean µ1 − µ2 and variance σ2

1 + σ2
2. Thus the p.d.f. for Y is

N(µ1 − µ2, σ
2
1 + σ2

2).

Exercise: Show that if X1 N(µ1, σ
2
1) and X2 N(µ2, σ

2
2) then Y = X1 + X2 N(µ1 +

µ2, σ
2
1 + σ2

2).
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Bivariate discrete distributions:

If X and Y are random variables, then we can define a joint probability function
f(x, y) = P (X = x, Y = y) where f(x, y) is non-negative and

∑∑
f(x, y) = 1. We

then define the marginal distributions

fX(x) =
∑
y

f(x, y) fY (y) =
∑
x

f(x, y)

These are the probability functions for X and Y separately.

The conditional probability of X given Y is:

P (X |Y ) =
P (XY )

P (Y )
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Bivariate continuous distributions

Here we have a probability density f(x), which it is important to recognize is not by
itself a probability. Instead, the probability that X lies in the interval (x, x + dx) is
f(x)dx, or for a finite interval (a, b) it is

∫ b
a f(x)dx.

In the same way, we can have continuous bivariate (or mutlivariate) probability dis-
tributions. For that, we have a probability density function f(x, y) and again this
isn’t a probability on its own. Instead, the joint probability that X lies in the interval
(x, x + dx) and Y lies in the interval (y, y + dy) is f(x, y)dxdy. Finite probabilities
are then given by double integrals: P [(X, Y ) ∈ A] =

∫ ∫
f(x, y)dxdy.

Any function f(x, y) can be a bivariate probability function providing that it is non-
negative and its integral over the entire x− y plane is unity.

We can then define marginal densities:

fX(x) =
∫ ∞

∞
f(x, y)dy fY (y) =

∫ ∞

∞
f(x, y)dx

The conditional densities are:

f(x | y) =
f(x, y)

fY (y)

f(y |x) =
f(x, y)

fX(x)

The condition for the independence of X and Y is that

• The joint density factorizes

fX,Y (x, y) = fX(x)fY (y)

• the marginal densities are equal to the conditional densities:

f(x | y) = fX(x) f(y |x) = fY (y)

Covariance and Correlation The covariance between two r.v. X and Y is defined
as

Cov(X, Y ) = E[X − E[X]]E[Y −E[Y ]] = E[XY ] −E[X]E[Y ]

Exercise: prove equality above.

The correlation coefficient is defined as

ρX,Y =
Cov(X, Y )√
var(X)var(Y )

=
Cov(X, Y )

σ(X)σ(Y )
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Note that

• cov[X,X] = var[X] and ρX,X = 1

• If cov[X, Y ] = 0 we say the two r.v. are uncorrelated.

• if X and Y are independent they are also uncorrelated but the reverse in not
normally true.

Bivariate normal distribution

The bivariate normal distribution for two random variables X,Y, is given by

f(x, y) =
1

2πσXσY (1 − ρ2)1/2
exp

{
− 1

2(1 − ρ2)

[(
x− µX

σX

)2

−2ρ
x− µX

σX

y − µY

σY

+
(
y − µY

σY

)2
]}

where ρ is the correlation coefficient between X and Y . If ρ = 0

fX,Y (x, y) =
1

2πσXσY
exp

[
−1

2

(
x− µX

σX

)2
]

exp

[
−1

2

(
y − µY

σY

)2
]

= fX(x)fY (y)

Multivariate normal distribution

The multivariate normal distribution for n random variables X = (X1, X2, · · ·Xn) is
given by

f(x, y) =
1

(2π)n/2(detΣ)1/2
exp

{
−1

2
(x − µ)Σ−1(x − µ)′

}

where x, µ ∈ Rn, Σ is the variance-covariance matrix, Σ−1 its inverse and detΣ its
determinant.

