
Problem Sheet 3

I. HEAT IN THE IDEAL GAS

Find the error in the following wrong argument:

We know that the internal energy of a body satisfies

dE = δQ+ δW. (1.1)

Thereby we have for the heat

δQ = CV dT (1.2)

and the work

δW = −pdV. (1.3)

From this we conclude that

∂E

∂V
|T = −p. (1.4)

On the other hand we know that E = E(T ) is independent of V , and thus (1.4) is obviously

wrong. Where is the flaw in the argument?

A. Free energy of the ideal gas

Use

E =
3

2
TN, (1.5)

derived in the last problem, and the relation

F − T∂F/∂T |V = E =
3

2
TN (1.6)

to find an expression for the free energy of the ideal gas by integrating (1.6). Pay attention

to a free constant which depends on V when you integrate!

Then use

∂F/∂V |T = −P = −NT/V (1.7)

to fix the remaining freedom in the expression you found (up to one free constant factor).

Use the fact that the free energy per particle, f ≡ F/N , should only depend on intensive

quantities like temperature T and density n = N/V ! What dimension must the free factor

have? From this dimensional analysis, can you infer what combination of ~ and m (particle

mass) this factor must be? Note that only a purely numerical factor remains undetermined

by this reasoning!



B. Entropy and equation of state - once more

Calculate the microcanonical entropy for an ideal gas of N particles of mass m

(monoatomic) in a volume V . It is defined as the logarithm of the phase space volume

in a small energy interval of size ∆E around E. For small ∆E this can be written as :

Smicro;∆E(E) = log

[
∆E

∫
d3Nqd3Np

(2π~)3N
δ(E − E(p, q))

]
(1.8)

using that the energy E(p, q) =
∑3N

i=1
p2

i

2m
is of purely kinetic origin.

To leading order (terms proportional to N) this yields the same as the canonical definition

of entropy (this is the equivalence of ensembles!). If you want to make contact between

microcanonical and canonical expressions for the entropy beyond this leading order, what

value for ∆E would you choose to come as close as possible to the canonical expression? In

particular, how should ∆E scale with N?

Calculate the temperature associated to E as T = [∂S/∂E|V ]−1 and recover the equipar-

tition theorem.

Derive (once again) the equation of state by calculating the pressure:

P = ∂E/∂V |S = ... =
NT

V
. (1.9)

(Make use, e.g., of the identity for partial derivatives which you proved in the last problem!

Knowing S(E, V ), obtain the thermodynamic potential E(S, V ). Also obtain the Legen-

dre transform of the latter with respect to S, the free energy F (T, V ), and compare with

the result from the last exercise!

C. Pathology of the entropy of classical systems at low T

Show from the above that the entropy of the ideal gas has a behavior (at a fixed volume)

S(T ) = S0(T0) + CV ln(T/T0) (1.10)

where T0 is an arbitrary reference temperature. This implies that S(T → 0) → ∞, in

clear contradiction to Nernst’s theorem S(T → 0)→ 0 and the general law that S(T ) > 0.

Remember that the positivity of the entropy follows from the definition of entropy as the

logarithm of the number of relevant quantum states, which is always > 1.

Another important example exhibiting the same pathology is the 1d harmonic oscillator

with

E(p, q) =
k

2
q2 +

m

2
p2. (1.11)

Calculate the (classical) entropy, both canonically and microcanconically for N independent

harmonic oscillators, and convince yourself of the equivalence of the ensembles! Show in

particular that the entropy has the same logarithmic behavior at low T .
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Argue that this pathology, S(T ) ∼ ln(T ), occurs generically in classical systems with

kinetic degrees of freedom. (The ideal gas is the cleanest example of this kind.)

How can one cure this pathology? An essential element of the cure comes from quantum

mechanics, the uncertainty principle and the discreteness of levels. Try to figure out what

the essential mechanism is!

Take the above two examples and find the scale of temperature TQ below which quantum

mechanics must be taken into account there! Hint: Start with the harmonic oscillator and

identify the temperature scale TQ (up to a numerical factor). Suggestion: Those who know

already how to do it: compute the entropy for a collection of independent quantum harmonic

oscillator and convince yourself that while at high T you find essentially the classical result,

S remains positive and tends to zero when T → 0.

For the ideal gas, you can think first about the case of a very low density, i.e., a volume V

with only a few particles (very low, fixed density n = N/V ). In the limit of a single particle

in the volume what is your expectation for the temperature scale TQ? (Note that this scale

will depends on the volume!)

Later we will see that in the case of finite density quantum statistics becomes important

once the temperature falls below the energy scale TQ which corresponds to a volume equal

to the volume per particle. Express this value of TQ as a function of ~, m and density n!
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