
Problem Sheet 4

I. ADIABATIC DEMAGNETIZATION AND EXPANSION

Adiabatic demagnetization is a technique to reach very low temperatures. Thereby a

magnetic salt, which was brought to a temperature T in the presence of a field H, is demag-

netized adiabatically (H is switched without allowing the system to exchange heat). As we

will show here, this lowers the temperature of the system.

Make the qualitative connection between adiabatic demagnetization of a magnetic salt

and adiabatic expansion of a gas: Show that magnetic field H and volume V play equivalent

roles in the two processes: S(H) and S(V ) are always monotonic functions, at any fixed

T . Explain qualitatively why the temperature is lowered in an adiabatic process when V is

increased, or when H is decreased, respectively.

Give now also a formal mathematical argument why T is lowered when H is decreased

adiabatically by rewriting the adiabatic temperature change,

∂T

∂H
|S = ..., (1.1)

by using techniques you have learnt in the lecture, and using that ∂S/∂H|T < 0.

A. Entropy of spins in a magnetic field

A simple model for adiabatic demagnetization is given by a collection of independent,

that is, non-interacting spins (or magnetic moments). Those spins point either up or down

along a fixed axis (so-called Ising spins). Such spins arise naturally in certain transition

metal compounds. Ising spins are essentially classical objects, quantum mechanics playing

no role for thermodynamics.

The energy of such a system of N spins is simply

E({si}) = −µH
N∑
i=1

si, (1.2)

where µ is called the magnetic moment of the spins. The possible spin configurations

(the phase space) are just all the 2N combinations of si = ±1. Argue that the statistical

distribution function (in the canonical ensemble) for this system is

ρ({si}) =
e−βE({si})

N (β)
=

N∏
i=1

eβµHsi

2 cosh(βµH)
(1.3)

Calculate the entropy

S = −〈log(ρ({si})〉 ≡ −
∑
{si}

ρ({si}) log(ρ({si})) (1.4)



as a function of T = β−1 and H. [Convince yourself that this calculation is much more

difficult if the spins interacted with each other!]

Verify that at strong fields (which fields should be considered ”strong”?) the entropy

becomes very small, even at finite T , and that S monotonically decreases with increasing

H, as claimed in the lecture.

Discuss the behavior of S(T,H) as T tends to zero. Nernst’s theorem seems to be violated

atH = 0! The reason here is different from the pathology of classical systems (where a log(T )

divergent piece in the entropy comes from the neglect of quantum constraints on the kinetic

energy). Here, the ground state of the system is not unique, but extensively degenerate (all

configurations have the same energy).

Convince your self and explain, that this is a pathology which arises, because we neglected

to include the interactions between spins. Interactions will lift the degeneracy and restore

S(T → 0) = 0 even at H = 0. Consider thus a coupled Ising spin chain with energy

E({si}) = −µH
N∑
i=1

si − J
N−1∑
i=1

sisi+1. (1.5)

with a small coupling J .

Below what temperature scale do you expect S(T,H = 0) to deviate from the noninter-

acting result, and to tend to zero?

Bonus question (challenge! - The first to solve it correctly gets an offered

drink in the coffee bar): Calculate the entropy of the spin chain and show explicitly that

S(T → 0, H = 0) → 0! Hint: assume you know the partition function ZM(sM) for a chain

with M spins where the last spin has fixed orientation sM = ±1. Derive a recursion relation

between ZM+1(sM+1) and ZM(sM), and in this way compute ZN ! (This is called the transfer

matrix technique.)
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