Exercise 6:

Let fX,Y (x, y) be the normal bivariate distribution. Calculate

a)
∫∞
−∞ f(x, y)dxdy

b) fX(x) =
∫∞
−∞ f(x, y)dy

c) The moment generating function of the bivariate normal distribution mX,Y (t1, t2)

d) The conditional distribution fX|Y (x|y)
Solution
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(a) The bivariate normal distribution for two random variables X,Y, is given by

f(x, y) =
1

2πσXσY (1 − ρ2)1/2
exp

{
− 1

2(1 − ρ2)

[(
x− µX

σX

)2

−2ρ
x− µX

σX

y − µY

σY
+
(
y − µY

σY

)2
]}

(38)

To compute the integral of f(x, y) over the entire plane, let us first do the change of
variables

u =
x− µX

σX

and v =
y − µY

σY

.

Therefore,∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy =

1

2π(1 − ρ2)1/2

∫ ∞

−∞

∫ ∞

−∞
e−[1/2(1−ρ2)](u2−2ρuv+v2)dudv.

Now we complete the squares for the variable u in the exponent as follows

1

2(1 − ρ2)
(u2 − 2ρuv + v2) =

1

2(1 − ρ2)
(u2 − 2ρuv + ρ2v2 − ρ2v2 + v2)

=
1

2(1 − ρ2)
[(u− ρv)2 + (1 − ρ2)v2]

=
1

2



(
u− ρv√
1 − ρ2

)2

+ v2


 .

We are then led to the following change of variables

w =
u− ρv√
1 − ρ2

,

which reduces the integral to∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy =

1

2π

∫ ∞

−∞
e−w2/2dw

∫ ∞

−∞
e−v2/2dv = 1.

(b) We now need to calculate the marginal distribution for the random variable X.
This amounts to performing an integration only over the variable y, so we begin with
the change of variables

v =
y − µY

σY
.

This leads to

fX(x) =
∫ ∞

−∞
f(x, y)dy =

1

2πσX(1 − ρ2)1/2

×
∫ ∞

−∞
exp

{
− 1

2(1 − ρ2)

[(
x− µX

σX

)2

− 2ρ
(
x− µX

σX

)
v + v2

]}
dv

=
exp

{
− (x−µX)2

2(1−ρ2)σ2
X

}
2πσX(1 − ρ2)1/2

∫ ∞

−∞
exp

{
− 1

2(1 − ρ2)

[
v2 − 2ρ

(
x− µX

σX

)
v
]}

dv.
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we complete the squares in the exponent of the integrand as follows

v2 − 2ρ
(
x− µX

σX

)
v = v2 − 2ρ

(
x− µX

σX

)
v + ρ2

(
x− µX

σX

)2

− ρ2
(
x− µX

σX

)2

=
(
v − ρ

x− µX

σX

)2

− ρ2
(
x− µX

σX

)2

.

Back to the integral and with the change of variables

t =
1

(1 − ρ2)1/2

(
v − ρ

x− µX

σX

)

we obtain

fX(x) =
∫ ∞

−∞
f(x, y)dy

=
exp

{
1
2

(
x−µX

σX

)2
}

2πσX

∫ ∞

−∞
e−t2/2dt

=
1√

2πσX

exp

{
1

2

(
x− µX

σX

)2
}
.

(c) The joint moment generating function is defined as

mX,Y (t1, t2) = m(t1, t2) = E[et1X+t2Y ]

=
∫ ∞

−∞

∫ ∞

−∞
et1X+t2Y f(x, y)dxdy.

We begin with the same change of variables as before, namely,

u =
x− µX

σX
and v =

y − µY

σY
.

This leads us to

mX,Y (t1, t2) =
et1µX+t2µY

2π(1 − ρ2)1/2

×
∫ ∞

−∞

∫ ∞

−∞
et1σXu+t2σY v−[1/2(1−ρ2)](u2−2ρuv+v2)dudv.

The total exponent in the integrand is

− 1

2(1 − ρ2)
[u2 − 2(1 − ρ2)t1σXu− 2ρuv + v2 − 2(1 − ρ2)t2σY v]

Completing the squares for the variable u we obtain

− 1

2(1 − ρ2)
{[u − (1 − ρ2)t1σX − ρv]2 + v2 − 2(1 − ρ2)t2σY v

− (1 − ρ2)2t21σ
2
X − 2(1 − ρ2)t1σXρv − ρ2v2},
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and completing the squares in the variable v we get

− 1

2(1 − ρ2)
{[u − (1 − ρ2)t1σX − ρv]2 + (1 − ρ2)(v − t2σY − t1σXρ)

2

− (1 − ρ2)(t21σ
2
X + t22σ

2
Y + 2t2σY t1σXρ)}.

With the change of variables

w =
u− (1 − ρ2)t1σX − ρv√

1 − ρ2
and z = v − t2σY − t1σXρ,

the exponent becomes

−1

2
w2 − 1

2
z2 +

1

2
(t21σ

2
X + t22σ

2
Y + 2t2σY t1σXρ).

Returning to the integral, we obtain

mX,Y (t1, t2) =
et1µX+t2µY

1
2
(t21σ2

X+t22σ2
Y +2t2σY t1σXρ)

2π

∫ ∞

−∞

∫ ∞

−∞
e−

1
2
w2− 1

2
z2

dzdw.

Therefore
m(t1, t2) = et1µX+t2µY

1
2
(t21σ2

X+t22σ2
Y +2t2σY t1σXρ)

(d) We obtain the conditional distributions from the joint and marginal distributions.
The conditional distribution of X for a fixed value of Y is given by

fX|Y (x|y) =
f(x, y)

fY (y)

=
1√

2πσX(1 − ρ2)1/2
exp

{
− 1

2σ2
X(1 − ρ2)

[
x− µX − ρσX

σY

(y − µY )
]2}

,

where for fY (y) we have used the formula obtained in (b) with x and y interchanged.
As we can see, this is a normal distribution with mean µX + ρσX

σY
(y−µY ) and variance

σ2
X(1 − ρ2).
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Joint density of functions of random variables

Assume you know the joint density function of two r.v. X1, X2 and you want to
calculate the joint density of Y1 = g1(X1, X2), Y2 = g(X1, X2). One can show that

fY1,Y2 = |J |fX1,X2(g
−1
1 (y1, y2), g

−1
2 (y1, y2)ID(y1, y2)

where J is the Jacobian i.e. the determinant of the matrix M whose elements are
Mi,j = ∂xi

∂yj
and |J | is its absolute value.
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Box-Muller approach

This is a method for generating normally distributed random variables starting from
uniformly distributed random variables. Let X1 ∼ U(0, 1), X2 ∼ U(0, 1)

y1 =
√
−2 log x1cos(2πx2)

y2 =
√
−2 log x1sin(2πx2)

Then

x1 = exp

(
−y

2
1 + y2

2

2

)

x2 =
1

2π
arctg(y2/y1)

Now
∂x1

∂y1
= −y1 exp

(
−y

2
1 + y2

2

2

)

∂x1

∂y2
= −y2 exp

(
−y

2
1 + y2

2

2

)

∂x2

∂y1

= − y2

2π

1

y2
1 + y2

2

∂x2

∂y2

= − y1

2π

1

y2
1 + y2

2

and

|J | =
1

2π
exp

(
−y

2
1 + y2

2

2

)

D = {−∞ < y1 <∞,−∞ < y2 <∞}

fY1,Y2 =
1

2π
exp

(
−y

2
1 + y2

2

2

)
ID(y1, y2)

Hence Y1, Y2 are independent normally distributed random variables. Now

Z1 = Y1

and
Z2 = ρY1 +

√
1 − ρ2Y2

are normally distributed and ρ correlated.
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Limit theorems

The strong law of large numbers Let X1, X2, · · ·Xn be a sequence if i.i.d r.v.
each having a finite mean µ = E[Xi]. Then

P
{

lim
n→∞

X1 +X2 + · · · +Xn

n
= µ

}
= 1

Central Limit Theory Let X1, X2, · · ·Xn be a sequence if i.i.d r.v. each having a
finite mean µ and variance σ2. Then

lim
n→∞

P

{
X1 +X2 + · · ·+Xn − nµ

σ
√
n

≤ a

}
=

1√
2π

∫ a

−∞
e

−x2

2 dx = N(a)
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Stochastic process

A stochastic process is a sequence of r.v. X = (Xt(ω), t ∈ T, ω ∈ Ω) defined on
some probability space Ω. T can be a finite set, or countably infinite set (discrete-
time process) or an interval (a, b) or (a,∞) (continuous-time process). The index t is
usually refereed to as time. A stochastic process Xt(ω) is a function of two variables:

• at fixed time t, Xt(ω), ω ∈ Ω it is a random variable

• for a given random outcome ω, Xt(ω), t ∈ T it is a function of time, called a
realization or a trajectory, or sample path of the process X.

Random Walk

A random walk is a formalization of the intuitive idea of taking successive steps, each
in a random direction. A random walk is a simple stochastic process sometimes called
a ”drunkard’s walk”.

To generate a random walk

W (t+ ∆t) = W (t) + σε
√

∆t

where ε ∼ N(0, 1).

Wiener process or Brownian motion

As the step size ∆t in the random walk tends to 0 (and the number of steps increased
comparatively) the random walk converges to Brownian motion in an appropriate
sense.

A stochastic process W = (W (t) : t ≥ 0) is a standard Brownian if

• W (0) = 0

• W has independent increments: W (t+u)−W (t) is independent of (W (s) : s ≤
t) for u ≥ 0.

• W has stationary increments: the law of W (t+ u) −W (t) depends only on u.

• W has Gaussian increments: W (t+ u) −W (t) ∼ N(0, u).
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Appendix B

A useful formula for option pricing

If V is a log normal variable, i.e. V = eX with X ∼ N(m, s2)

then
E[(V −K)+] = E[V ]N(d1) −KN(d2)

where

d1 =
ln(E[V ]/K) + s2/2

s

and

d2 =
ln(E[V ]/K) − s2/2

s

Before proving it let’s use it and derive the Black-Scholes equation.

We need to calculate
C(0) = e−rTE∗[(ST −K)+]

where ST = eXT and XT ∼ N((r − 1/2σ2)T, σ2T ). Also under P ∗

E∗[S(T )] = S(0)erT

hence replacing in formula above s with σ
√
T we obtain

C(0) = S(0)N(d1) −KB−1(T )N(d2)

with

d1 =
ln(S(0)erT/K) + s2/2

s
=

ln(S(0)/K) + (r + 1/2σ2)T

σ
√
T

and

d2 =
ln(S(0)erT/K) − s2/2

s
=

ln(S(0)/K) + (r − 1/2σ2)T

σ
√
T

Proof of the formula

If V = eX with X ∼ N(m, s2) then using moment generating formula

E[V ] = em+ 1
2
s2

Define

Q =
lnV −m

s

then
V = eQs+m.

Note that Q ∼ N(0, 1) so

n(Q) =
1√
2π
e−Q2/2
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and
I = E[(V −K)+] = E[(eQs+m −K)+].

Note that

eQs+m > K → Q >
lnK −m

s

Hence
I =

∫ ∞

ln K−m
s

(eQs+m −K)n(Q)dQ =

∫ ∞

lnK−m
s

eQs+mn(Q)dQ−K
∫ ∞

ln K−m
s

n(Q)dQ

but

eQs+mn(Q) =
1√
2π
e−Q2/2+Qs+m =

1√
2π
e−1/2(Q2−2Qs−2m) =

1√
2π
e−1/2[(Q−s)2−2m−s2] = em+s2/2n(Q− s)

So
I = em+s2/2

∫ ∞

ln K−m
s

n(Q− s)dQ−K
∫ ∞

ln K−m
s

n(Q)dQ =

em+s2/2
∫ ∞

ln K−m
s

−s
n(Z)dZ −K

∫ ∞

ln K−m
s

n(Q)dQ

Remember that ∫ ∞

a
n(u)du = 1 −

∫ a

−∞
n(u)du

Also ∫ a

−∞
n(u)du = N(a) = 1 −N(−a)

Then

I = em+s2/2[1 −N(
lnK −m

s
− s)] −K[1 −N(

lnK −m

s
) =

em+s2/2N(− lnK −m

s
+ s)] −KN(− lnK −m

s
)

Now replacing
m = lnE[V ] − 1/2s2

we obtain

E[(V −K)+] = E[V ]N(
− lnK + lnE[V ] − 1/2s2 + s2

s
)

−KN(
− lnK + lnE[V ] − 1/2s2

s
) =

E[V ]N(
ln(E[V ]/K) + 1/2s2

s
) −KN(

ln(E[V ]/K) − 1/2s2

s
) =

E[V ]N(d1) −KN(d2)


